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Abstract: According to the concept of typicality, an
ensemble average can be accurately approximated by an
expectation valuewith respect to a single pure state drawn
at random from a high-dimensional Hilbert space. This
random-vector approximation, or trace estimator, pro-
vides a powerful approach to, e.g. thermodynamic quan-
tities for systems with large Hilbert-space sizes, which
usually cannot be treated exactly, analytically or numer-
ically. Here, we discuss the finite-size scaling of the accu-
racy of such trace estimators from two perspectives. First,
we study the full probability distribution of random-
vector expectation values and, second, the full temper-
ature dependence of the standard deviation. With the
help of numerical examples, we find pronounced Gaus-
sianprobability distributions and the expecteddecrease of
the standard deviationwith system size, at least above cer-
tain system-specific temperatures. Belowand in particular
for temperatures smaller than the excitation gap, simple
rules are not available.

Keywords: Spin Systems; Thermodynamic Observables;
Trace Estimators; Typicality.

1 Introduction
Methods such as the finite-temperature Lanczos method
(FTLM) [1–7] that rest on trace estimators [1, 8–16] and
thus – in more modern phrases – on the idea of typi-
cality [17–20], approximate equilibrium thermodynamic
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observables with very high accuracy [2, 21]. In the canoni-
cal ensemble, the observable can be evaluated either with
respect to a single random vector | r ⟩,

Or(T) ≈
⟨ r | O∼ e−β H∼ | r ⟩

⟨ r | e−β H∼ | r ⟩
, (1)

or with respect to an average over R random vectors,

OFTLM(T) ≈

∑︀R
r=1 ⟨ r | O∼ e−β H∼ | r ⟩

∑︀R
r=1 ⟨ r | e−β H∼ | r ⟩

, (2)

where numerator and denominator are averaged with
respect to the same set of randomvectors. The components
of | r ⟩with respect to an orthonormal basis are taken from
a Gaussian distribution with zero mean (Haar measure
[22–24]), but in practice other distributions work as well.
T, β and H∼ denote the temperature, inverse temperature
and the Hamiltonian, respectively.

In this work, we discuss the accuracy of (1) and (2),
where we particularly focus on the dependence of this
accuracy on the system size or, to be more precise, the
dimension of the effective Hilbert space spanned by ther-
mally occupied energy eigenstates. While it is well estab-
lished that the accuracy of both equations increases with
the square root of this dimension, we shed light on the
size dependence from two less studied perspectives. First,
we study the full probability distribution of random-vector
expectation values, for the specific example of magnetic
susceptibility and heat capacity in quantum spin systems
on a one-dimensional lattice. At high temperatures, our
numerical simulations unveil that these distributions are
remarkably well described by simple Gaussian functions
over several orders of magnitude. Moreover, they clearly
narrow with the inverse square root of the Hilbert-space
dimension towards a δ function. Decreasing temperature
at fixed system size, we find the development of broader
and asymmetric distributions. Increasing the system size
at fixed temperature, however, distributions become nar-
rowand symmetric again. Thus, themere knowledgeof the
standard deviation turns out to be sufficient to describe
the full statistics of random-vector expectation values–at
least at not too low temperatures.

The second central perspective of our work is taken
by performing a systematic analysis of the scaling of the
standard deviation with the system size, over the entire
range of temperature and in various quantum spinmodels
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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including spin-1/2 and spin-1 Heisenberg chains, critical
spin-1/2 sawtooth chains, as well as cuboctahedra with
spins 3/2, 2 and 5/2. We show a monotonous decrease of
the standard deviation with increasing effective Hilbert-
space dimension, as long as the temperature is high com-
pared to some system-specific low-energy scale. Below
this scale, the scaling can become unsystematic if only
a very few low-lying energy eigenstates contribute. How-
ever, when averaging according to (2) over a decent num-
ber (∼100) of random vectors, one can still determine the
thermodynamic average very accurately in all examples
considered by us. A quite interesting example constitutes
the critical spin-1/2 sawtooth chain, where a single state
drawn at random is enough to obtain this average down to
very low temperatures.

This paper is organized as follows. In Section 2 we
briefly recapitulate models, methods, as well as typicality-
based estimators. In Section 3 we present our numerical
examples both for frustrated and unfrustrated spin sys-
tems. The paper finally closes with a summary and discus-
sion in Section 4.

2 Method
In this article we study several spin systems at zero mag-
netic field. They are of finite size and described by the
Heisenberg model,

H∼ =
∑︁
i<j

Jij s⃗∼i · s⃗∼j , (3)

where the sum runs over ordered pairs of spins. Here and
in the following operators are marked by a tilde, i.e. s⃗∼i

denotes the spin-vector operator at site i. Jij denotes the
exchange interaction between a spin at site i and a spin at
site j. With the sign convention in (3), Jij > 0 corresponds
to antiferromagnetic interaction.

Numerator and denominator of (2), the latter is the
partition function, are evaluated using a Krylov-space
expansion, i.e. a spectral representation of the exponen-
tial in a Krylov space with | r ⟩ as starting vector of the
Krylov-space generation, compare [1, 4]. One could equally
well employ Chebyshev polynomials [13, 25, 26] or inte-
grate the imaginary-time Schrödinger equation with a
Runge–Kuttamethod [27–29], the latter is used later in this
paper as well.

If the Hamiltonian H∼ possesses symmetries, they can
be used to block-structure the Hamiltonian matrix accord-
ing to the irreducible representations of the employed
symmetry groups [4, 5], which yields for the partition

function

ZFTLM(T) ≈
Γ∑︁

γ=1

dim[ℋ(γ)]
R

×
R∑︁

r=1

NL∑︁
n=1

e−βε(r)n |⟨ n(r) | r ⟩|2 . (4)

ℋ(γ) labels the subspace that belongs to the irreducible
representation γ, NL denotes the dimension of the Krylov
space and | n(r) ⟩ is the n-th eigenvector of H∼ in this Krylov

space grown from | r ⟩. The energy eigenvalue is ε(r)n . To per-
form the Lanczos diagonalization for larger system sizes,
we use the public code spinpack [30, 31].

In our numerical studies we evaluate the uncertainty
of a physical quantity by repeating its numerical eval-
uation NS times. For this statistical sample we define
the standard deviation of the observable in the following
way:

δ(O) =

⎯⎸⎸⎸⎷ 1
NS

NS∑︁
r=1

[︀
Om(T)

]︀2 −

[︃
1
NS

NS∑︁
r=1

Om(T)
]︃2

=

√︂[︀
Om(T)

]︀2 −
[︁
Om(T)

]︁2
. (5)

Om(T) is either evaluated according to (1) (m = r) or to
(2) (m=FTLM), depending on whether the fluctuations of
approximations with respect to one random vector or with
respect to an average over R vectors shall be investigated.

We consider two physical quantities, the zero-field
susceptibility as well as the heat capacity. Both are eval-
uated as variances of magnetization and energy, respec-
tively, i.e.

χ(T) =
(gµB)2

kBT

[︂⟨
(S∼

z)2
⟩

−
⟨
S∼
z
⟩2

]︂
, (6)

C(T) =
kB

(kBT)2

[︂⟨
H∼
2
⟩

−
⟨
H∼

⟩2
]︂
. (7)

We compare our results with the well-established high-
temperature estimate

δ⟨O∼⟩ ≃ ⟨O∼⟩ α√
Zeff

, Zeff = tr
[︁
e−β(H∼ −E0)

]︁
. (8)

Here E0 denotes the ground-state energy. In general the
prefactor α depends on the specific system, its structure
and size, as well as on temperature [18, 19], but empiri-
cally often turns out to be a constant of order α ≈ 1 for
high enough temperatures, compare [2, 6, 21]. Rigorous
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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including spin-1/2 and spin-1 Heisenberg chains, critical
spin-1/2 sawtooth chains, as well as cuboctahedra with
spins 3/2, 2 and 5/2. We show a monotonous decrease of
the standard deviation with increasing effective Hilbert-
space dimension, as long as the temperature is high com-
pared to some system-specific low-energy scale. Below
this scale, the scaling can become unsystematic if only
a very few low-lying energy eigenstates contribute. How-
ever, when averaging according to (2) over a decent num-
ber (∼100) of random vectors, one can still determine the
thermodynamic average very accurately in all examples
considered by us. A quite interesting example constitutes
the critical spin-1/2 sawtooth chain, where a single state
drawn at random is enough to obtain this average down to
very low temperatures.

This paper is organized as follows. In Section 2 we
briefly recapitulate models, methods, as well as typicality-
based estimators. In Section 3 we present our numerical
examples both for frustrated and unfrustrated spin sys-
tems. The paper finally closes with a summary and discus-
sion in Section 4.

2 Method
In this article we study several spin systems at zero mag-
netic field. They are of finite size and described by the
Heisenberg model,

H∼ =
∑︁
i<j

Jij s⃗∼i · s⃗∼j , (3)

where the sum runs over ordered pairs of spins. Here and
in the following operators are marked by a tilde, i.e. s⃗∼i

denotes the spin-vector operator at site i. Jij denotes the
exchange interaction between a spin at site i and a spin at
site j. With the sign convention in (3), Jij > 0 corresponds
to antiferromagnetic interaction.

Numerator and denominator of (2), the latter is the
partition function, are evaluated using a Krylov-space
expansion, i.e. a spectral representation of the exponen-
tial in a Krylov space with | r ⟩ as starting vector of the
Krylov-space generation, compare [1, 4]. One could equally
well employ Chebyshev polynomials [13, 25, 26] or inte-
grate the imaginary-time Schrödinger equation with a
Runge–Kuttamethod [27–29], the latter is used later in this
paper as well.

If the Hamiltonian H∼ possesses symmetries, they can
be used to block-structure the Hamiltonian matrix accord-
ing to the irreducible representations of the employed
symmetry groups [4, 5], which yields for the partition

function

ZFTLM(T) ≈
Γ∑︁

γ=1

dim[ℋ(γ)]
R

×
R∑︁

r=1

NL∑︁
n=1

e−βε(r)n |⟨ n(r) | r ⟩|2 . (4)

ℋ(γ) labels the subspace that belongs to the irreducible
representation γ, NL denotes the dimension of the Krylov
space and | n(r) ⟩ is the n-th eigenvector of H∼ in this Krylov

space grown from | r ⟩. The energy eigenvalue is ε(r)n . To per-
form the Lanczos diagonalization for larger system sizes,
we use the public code spinpack [30, 31].

In our numerical studies we evaluate the uncertainty
of a physical quantity by repeating its numerical eval-
uation NS times. For this statistical sample we define
the standard deviation of the observable in the following
way:

δ(O) =

⎯⎸⎸⎸⎷ 1
NS

NS∑︁
r=1

[︀
Om(T)

]︀2 −

[︃
1
NS

NS∑︁
r=1

Om(T)
]︃2

=

√︂[︀
Om(T)

]︀2 −
[︁
Om(T)

]︁2
. (5)

Om(T) is either evaluated according to (1) (m = r) or to
(2) (m=FTLM), depending on whether the fluctuations of
approximations with respect to one random vector or with
respect to an average over R vectors shall be investigated.

We consider two physical quantities, the zero-field
susceptibility as well as the heat capacity. Both are eval-
uated as variances of magnetization and energy, respec-
tively, i.e.

χ(T) =
(gµB)2

kBT

[︂⟨
(S∼

z)2
⟩

−
⟨
S∼
z
⟩2

]︂
, (6)

C(T) =
kB

(kBT)2

[︂⟨
H∼
2
⟩

−
⟨
H∼

⟩2
]︂
. (7)

We compare our results with the well-established high-
temperature estimate

δ⟨O∼⟩ ≃ ⟨O∼⟩ α√
Zeff

, Zeff = tr
[︁
e−β(H∼ −E0)

]︁
. (8)

Here E0 denotes the ground-state energy. In general the
prefactor α depends on the specific system, its structure
and size, as well as on temperature [18, 19], but empiri-
cally often turns out to be a constant of order α ≈ 1 for
high enough temperatures, compare [2, 6, 21]. Rigorous
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error bounds, see Refs. [19, 32], share the dependence on
1/

√
Zeff, but lead to a prefactor that can be substantially

larger than the empirical finding.

3 Numerical Results
We now present our numerical results. First, in the follow-
ing Section 3.1, the full probability distribution of random-
vector expectation values is discussed for shorter spin
chains, where this distribution can be easily obtained by
generating a large set of different random vectors. In the
remainder of Section 3 the size dependence of the stan-
darddeviation is investigated for longer spin chains of spin
s = 1/2 and s = 1, which are treated by Lanczosmethods.
The interesting behaviour of a quantumcritical delta chain
is studied as well. Finally, we discuss the dependence of
the standard deviation on the spin quantum number for a
body of fixed size, the cuboctahedron.

3.1 Distribution of Random-Vector
Expectation Values for Smaller
Antiferromagnetic Spin-1/2 Chains

As a first step, in order to judge the accuracy of the single-
state estimate in (1), it is instructive to study its full prob-
ability distribution p, obtained by drawing many [here
𝒪𝒪(104−106)] randomvectors. Tobemoreprecise,we eval-
uate the numerator of (1) for different random states | r ⟩,
while its denominator is calculated as the average over all
| r ⟩,

⟨ r | O∼ e−β H∼ | r ⟩
1
R

∑︀R
r=1 ⟨ r | e−β H∼ | r ⟩

. (9)

The advantage of using this equation, instead of (1), is that
the mean coincides with (2), the latter should be used to
correctly obtain the low-temperature average in system of
finite size [21]. However, at sufficiently high temperatures
or in sufficiently large systems, onemight equally well use
(1), as we have checked.

The single results for (9) are then collected into bins
of appropriate width in order to form a “smooth” distribu-
tionp.While onemight expect thatpwill be approximately
symmetric around the respective thermodynamic average,
thewidth of the distribution indicates how reliable a single
random vector can approximate the ensemble average.

In this section, we study the probability distribu-
tion p (in the following denoted as pχ and pC) for the
quantities χ(T)T/N and C(T)T2/N, and exemplarily con-
sider the one-dimensional spin-1/2 Heisenbergmodel with

antiferromagnetic nearest-neighbour coupling J > 0 and
chain length N. Note that, as discussed in the upcom-
ing Sections 3.2–3.5, details of the model can indeed have
an impact on the behaviour of p in certain temperature
regimes.Note further, thatwe focus in this sectionon small
to intermediate system sizes N ≤ 20, where p can be eas-
ily obtained by generating a large set of different random
vectors and evolving these vectors in imaginary time by,
e.g. a simple Runge–Kutta scheme. We have checked that
the Runge–Kutta scheme employed in this section has
practically no impact on p.

To begin with, in Figure 1(a), pχ is shown for dif-
ferent chain lengths N = 12, . . . , 20 at infinite temper-
ature βJ = 0. For all values of N shown here, we find
that pχ is well described by a Gaussian distribution [33]
over several orders of magnitude. While the mean of
these Gaussians is found to accurately coincide with the
thermodynamic average limT→∞ χ(T)T/N = 1/4 [34], we
moreover observe that thewidth of the Gaussians becomes
significantly narrower upon increasingN. This fact already
visualizes that the accuracy of the estimate in (1) improves
for increasing Hilbert-space dimension. In particular, as
shown in the inset of Figure 1, the standard deviation δ(χ)
scales as δ(χ) ∝ 1/

√
d, where d = 2N is the dimension of

the Hilbert space. This is in agreement with (8) for α ≈ 1.2
and Zeff = d at β = 0. Note that as pχ is found to be a

a

b

Figure 1: (a) Probability distribution of the susceptibility χ(T )T /N
evaluated from independently drawn single states according to (9).
Data are shown for different system sizes N = 12, . . . , 20 at infinite
temperature βJ = 0. The dashed lines indicate Gaussian fits to the
data. The inset shows the standard deviation δ(χ) versus N, which
scales as δ(χ) ∝ 1/

√
d with Hilbert-space dimension d = 2N. (b)

Same data as in (a) but now for the finite temperature βJ = 1.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)

L. Balzer et al.: TMLE for Rare Outcomes 3

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM



4 | J. Schnack et al.: Finite-Size Scaling of Typicality-Based Estimates

Gaussian, thewidth δ(χ) is sufficient to describe thewhole
distribution (apart from the average).

To proceed, Figure 1(b) again shows the probability
distribution pχ, but now for the finite temperature βJ = 1.
There are two important observations compared to the pre-
vious case of βJ = 0. First, for small N = 12, one clearly
finds that pχ now takes on an asymmetric shape and the
tails are not described by a Gaussian anymore. Impor-
tantly, however, upon increasing the system size N, pχ
becomes narrower and eventually turns into a Gaussian
again. One may speculate about possible reasons for the
observed asymmetry: It might reflect an asymmetry of
the distribution, which is already present at βJ = 0 and
small N, and then increases with increasing β; or it might
also stem from the boundedness (positivity) of the observ-
ables, although the bounds are still far away for the pre-
sented case of βJ = 1 in Figure 1(b). While this asymmetry
remains to be explored in more detail in future work, it is
expected that the Gaussian shape breaks down for small
dimensions of the effective Hilbert space [33]. It is worth
pointing out that, even for very large dimensions, the very
outer tails of the distribution are expected to be of non-
Gaussian nature [33]. Yet, these tails are hard to resolve in
our numerical simulations, as a huge number of samples
would be needed.

As a second difference compared to βJ = 0, we find
that although pχ becomes narrower for larger N also at
βJ = 1, this scaling is now considerably slower as a func-
tion of dimensiond (see inset of Figure 1(b)). This is caused
by the smaller effective Hilbert-space dimension Zeff < d
at βJ > 0. As a consequence, for a fixed value of N, the
single-state estimate in (1) becomes less reliable at βJ = 1
compared to βJ = 0. However, let us stress that accurate
calculations are still possible at T > 0 as long as N is suf-
ficiently large. (Recall, that N ≤ 20 was chosen to be able
to generate a large set of random vectors.)

In order to analyze the development of the probabil-
ity distribution with respect to temperature inmore detail,
Figure 2(a) shows pχ for various values of βJ in the range
0 ≤ βJ ≤ 2, for a fixed small system sizeN = 12. Note that
the qualitative behaviour in principle is independent of N,
but better to visualise for small N with a broader pχ. Start-
ing from the high-temperature limit limT→∞ χ(T)T/N =
1/4, we find that the maximum of pχ gradually shifts
towards smaller values upon decreasing T.

This shift of the maximum is clearly visualised also
in Figure 2(b), which shows the same data, but in a dif-
ferent style. Moreover, Figure 2(b) additionally highlights
the fact that the probability distribution pχ for a fixed
(and small) value of N becomes broader (and asymmetric)
for intermediate values of T. Note, that pχ might become

a

b

Figure 2: (a) Probability distribution of the susceptibility χ(T )T /N
for various temperatures 0 ≤ βJ ≤ 2 at the fixed system size
N = 12 obtained by ED (symbols). For comparison, data obtained
by Runge-Kutta at βJ = 2 is shown as well (curve). (b) Same data as
in (a), but now as a contour plot.

narrower again for smaller values of T, see also discussion
in Sections 3.2 and 3.3.

Eventually, in Figures 3 and 4, we present analogous
results for the full probability distribution p, but now for
the heat capacity C(T)T2/N. Overall, our findings for pC
are very similar compared to the previous discussion of pχ.

a

b

Figure 3: Analogous data as in Figure 1, but now for the heat
capacity C(T )T 2/N.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Gaussian, thewidth δ(χ) is sufficient to describe thewhole
distribution (apart from the average).

To proceed, Figure 1(b) again shows the probability
distribution pχ, but now for the finite temperature βJ = 1.
There are two important observations compared to the pre-
vious case of βJ = 0. First, for small N = 12, one clearly
finds that pχ now takes on an asymmetric shape and the
tails are not described by a Gaussian anymore. Impor-
tantly, however, upon increasing the system size N, pχ
becomes narrower and eventually turns into a Gaussian
again. One may speculate about possible reasons for the
observed asymmetry: It might reflect an asymmetry of
the distribution, which is already present at βJ = 0 and
small N, and then increases with increasing β; or it might
also stem from the boundedness (positivity) of the observ-
ables, although the bounds are still far away for the pre-
sented case of βJ = 1 in Figure 1(b). While this asymmetry
remains to be explored in more detail in future work, it is
expected that the Gaussian shape breaks down for small
dimensions of the effective Hilbert space [33]. It is worth
pointing out that, even for very large dimensions, the very
outer tails of the distribution are expected to be of non-
Gaussian nature [33]. Yet, these tails are hard to resolve in
our numerical simulations, as a huge number of samples
would be needed.

As a second difference compared to βJ = 0, we find
that although pχ becomes narrower for larger N also at
βJ = 1, this scaling is now considerably slower as a func-
tion of dimensiond (see inset of Figure 1(b)). This is caused
by the smaller effective Hilbert-space dimension Zeff < d
at βJ > 0. As a consequence, for a fixed value of N, the
single-state estimate in (1) becomes less reliable at βJ = 1
compared to βJ = 0. However, let us stress that accurate
calculations are still possible at T > 0 as long as N is suf-
ficiently large. (Recall, that N ≤ 20 was chosen to be able
to generate a large set of random vectors.)

In order to analyze the development of the probabil-
ity distribution with respect to temperature inmore detail,
Figure 2(a) shows pχ for various values of βJ in the range
0 ≤ βJ ≤ 2, for a fixed small system sizeN = 12. Note that
the qualitative behaviour in principle is independent of N,
but better to visualise for small N with a broader pχ. Start-
ing from the high-temperature limit limT→∞ χ(T)T/N =
1/4, we find that the maximum of pχ gradually shifts
towards smaller values upon decreasing T.

This shift of the maximum is clearly visualised also
in Figure 2(b), which shows the same data, but in a dif-
ferent style. Moreover, Figure 2(b) additionally highlights
the fact that the probability distribution pχ for a fixed
(and small) value of N becomes broader (and asymmetric)
for intermediate values of T. Note, that pχ might become

a

b

Figure 2: (a) Probability distribution of the susceptibility χ(T )T /N
for various temperatures 0 ≤ βJ ≤ 2 at the fixed system size
N = 12 obtained by ED (symbols). For comparison, data obtained
by Runge-Kutta at βJ = 2 is shown as well (curve). (b) Same data as
in (a), but now as a contour plot.

narrower again for smaller values of T, see also discussion
in Sections 3.2 and 3.3.

Eventually, in Figures 3 and 4, we present analogous
results for the full probability distribution p, but now for
the heat capacity C(T)T2/N. Overall, our findings for pC
are very similar compared to the previous discussion of pχ.

a

b

Figure 3: Analogous data as in Figure 1, but now for the heat
capacity C(T )T 2/N.
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a

b

Figure 4: Analogous data as in Figure 2, but now for the heat
capacity C(T )T 2/N.

Namely,we find that at βJ = 0, pC is verywell described by
Gaussians over several orders ofmagnitude.Moreover, the
standard deviation δ(C) again scales as∝ 1/

√
d at βJ = 0.

As shown in Figure 3(b) and also in Figure 4, the emerg-
ing asymmetry of the probability distribution at small N
and finite T is found to be even more pronounced for the
heat capacity compared to the previous results for χ(T).
Interestingly, we find that the maximum of pC, on the con-
trary, displays only aweak dependence on temperature (at
least for the values of βJ shown in Figure 4 – naturally, it
is expected to change at lower temperatures and will go to
zero at temperature T = 0).

3.2 Larger Antiferromagnetic Spin-1/2
Chains

Using a Krylov-space expansion one can nowadays reach
large system sizes of N ∈ [40, 50] for spins s = 1/2, see
e.g. [35]. But as we also perform a statistical analysis we
restrict calculations to N ≤ 36 spins.

Following the scaling behaviour of ⟨(S∼
z)2⟩ − ⟨S∼

z⟩2 as
well as ⟨H∼

2⟩ − ⟨H∼⟩2, which is shown in Figures 1 and 3,
one expects a very narrow distribution of both quantities
for N = 36 compared to e.g. N = 20, as the dimension is
216 = 65536 times bigger for N = 36, which yields a 256
times narrower distribution. Such a distribution is smaller
than the linewidth in a plot.

That the distributions are narrow can be clearly seen
by eye inspection in Figure 5 where the light blue curves
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Figure 5: Spin ring N = 36, s = 1/2: The light-blue curves depict
100 different estimates of the susceptibility (a) as well as of the
heat capacity (b). The average for R = 100 is also presented.
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Figure 6: Spin rings, s = 1/2: computed standard deviations
(dashed curves) of the susceptibility (a) and the heat capacity (b)
compared to the error estimate (solid curves) for various sizes N.
The same colour denotes the same system.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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depict thermal expectation values according to (1). For
kBT > |J| they fall on top of each other and coincide with
the average over R = 100 realisations. Below this tem-
perature the distributions widen, which is magnified by
the fact that the real physical quantities susceptibility and
heat capacity contain factors of 1/T and 1/T2, respec-
tively.

Their standard deviation is provided in Figure 6. Com-
ing from high temperatures, the typical behaviour (8)
switches to a behaviour that in general depends on sys-
tem (here chain) and size below a characteristic tempera-
ture (here kBT ≈ |J|). Nevertheless, the qualitative expec-
tation that the standard deviation shrinks with increas-
ing system size is met down to kBT ≈ 0.2|J|, below which
no definite statement about the dependence on system
size can be made. We conjecture that with growing N the
increasing density of low-lying states as well as the van-
ishing excitation gap between singlet ground state and
triplet first excited state influence the behaviour at very
low temperatures strongly.
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Figure 7: Spin ring N = 24, s = 1: the light-blue curves depict 100
different estimates of the susceptibility (a) as well as the heat
capacity (b). The average for R = 100 is also presented.

3.3 Antiferromagnetic Spin-1 Chains

In order to monitor an example where a vanishing
excitation gap cannot be expected, not even in the ther-
modynamic limit, we study spin-1 chains that show a Hal-
dane gap [36, 37], see Figure 7. The scaling formula (8)
indeed suggests that for kBT ⪅ (0.4 . . . 0.5)|J| the stan-
dard deviations of the larger system with N = 24 should
exceed those of the smaller system with N = 20, compare
crossing curves of the estimator in Figure 8. However, the
actual simulations show that this is not the case. The low-
temperature fluctuations in the gap region are smaller for
the larger system, at least for the two investigated system
sizes.

3.4 Critical Spin-1/2 Delta Chains

As the final one-dimensional example we investigate a
delta chain (also called sawtooth chain) in the quantum
critical region, i.e. thermally excited above the quantum
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Figure 8: Spin rings, s = 1: computed standard deviations (dashed
curves) of the susceptibility (a) and the heat capacity (b) compared
to the error estimate (solid curves) for various sizes N. The same
colour denotes the same system.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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depict thermal expectation values according to (1). For
kBT > |J| they fall on top of each other and coincide with
the average over R = 100 realisations. Below this tem-
perature the distributions widen, which is magnified by
the fact that the real physical quantities susceptibility and
heat capacity contain factors of 1/T and 1/T2, respec-
tively.

Their standard deviation is provided in Figure 6. Com-
ing from high temperatures, the typical behaviour (8)
switches to a behaviour that in general depends on sys-
tem (here chain) and size below a characteristic tempera-
ture (here kBT ≈ |J|). Nevertheless, the qualitative expec-
tation that the standard deviation shrinks with increas-
ing system size is met down to kBT ≈ 0.2|J|, below which
no definite statement about the dependence on system
size can be made. We conjecture that with growing N the
increasing density of low-lying states as well as the van-
ishing excitation gap between singlet ground state and
triplet first excited state influence the behaviour at very
low temperatures strongly.
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Figure 7: Spin ring N = 24, s = 1: the light-blue curves depict 100
different estimates of the susceptibility (a) as well as the heat
capacity (b). The average for R = 100 is also presented.

3.3 Antiferromagnetic Spin-1 Chains

In order to monitor an example where a vanishing
excitation gap cannot be expected, not even in the ther-
modynamic limit, we study spin-1 chains that show a Hal-
dane gap [36, 37], see Figure 7. The scaling formula (8)
indeed suggests that for kBT ⪅ (0.4 . . . 0.5)|J| the stan-
dard deviations of the larger system with N = 24 should
exceed those of the smaller system with N = 20, compare
crossing curves of the estimator in Figure 8. However, the
actual simulations show that this is not the case. The low-
temperature fluctuations in the gap region are smaller for
the larger system, at least for the two investigated system
sizes.

3.4 Critical Spin-1/2 Delta Chains

As the final one-dimensional example we investigate a
delta chain (also called sawtooth chain) in the quantum
critical region, i.e. thermally excited above the quantum
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Figure 8: Spin rings, s = 1: computed standard deviations (dashed
curves) of the susceptibility (a) and the heat capacity (b) compared
to the error estimate (solid curves) for various sizes N. The same
colour denotes the same system.
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critical point (QCP) [38–40]. The QCP is met when the
ferromagnetic nearest-neighbour interaction J1 and the
antiferromagnetic next-nearest neighbour interaction J2
between spins on adjacent odd sites assume a ratio of
|J2/J1| = 1/2. At the QCP the system features a massive
ground-state degeneracy due to multi-magnon flat bands
aswell as a double-peak density of states [21, 38, 39].More-
over, the typical finite-size gap is virtually not present at
the QCP [38].

As the QCP does not depend on the size of the system
and the structure of the analytically knownmulti-magnon
flat band energy eigenstates does not either, we do not
expect to find large finite-size effects when investigating
the standard deviation of observables, e.g. of the heat
capacity. It turns even out that by eye inspection no fluctu-
ations are visible in Figure 9(a). The figure shows NS = 30
thermal expectation values (1) that virtually fall on top
of each other. This means that a single random vector
provides the equilibrium thermodynamic functions for
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Figure 9: Delta chain s = 1/2, |J2/J1| = 0.5: heat capacity for
N = 32 (a) and standard deviation for N = 28 and N = 32 (b). The
light-blue curves depict NS = 30 different estimates of the heat
capacity (there are indeed 30 curves in this plot, which are indistin-
guishable by eye). Computed standard deviations (dashed curves)
are compared to the error estimate (solid curves). The same colour
denotes the same system.

virtually all temperatures. When evaluating the standard
deviation, dashed curves in Figure 9(b), it turns out that
it is unusually small, even for very low temperatures. The
estimator (8) to which we compare had to be scaled in this
case which might have two reasons. One reason could be
that the large ground state degeneracy cannot be fully cap-
tured by the Krylov-space expansion and thus the evalua-
tion of the estimator (1) by means of Eq. (4) is inaccurate.
The other reason could be that the empirical finding of
α ≈ 1 is not appropriate in this special case of a quantum
critical system. However, the general rule that trace esti-
mators are more accurate in larger Hilbert spaces is also
observed here. The standard deviation of the smaller delta
chain with N = 28 is a few times larger than for N = 32.

The result is an impressive example for what it means
that a quantum critical systemdoes not possess any intrin-
sic scale in the quantum critical region [41, 42]. The only
available scale is temperature. This means in particu-
lar that the low-energy spectrum is dense and therefore
does not lead to any visible fluctuations of the estimated
observables.
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Figure 10: Cuboctahedron N = 12, s = 5/2: the light-blue curves
depict 100 different estimates of the susceptibility (a) as well as the
heat capacity (b). The average for R = 100 is also presented. The
structure of the cuboctahedron is displayed in (b).
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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3.5 Antiferromagnetic Cuboctahedra with
Spins 3/2, 2 and 5/2

Our last scaling analysis differs from the previous
examples. The cuboctahedron is a finite-size body, that
is equivalent to a kagome lattice with N = 12 [43–45]. The
structure is shown in Figure 10(b). Here, we vary the spin
quantum number, not the size of the system. The dimen-
sion of the respective Hilbert spaces grows considerably
which leads to the expected scaling (8) above tempera-
tures of kBT ≈ 1.5|J|. But the low-temperature behaviour,
in particular of the heat capacity for temperatures below
the crossing of the estimators, eludes the expected order
ofmore accurate results, i.e. smaller fluctuations for larger
Hilbert-space dimension.

While the low-temperature behaviour and the stan-
dard deviation of the susceptibility are largely governed
by the energy gap between singlet ground state and triplet
excited state, and this does not vary massively with the
spin quantum number, the heat capacity is subject to
stronger changes (Fig. 11). When going from smaller to
larger spin quantum numbers the strongly frustrated spin
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Figure 11: Cuboctahedron N = 12: computed standard deviations
(dashed curves) of the susceptibility (a) and the heat capacity
(b) compared to the error estimate (solid curves) for various spin
quantum numbers s. The same colour denotes the same system.

system loses some of its characteristic quantum proper-
ties while becoming more classical with increasing spin
s. In particular, the low-lying singlet states below the first
triplet state which dominate the low-temperature heat
capacity move out of the gap for larger spin s [46, 47].

It may thus well be that the type of Hilbert space
enlargement, due to growing system size which leads to
the thermodynamic limit or growing spin quantum num-
ber which leads to the classical limit, is important for the
behaviour of the estimators (1) and (2) at low temperatures.

4 Discussion and Conclusions
To summarize, we have studied the finite-size scaling of
typicality-based trace estimators. In these approaches, the
trace over the high-dimensional Hilbert space is approxi-
matedby either (i) a single randomstate | r ⟩or (ii) the aver-
age over a set of R random vectors. In particular, we have
focussed on the evaluation of thermodynamic observables
such as the heat capacity and the magnetic susceptibil-
ity for various spin models of Heisenberg type. Here, the
temperature dependence of these quantities has been gen-
erated by means of a Krylov-space expansion where the
random states | r ⟩ are used as a starting vector for the
expansion.

As a first step, we have studied the full probability
distribution of expectation values evaluated with respect
to single random states. As an important result, we have
demonstrated that for sufficiently high temperatures and
large enough system sizes (i.e. sufficiently large effective
Hilbert-space dimension Zeff), the probability distribu-
tions are very well described by Gaussians [33]. In partic-
ular, for comparatively high temperatures, our numerical
analysis has confirmed that the standard deviation of the
probability distribution scales as δ(O) ∝ 1/

√
Zeff, and that

this width already describes the full distribution.
In contrast, for lower temperatures, we have shown

that (i) the probability distributions can become non-
Gaussian and (ii) the scaling of δ(O) can become more
complicated and generally depends on the specific model
and observable under consideration. While a larger
Hilbert-space dimension often leads to an improved accu-
racy of the random-state approach at low temperatures as
well, compare the investigation on kagome lattice antifer-
romagnets of sizes N = 30 and N = 42 in [35], we have
also provided examples where this expectation can break
down for too small Zeff, compare also [48].

A remarkable example is provided by the spin-1/2
sawtooth chain with coupling-ratio |J2/J1| = 1/2. Due to
the (virtually) gapless dense low-energy spectrum at the
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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3.5 Antiferromagnetic Cuboctahedra with
Spins 3/2, 2 and 5/2

Our last scaling analysis differs from the previous
examples. The cuboctahedron is a finite-size body, that
is equivalent to a kagome lattice with N = 12 [43–45]. The
structure is shown in Figure 10(b). Here, we vary the spin
quantum number, not the size of the system. The dimen-
sion of the respective Hilbert spaces grows considerably
which leads to the expected scaling (8) above tempera-
tures of kBT ≈ 1.5|J|. But the low-temperature behaviour,
in particular of the heat capacity for temperatures below
the crossing of the estimators, eludes the expected order
ofmore accurate results, i.e. smaller fluctuations for larger
Hilbert-space dimension.

While the low-temperature behaviour and the stan-
dard deviation of the susceptibility are largely governed
by the energy gap between singlet ground state and triplet
excited state, and this does not vary massively with the
spin quantum number, the heat capacity is subject to
stronger changes (Fig. 11). When going from smaller to
larger spin quantum numbers the strongly frustrated spin

0.6

δ
 (

χ)
δ

 (
C

)

0.4

0.2

0.0

1.5

1.0

0.5

0.0

0 1 2 3 4

k
B
T/|J|

Cuboctahedron

N
S
 = 100

s = 3/2, x/√Zeff

s = 2, x/√Zeff

s = 5/2, x/√Zeff

Cuboctahedron

N
S
 = 100

s = 3/2: C/√Zeff

s = 2: C/√Zeff

s = 5/2: C/√Zeff

a

b

Figure 11: Cuboctahedron N = 12: computed standard deviations
(dashed curves) of the susceptibility (a) and the heat capacity
(b) compared to the error estimate (solid curves) for various spin
quantum numbers s. The same colour denotes the same system.

system loses some of its characteristic quantum proper-
ties while becoming more classical with increasing spin
s. In particular, the low-lying singlet states below the first
triplet state which dominate the low-temperature heat
capacity move out of the gap for larger spin s [46, 47].

It may thus well be that the type of Hilbert space
enlargement, due to growing system size which leads to
the thermodynamic limit or growing spin quantum num-
ber which leads to the classical limit, is important for the
behaviour of the estimators (1) and (2) at low temperatures.

4 Discussion and Conclusions
To summarize, we have studied the finite-size scaling of
typicality-based trace estimators. In these approaches, the
trace over the high-dimensional Hilbert space is approxi-
matedby either (i) a single randomstate | r ⟩or (ii) the aver-
age over a set of R random vectors. In particular, we have
focussed on the evaluation of thermodynamic observables
such as the heat capacity and the magnetic susceptibil-
ity for various spin models of Heisenberg type. Here, the
temperature dependence of these quantities has been gen-
erated by means of a Krylov-space expansion where the
random states | r ⟩ are used as a starting vector for the
expansion.

As a first step, we have studied the full probability
distribution of expectation values evaluated with respect
to single random states. As an important result, we have
demonstrated that for sufficiently high temperatures and
large enough system sizes (i.e. sufficiently large effective
Hilbert-space dimension Zeff), the probability distribu-
tions are very well described by Gaussians [33]. In partic-
ular, for comparatively high temperatures, our numerical
analysis has confirmed that the standard deviation of the
probability distribution scales as δ(O) ∝ 1/

√
Zeff, and that

this width already describes the full distribution.
In contrast, for lower temperatures, we have shown

that (i) the probability distributions can become non-
Gaussian and (ii) the scaling of δ(O) can become more
complicated and generally depends on the specific model
and observable under consideration. While a larger
Hilbert-space dimension often leads to an improved accu-
racy of the random-state approach at low temperatures as
well, compare the investigation on kagome lattice antifer-
romagnets of sizes N = 30 and N = 42 in [35], we have
also provided examples where this expectation can break
down for too small Zeff, compare also [48].

A remarkable example is provided by the spin-1/2
sawtooth chain with coupling-ratio |J2/J1| = 1/2. Due to
the (virtually) gapless dense low-energy spectrum at the
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quantum critical point, we have found that statistical
fluctuations remain negligible throughout the entire tem-
perature rangewithonlyminor dependenceon systemsize
(see also Ref. [49] for a similar finding in a spin-liquid
model).

In conclusion, we have demonstrated that typicality-
based estimators provide a convenient numerical tool in
order to accurately approximate thermodynamic observ-
ables for a wide range of temperatures and models. While
in some cases, even a single pure state is sufficient, the
accuracy of the results can always be improved by averag-
ing over a set of independently drawn states.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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