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Abstract: Driven diffusive systems constitute paradig-

matic models of nonequilibrium physics. Among them,

a driven lattice gas known as the asymmetric simple

exclusion process (ASEP) is the most prominent exam-

ple for which many intriguing exact results have been

obtained. After summarising key findings, including the

mapping of the ASEP to quantum spin chains, we dis-

cuss the recently introduced Brownian ASEP (BASEP) as

a related class of driven diffusive system with contin-

uous space dynamics. In the BASEP, driven Brownian

motion of hardcore-interacting particles through one-

dimensional periodic potentials is considered. We study

whether current–density relations of the BASEP can be

considered as generic for arbitrary periodic potentials and

whether repulsive particle interactions other than hard-

core lead to similar results. Our findings suggest that

shapes of current–density relations are generic for single-

well periodic potentials and can always be attributed

to the interplay of a barrier reduction, blocking, and

exchange symmetry effect. This implies that in general up

to five different phases of nonequilibrium steady states

are possible for such potentials. The phases can occur

in systems coupled to particle reservoirs, where the bulk

density is the order parameter. For multiple-well periodic

potentials, more complex current–density relations are

possible, and more phases can appear. Taking a repul-

sive Yukawa potential as an example, we show that the

effects of barrier reduction and blocking on the current are

also present. The exchange symmetry effect requires hard-

core interactions, and we demonstrate that it can still be

identified when hardcore interactions are combined with
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weakYukawa interactions. The robustness of the collective

dynamics in the BASEPwith respect to variations ofmodel

details can be a key feature for a successful observation of

the predicted current–density relations in actual physical

systems.
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Process; Driven Diffusion; Nonequilibrium Dynamics;
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1 Introduction
Driven diffusive systems of interacting particles consti-

tute an important class of systems to study fundamen-

tal aspects of nonequilibrium physics. This holds in

particular for one-dimensional models, where exact ana-

lytical derivations are possible or reliable approximations

are known, for example, when information about exact

equilibrium properties can be utilised for the treatment of

nonequilibrium states.

A prominent model in the field of driven diffusive sys-

tems is the asymmetric simple exclusion process (ASEP),

where particles hop between nearest-neighbour sites of a

latticewith a bias in onedirection andwhere the sole inter-

action between particles is a mutual site exclusion, imply-

ing that a lattice site cannot be occupied by more than

one particle [1, 2]. In the ASEP on a one-dimensional lat-

tice with L sites and periodic boundary conditions, i.e. a

ring of L sites, particles jump to vacant nearest-neighbour

sites with rates Γ+ and Γ− in clockwise and counterclock-

wise direction, respectively, where Γ+ > Γ− for a bias in

clockwise direction. In a corresponding open system with

L sites, where the leftmost and rightmost lattice site can

exchange particles with reservoirs L and R, respectively,

additional rates Γ

L

in

, Γ

R

in

and Γ

L

out
, Γ

R

out
specify the corre-

sponding rates for particle injection and ejection. Many

properties of the ASEP can be inferred from the even sim-

pler totally asymmetric simple exclusion process (TASEP)

with unidirectional transport (Γ− = 0).

Stochastic processes in driven lattice gases are

described by a master equation for the probabilities of

particle configurations, which can be viewed also as

the occupation number representation of a Schrödinger

equation in imaginary time [3, 4]. This leads to some

interesting connections to quantum systems with in
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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general non-Hermitian Hamilton operator H [2, 3, 5, 6]. As

an example, we recapitulate in the Appendix the connec-

tion of the ASEP with periodic boundary conditions to the

XXZ quantum spin chain with non-Hermitian boundary

conditions [6]. Spin chains are often used to study fun-

damental aspects of nonequilibrium quantum physics.

Several examples related to current problems, in partic-

ular to questions of equilibration in nonintegrable spin

chain models, can be found in this special issue on the

physics of non-equilibrium systems.

The ASEP has been intensively studied in the past. Let

us summarise here some of the most important findings

for the ASEP and variants of it:

– Using the Bethe ansatz for corresponding quantum spin

chainmodels, or a construction in terms ofmatrix prod-

uct states, exact results for microstate distributions in

nonequilibrium steady states (NESSs) could be derived

[1, 2, 7]. Matrix product states in principle exist for

driven lattice gases with arbitrary nearest-neighbour

interactions [8], although their explicit construction

may be difficult.

– Based on the exact approaches for deriving distribu-

tion of microstates in NESS, large deviation functions

for fluctuations of time-averaged densities and cur-

rents were derived [9–11]. They have been computed

also for coarse-grained descriptions by themacroscopic

fluctuation theory [12]. Large deviation functions are

argued to play a similar role for time-averaged quanti-

ties in NESS as the free energy in equilibrium systems

[13]. They can exhibit singularities [14–17], sometimes

referred to as “dynamical phase transitions,” which for

certain classes of systems are caused by a violation of

an “additivity principle” [18].

– The Bethe ansatz turned out to be a valuable tool also

for derivingmicrostate distributions of nonsteady states

[19, 20]. The propagator for the microstate time evolu-

tion in the ASEP was related to integrated Fredholm

determinants [21] and led to the derivation of the Tracy–

Widom distribution of random matrix theory for the

asymptotic behaviour in case of a step initial condi-

tion [22]. This result generalised an earlier one derived

for the TASEP [23] and proved that the propagation of

density fluctuations in the ASEP belongs to the Kardar–

Parisi–Zhang (KPZ) universality class [24].

– In open systems coupled to particle reservoirs, phase

transitions between NESS occur [25–28], where, upon

changeof control parameters characterising the system-

reservoir couplings, the bulk density ρ
b

changes

discontinuously, or its derivative with respect to the

control parameters. Knowing thedensity dependenceof

the steady-state bulk current j
ss
(ρ), e.g. from results for

a system with periodic boundary conditions, all possi-

ble NESS phases with bulk density ρ
b
are predicted by

the extremal current principles [25, 27, 29]:

ρ
b

=

⎧
⎪⎪⎨
⎪⎪⎩

argmin

ρ−≤ρ≤ρ+
{j

ss
(ρ)} , ρ− ≤ ρ+ ,

argmax

ρ+≤ρ≤ρ−

{j
ss
(ρ)} , ρ+ ≤ ρ− .

(1)

Here ρ− and ρ+ can be any densities bounding amono-

tonically varying region encompassing the plateau part

with bulk density ρ
b
(which may strictly exist only in

the thermodynamic limit of infinite system size). Which

of the phases predicted by (1) really occurs for a given

control scheme of system-reservoir couplings is given

by the dependence of ρ− and ρ+ on respective control

parameters.

The extremal current principles can be reasoned based

on the consideration of shock front motions [27, 29,

30] or by resorting to a decomposition of the steady-

state current into its drift and diffusive part inside the

region of monotonically varying density profile [25].

Because these reasonings do not require specific prop-

erties of the ASEP, they are quite generally valid for

driven diffusive systems coupled to particle reservoirs.

This includes driven lattice gases with interactions

other than site exclusion [30–33], systems with contin-

uous space dynamics, and systems with periodic space

structure and/or time-periodic driving, when consider-

ing period-averaged densities [34]. For specific system-

reservoir couplings termed “bulk-adapted,” it is possi-

ble to parameterise the exchange of particles by reser-

voir densities such that all possible NESS phases must

appear. The bulk-adapted couplings can be determined

by a general method for driven lattice gases with short-

range interactions [33, 34].

– For random and non-Poissonian hopping rates, Bose–

Einstein–type condensations of vacancies can occur in

front of the slowest particle with the smallest jump rate

[35, 36].

– Coarse-grained continuum descriptions of the ASEP

and of multilane variants [37] give rise to an infinite dis-

crete family of nonequilibrium universality classes in

nonlinear hydrodynamics, where density fluctuations

spread in time by power laws with exponents given

by the Kepler ratios of consecutive Fibonacci num-

bers [38]. This includes the KPZ class, for which an

exact expression for the scaling function was derived

[39]. Predictions of the theory of fluctuating nonlin-

ear hydrodynamics were recently confirmed in an exact

treatment by considering a two-species exclusion pro-

cess [40].
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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general non-Hermitian Hamilton operator H [2, 3, 5, 6]. As

an example, we recapitulate in the Appendix the connec-

tion of the ASEP with periodic boundary conditions to the

XXZ quantum spin chain with non-Hermitian boundary

conditions [6]. Spin chains are often used to study fun-

damental aspects of nonequilibrium quantum physics.

Several examples related to current problems, in partic-

ular to questions of equilibration in nonintegrable spin

chain models, can be found in this special issue on the

physics of non-equilibrium systems.

The ASEP has been intensively studied in the past. Let

us summarise here some of the most important findings

for the ASEP and variants of it:

– Using the Bethe ansatz for corresponding quantum spin

chainmodels, or a construction in terms ofmatrix prod-

uct states, exact results for microstate distributions in

nonequilibrium steady states (NESSs) could be derived

[1, 2, 7]. Matrix product states in principle exist for

driven lattice gases with arbitrary nearest-neighbour

interactions [8], although their explicit construction

may be difficult.

– Based on the exact approaches for deriving distribu-

tion of microstates in NESS, large deviation functions

for fluctuations of time-averaged densities and cur-

rents were derived [9–11]. They have been computed

also for coarse-grained descriptions by themacroscopic

fluctuation theory [12]. Large deviation functions are

argued to play a similar role for time-averaged quanti-

ties in NESS as the free energy in equilibrium systems

[13]. They can exhibit singularities [14–17], sometimes

referred to as “dynamical phase transitions,” which for

certain classes of systems are caused by a violation of

an “additivity principle” [18].

– The Bethe ansatz turned out to be a valuable tool also

for derivingmicrostate distributions of nonsteady states

[19, 20]. The propagator for the microstate time evolu-

tion in the ASEP was related to integrated Fredholm

determinants [21] and led to the derivation of the Tracy–

Widom distribution of random matrix theory for the

asymptotic behaviour in case of a step initial condi-

tion [22]. This result generalised an earlier one derived

for the TASEP [23] and proved that the propagation of

density fluctuations in the ASEP belongs to the Kardar–

Parisi–Zhang (KPZ) universality class [24].

– In open systems coupled to particle reservoirs, phase

transitions between NESS occur [25–28], where, upon

changeof control parameters characterising the system-

reservoir couplings, the bulk density ρ
b

changes

discontinuously, or its derivative with respect to the

control parameters. Knowing thedensity dependenceof

the steady-state bulk current j
ss
(ρ), e.g. from results for

a system with periodic boundary conditions, all possi-

ble NESS phases with bulk density ρ
b
are predicted by

the extremal current principles [25, 27, 29]:

ρ
b

=

⎧
⎪⎪⎨
⎪⎪⎩

argmin

ρ−≤ρ≤ρ+
{j

ss
(ρ)} , ρ− ≤ ρ+ ,

argmax

ρ+≤ρ≤ρ−

{j
ss
(ρ)} , ρ+ ≤ ρ− .

(1)

Here ρ− and ρ+ can be any densities bounding amono-

tonically varying region encompassing the plateau part

with bulk density ρ
b
(which may strictly exist only in

the thermodynamic limit of infinite system size). Which

of the phases predicted by (1) really occurs for a given

control scheme of system-reservoir couplings is given

by the dependence of ρ− and ρ+ on respective control

parameters.

The extremal current principles can be reasoned based

on the consideration of shock front motions [27, 29,

30] or by resorting to a decomposition of the steady-

state current into its drift and diffusive part inside the

region of monotonically varying density profile [25].

Because these reasonings do not require specific prop-

erties of the ASEP, they are quite generally valid for

driven diffusive systems coupled to particle reservoirs.

This includes driven lattice gases with interactions

other than site exclusion [30–33], systems with contin-

uous space dynamics, and systems with periodic space

structure and/or time-periodic driving, when consider-

ing period-averaged densities [34]. For specific system-

reservoir couplings termed “bulk-adapted,” it is possi-

ble to parameterise the exchange of particles by reser-

voir densities such that all possible NESS phases must

appear. The bulk-adapted couplings can be determined

by a general method for driven lattice gases with short-

range interactions [33, 34].

– For random and non-Poissonian hopping rates, Bose–

Einstein–type condensations of vacancies can occur in

front of the slowest particle with the smallest jump rate

[35, 36].

– Coarse-grained continuum descriptions of the ASEP

and of multilane variants [37] give rise to an infinite dis-

crete family of nonequilibrium universality classes in

nonlinear hydrodynamics, where density fluctuations

spread in time by power laws with exponents given

by the Kepler ratios of consecutive Fibonacci num-

bers [38]. This includes the KPZ class, for which an

exact expression for the scaling function was derived

[39]. Predictions of the theory of fluctuating nonlin-

ear hydrodynamics were recently confirmed in an exact

treatment by considering a two-species exclusion pro-

cess [40].
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As for applications, the ASEP appears as a basic

building block in manifold descriptions of biological traf-

fic [41, 42]. In fact, the ASEP was introduced first to

describe protein synthesis by ribosomes [43], and it is fre-

quently used in connection with the motion of motor pro-

teins alongmicrotubules or actin tracks [44, 45]. An in vitro

study with fluorescently labelled single-headed kinesin

motors moving along a microtubule provided experimen-

tal evidence for a state of coexisting phases with different

motor densities [46]. Other applications concern vehicular

traffic [47, 48], diffusion of ions through cell membranes

[49] and of molecules through nanopores [50, 51], and

electron transport along molecular wires in the incoher-

ent classical limit [52, 53]. However, a direct experimental

realisation of the ASEP is difficult, because of its discrete

nature. Hence, it is important to see whether the nonequi-

librium physics in the ASEP is reflected in models with

continuous space dynamics.

For a single particle, it is well known that effective

hopping transport emerges from an overdamped Brown-

ian motion in a periodic potential with amplitude much

larger than the thermal energy. The particle can be viewed

to jump between neighbouring wells on a coarse-grained

time scale with a rate determined by the inverse Kramers

time [54]. One is thus led to ask whether the driven dif-

fusion of many hardcore-interacting particles in a peri-

odic energy landscape can reflect the driven lattice gas

dynamics in theASEP. To answer this question,we recently

introduced a corresponding class of nonequilibrium pro-

cesses termed Brownian ASEP (BASEP) [55, 56], where

hard spheres with diameter σ are driven through a peri-

odic potential with wavelength λ by a constant drag force
f. For a sinusoidal external potential, we found that the

current–density relation of the ASEP is indeed recaptured

in the BASEP, but only for a limited range of particle

diameters σ. For other σ, quite different behaviours are

obtained.

The nonequilibrium physics of the BASEP should

be explorable directly by experiment, for example, in

setups utilising advanced techniques of microfluidics and

optical and/or magnetic micromanipulation [57–61]. This

includes arrangements where the particles are driven by

travelling-wave (TW) potentials [62]. Many of the new col-

lective transport properties seen in the BASEP can be even

identified by studying local dynamics of individual transi-

tions between potential wells [63].

In this work, we address the question how the

current–density relations found for the BASEP in a sinu-

soidal external potential are affected when considering

different external potentials and short-range interactions

other than hardcore exclusions. Our investigation for the

different external potentials is carried out based on the

small-driving approximation introduced in [55] and [56].

With respect to short-range interactions other than hard-

core exclusions, we focus on a Yukawa pair potential. It

is shown that the current–density relation for single-well

periodic potentials and for the Yukawa interaction has

similar features as that of the BASEP. This suggests that the

BASEP can serve as a reference model for a wide class of

external periodic potentials and pair interactions.

In addition, we extend a former analysis to prove that

current reversals cannot occur in systems driven by a con-

stant drag and by travelling waves. These proofs are based

on an exact calculation of the total entropy production

in corresponding NESS for particles with arbitrary pair

interactions. Current reversals refer to steady states, where

particle flow is opposite to the external bias. They were

reported for lattice models [34, 64–67] and were recently

found experimentally in a rocking Brownian motor [59].

Their absence inTWdriven systemswas conjecturedbased

on simulation results and a perturbative expansion of

the single-particle density in the NESS around its period-

averaged value [68].

The article is organised as follows. In Section 2,

Current–Density Relations: Analytical Results, we present

an analytical treatment of densities and currents for the

overdamped one-dimensional Brownian motion of parti-

cles with arbitrary pair interactions. This section partly

summarises results presented earlier [55, 56] and intro-

duces the small-driving approximation used subsequently

for our investigation of hardcore-interacting particles. It

also contains our proofs on the absence of current rever-

sals for general pair interactions. In Section 3, Hardcore

Interacting Particles inHarmonic Potential, we outline our

findings for the BASEP with sinusoidal external potential,

and in Section 4, Impact of External Periodic Potential,

we contrast them with results for a Kronig–Penney and

triple-well periodic potential. In Section 5, Impact of Inter-

actions Other Than Hardcore Exclusions, we discuss our

results for the Yukawa interaction. Section 6, Summary

and Conclusions, concludes the article with a summary

and outlook.

2 Current–Density Relations:
Analytical Results

The overdamped single-file Brownian motion of N parti-

cles in a periodic potential U(x) = U(x+λ)with pair inter-
action under a constant drag force f is described by the
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)

L. Balzer et al.: TMLE for Rare Outcomes 3

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM



4 | D. Lips et al.: Nonequilibrium Transport and Phase Transitions in Driven Diffusion of Interacting Particles

Langevin equations:

dxi
dt = µ

(︂
f + f inti − ∂U(xi)

∂xi

)︂
+

√
2D ηi(t), (2)

where µ and D = µk
B
T are the bare mobility and diffu-

sion coefficient, k
B
T is the thermal energy, and f inti is the

interaction force on the ith particle. The ηi(t) are indepen-
dent and δ-correlatedGaussianwhite noise processeswith
zero mean and unit variance, ⟨ηi⟩ = 0 and ⟨ηi(t)ηj(t′)⟩ =
δijδ(t − t′). Unless noted otherwise, we consider closed

systems with periodic boundary conditions, which means

that the particles are dragged along a ring.

Hardcore interactions imply the boundary conditions

|xi − xj| ≥ σ, i.e. overlaps between neighbouring particles
are forbidden. For the BASEP with only hardcore inter-

actions, these boundary conditions must be taken into

account, while the interaction force f inti can be set to zero

in (2). We define the density as a (dimensionless) filling

factor of the potential wells, i.e. by ρ = N/M, where M
denotes the total number of periods of U(x). The system
length is L = Mλ, and the number density is ρ/λ. For
hardcore-interacting particles of size σ, the filling factor

ρ has the upper bound λ/σ.
The joint probability function (PDF) of the parti-

cle centre coordinates x = (x
1
, . . . , xN) evolves in time

according to the N-particle Smoluchowski equation¹,

∂pN(x, t)
∂t = −∇ · J(x, t), (3)

where the divergence operator acts on the probability cur-

rent vector J(x, t) with the ith component given by

Ji(x, t) = µ
[︂
f − ∂U(xi)

∂xi
+ f inti (x)

]︂
pN(x, t)

− D ∂pN(x, t)
∂xi

. (4)

The first term describes the drift probability current

caused by all forces acting on the ith particle, and the sec-
ond term gives the diffusive current. The interaction force

is assumed to be conservative and due to pair interactions

uint(xi , xj), i.e. f inti (x) = −∂Uint

(x)/∂xi with

Uint

(x) =
1

2

N∑︁
i ̸=j

uint(xi , xj). (5)

1 To implement the periodic boundary conditions, we assume an

ordered initial configuration 0 ≤ x
1

≤ x
2
. . . ≤ xN < L and intro-

duce two fictive particles with enslaved coordinates x
0

= xN − L and
xN+1

= x
1
+ L, which implies xN − x

1
< L − σ.

Additional hardcore interactions are not included in

the potential (5) but are incorporated into the dynamics by

requiring no-flux (reflecting) boundary conditions

[Ji(x, t) − Ji+1
(x, t)]|xi+1

=xi+σ = 0, (6)

if neighbouring particles hit each other. These boundary

conditions ensure conservation of an initial ordering x
1

<

x
2

< . . . < xN of the particle positions for all times.

2.1 Exact Current–Density Relation

The local density is

ϱ(x, t) =

⟨ N∑︁
i=1

δ[x − xi(t)]
⟩
, (7)

where the average is taken with respect to the solution

of the Smoluchowski equation (3) subject to some initial

condition. It satisfies the continuity equation

∂ϱ(x, t)
∂t = −∂j(x, t)

∂x , (8)

with the particle current density given by [55]

j(x, t) = µ[f ext(x) + f int(x, t)] ϱ(x, t) − D ∂ϱ(x , t)
∂x . (9)

Here we introduced the total external force

f ext(x) = f − ∂U(x)
∂x . (10)

The local interaction force f int(x, t) in (9) is given by

f int(x, t) =
1

ρ(x, t)

L∫︁

0

dy f
2
(x, y)ρ

2
(x, y, t), (11)

where

ϱ
2
(x, y, t) =

⟨ N∑︁
i ̸=j

δ[x − xi(t)] δ[y − xj(t)]
⟩

(12)

is the two-point local density, and f
2
(x, y) is the inter-

action force of a particle at position y on a particle at

position x. It can by expressed as a sum of two distinct

contributions:

f
2
(x, y) = k

B
T[δ(y − x + σ) − δ(x − y − σ)]

− ∂uint(x, y)
∂x . (13)

The first term is due to a positive and a negative force,

if a particle is in contact with other particles at positions
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Langevin equations:

dxi
dt = µ

(︂
f + f inti − ∂U(xi)

∂xi

)︂
+

√
2D ηi(t), (2)

where µ and D = µk
B
T are the bare mobility and diffu-

sion coefficient, k
B
T is the thermal energy, and f inti is the

interaction force on the ith particle. The ηi(t) are indepen-
dent and δ-correlatedGaussianwhite noise processeswith
zero mean and unit variance, ⟨ηi⟩ = 0 and ⟨ηi(t)ηj(t′)⟩ =
δijδ(t − t′). Unless noted otherwise, we consider closed

systems with periodic boundary conditions, which means

that the particles are dragged along a ring.

Hardcore interactions imply the boundary conditions

|xi − xj| ≥ σ, i.e. overlaps between neighbouring particles
are forbidden. For the BASEP with only hardcore inter-

actions, these boundary conditions must be taken into

account, while the interaction force f inti can be set to zero

in (2). We define the density as a (dimensionless) filling

factor of the potential wells, i.e. by ρ = N/M, where M
denotes the total number of periods of U(x). The system
length is L = Mλ, and the number density is ρ/λ. For
hardcore-interacting particles of size σ, the filling factor

ρ has the upper bound λ/σ.
The joint probability function (PDF) of the parti-

cle centre coordinates x = (x
1
, . . . , xN) evolves in time

according to the N-particle Smoluchowski equation¹,

∂pN(x, t)
∂t = −∇ · J(x, t), (3)

where the divergence operator acts on the probability cur-

rent vector J(x, t) with the ith component given by

Ji(x, t) = µ
[︂
f − ∂U(xi)

∂xi
+ f inti (x)

]︂
pN(x, t)

− D ∂pN(x, t)
∂xi

. (4)

The first term describes the drift probability current

caused by all forces acting on the ith particle, and the sec-
ond term gives the diffusive current. The interaction force

is assumed to be conservative and due to pair interactions

uint(xi , xj), i.e. f inti (x) = −∂Uint

(x)/∂xi with

Uint

(x) =
1

2

N∑︁
i ̸=j

uint(xi , xj). (5)

1 To implement the periodic boundary conditions, we assume an

ordered initial configuration 0 ≤ x
1

≤ x
2
. . . ≤ xN < L and intro-

duce two fictive particles with enslaved coordinates x
0

= xN − L and
xN+1

= x
1
+ L, which implies xN − x

1
< L − σ.

Additional hardcore interactions are not included in

the potential (5) but are incorporated into the dynamics by

requiring no-flux (reflecting) boundary conditions

[Ji(x, t) − Ji+1
(x, t)]|xi+1

=xi+σ = 0, (6)

if neighbouring particles hit each other. These boundary

conditions ensure conservation of an initial ordering x
1

<

x
2

< . . . < xN of the particle positions for all times.

2.1 Exact Current–Density Relation

The local density is

ϱ(x, t) =

⟨ N∑︁
i=1

δ[x − xi(t)]
⟩
, (7)

where the average is taken with respect to the solution

of the Smoluchowski equation (3) subject to some initial

condition. It satisfies the continuity equation

∂ϱ(x, t)
∂t = −∂j(x, t)

∂x , (8)

with the particle current density given by [55]

j(x, t) = µ[f ext(x) + f int(x, t)] ϱ(x, t) − D ∂ϱ(x , t)
∂x . (9)

Here we introduced the total external force

f ext(x) = f − ∂U(x)
∂x . (10)

The local interaction force f int(x, t) in (9) is given by

f int(x, t) =
1

ρ(x, t)

L∫︁

0

dy f
2
(x, y)ρ

2
(x, y, t), (11)

where

ϱ
2
(x, y, t) =

⟨ N∑︁
i ̸=j

δ[x − xi(t)] δ[y − xj(t)]
⟩

(12)

is the two-point local density, and f
2
(x, y) is the inter-

action force of a particle at position y on a particle at

position x. It can by expressed as a sum of two distinct

contributions:

f
2
(x, y) = k

B
T[δ(y − x + σ) − δ(x − y − σ)]

− ∂uint(x, y)
∂x . (13)

The first term is due to a positive and a negative force,

if a particle is in contact with other particles at positions
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x− σ and x+ σ, respectively. We note that the δ functions
should not be interpreted as a derivative of a rectangu-

lar potential barrier of height k
B
T. Instead, they are a

consequence of the noncrossing boundary conditions (6)

[55]. The amplitude in front of the δ functions must be

an energy on dimensional reasons, for which k
B
T is the

only relevant scale. It corresponds to the typical collision

energy due to the thermal noise. The second term in (13) is

the force due to the interaction potential (5).

In the steady state of a closed system with periodic

boundary conditions, the density profile is time-

independent and periodic, ϱ
ss
(x + λ) = ϱ

ss
(x), and the

current constant everywhere in the system. It follows

directly from (9) [55]

j
ss
(ρ, σ) =

µ
[︁
f + 1

λ
∫︀ λ
0

dx f int
ss
(x)

]︁

1

λ
∫︀ λ
0

dx ϱ−1

ss
(x)

. (14)

Up to this point, no approximation has been made.

The exact value of the steady-state current (14) depends on

both ϱ
ss
(x) and the steady-state limit of the two-point den-

sity (12). However, a derivation of the twodensities inNESS

represents a challenging problem, which can be solved in

a few special cases only. Therefore, to proceed further, we

need to develop an appropriate approximate theory.

2.2 Small-Driving Approximation

For hardcore interactions, the small-driving approxima-

tion (SDA) turned out to be particularly successful in

capturing qualitative behaviours of j
ss
(ρ, σ) [56]. The

approximation is carried out in two steps. First, we

linearise the current (14) with respect to f,

j
ss
(ρ, σ) ∼ (1 + χ)µf

1

λ
∫︀ λ
0

dx ϱ−1

eq
(x)

, f → 0, (15)

where the response coefficient reads

χ =
∂
∂f

⎡
⎣1

λ

λ∫︁

0

dx f int
ss
(x)

⎤
⎦

⃒⃒
⃒⃒
⃒⃒
f=0

, (16)

and, second, we approximate the linear-response expres-

sion (15) by setting χ = 0.

The ad hoc χ = 0 approximation works well in an

extended region of particle sizes except for a narrow range

σ ≈ λ/2 [56]. The equilibrium density profile is obtained

by minimising the exact density functional for hard rods

[69],

Ω[ϱ(x)] =

λ∫︁

0

dx ϱ(x)
{︂
U(x) − µ

ch

−k
B
T
[︂
1 − ln

(︂
ϱ(x)

1 − η(x)

)︂]︂}︂
, (17)

where µ
ch
is the chemical potential, and

η(x) =

x∫︁

x−σ

dy ϱ(y) . (18)

The minimisation yields the structure equation

0 =
δΩ[ϱ]
δϱ

⃒⃒
⃒⃒
ϱ=ϱ

eq

= k
B
T ln

[︂
ϱ
eq
(x)

1 − η
eq
(x)

]︂

+ k
B
T

x+σ∫︁

x

dy ϱ
eq
(y)

1 − η
eq
(y) + [U(x) − µ

ch
], (19)

which we discretised and solved numerically under peri-

odic boundary conditions (ϱ
eq
(x) = ϱ

eq
(x+λ)). The chem-

ical potential µ
ch

was adjusted to give the desired global

density (filling factor) ρ =
∫︀ λ
0

dx ϱ
eq
(x).

2.3 Entropy Production and Absence of
Current Reversals

Theory for hardcore-interacting particles with Uint

(x) =
0 was the subject of our previous works on the BASEP

[55, 56, 63]. Herewe extend the analysis to nonzeroUint

(x).
We start with considerations related to the total entropy

production:

˙S
tot
(t) = ˙S

sys
(t) + ˙S

med
(t) , (20)

where
˙S
sys
(t) and ˙S

med
(t) are the entropy production in the

system and surrounding medium.

For calculating the time derivative of S
sys
(t) =

−k
B

∫︀
dNx pN(x, t) ln pN(x, t), we can replace the time

derivative of the PDF by the divergence of the current

according to (3). After integrating by parts each individual

term of the divergence, we get

˙S
sys
(t)

k
B

= −
∫︁

Ω

d

Nx J(x, t) · ∇ ln pN(x, t), (21)
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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where Ω is the space of all system microstates consistent

with the hardcore constraints. As the next step, we replace

∂ ln pN /∂xi via (4), which gives us two terms

˙S
sys
(t)

k
B

=
∫︁

Ω

d

Nx |J(x, t)|2

DpN(x, t)

−
∫︁

Ω

d

Nx J(x, t) · F(x)
k
B
T . (22)

Herewe have introduced the total force F(x)with com-

ponents Fi(x) = f ext(xi) + f inti (x). The first term is always

positive and equal to the total entropy production [70]. The

second term, proportional to themeandissipatedpower, is

the entropy production in the medium.

In the steady state, the system entropy is constant,

˙S
sys
(t) = 0, and the total entropy production equal to the

entropy produced in the surrounding medium:

0 ≤ ˙S
tot

=
1

T

∫︁

Ω

d

Nx J(x) · F(x)

=
1

T

N∑︁
i=1

∫︁

Ω

d

Nx Ji(x)
[︃
f − ∂U(xi)

∂xi
− ∂Uint

(x)
∂xi

]︃
.

(23)

Here, each single-particle term simplifies after intro-

ducing the current density ji(x) =
∫︀
Ω

d

Nx Ji(x)δ(xi − x) of
the ith particle, andbyusing that ji(x) = j

ss
/N in the steady

state, we obtain

∫︁

Ω

d

Nx Ji(x)
[︂
f − ∂U(xi)

∂xi

]︂
=

j
ss

N Lf . (24)

The sum over all interaction forces in (23) yields, after

integration by parts,

−
N∑︁
i=1

∫︁

Ω

d

Nx Ji(x)
∂Uint

(x)
∂xi

=
∫︁

Ω

d

Nx Uint

(x) ∇ · J(x). (25)

Because the divergence of the current is zero in the

steady state, this term vanishes. From (23) and (24), we

thus obtain the total entropy production in the Onsager

form (current times thermodynamic force)

˙S
tot

=
j
ss
f

T L ≥ 0. (26)

It is extensive in the system size, and the numerator

equals themean heat dissipated at any point of the system

in the steady state. As a consequence of the inequality in

(26), the steady-state current must have the same sign as

the drag force f.

2.4 Entropy Production in
Travelling-Wave–Driven Systems and
Current Bounds

A feasibleway to verify BASEP current–density relations in

a laboratory is to consider an equivalent ring system with

the TW external periodic potential U(x − vwt) and f = 0

[62, 71–74]. In such a TW system, the ith component of the

probability current vector is

JTWi (x, t) = µ
[︂
−∂U(xi − vwt)

∂xi
+ f inti (x)

]︂
pTWN (x, t)

− D ∂pTWN (x, t)
∂xi

. (27)

Under a Galilean transformation

xi(t) = xTWi (t) − vwt. (28)

the TW system maps to the corresponding BASEP with

potential U(x) and constant drag force

f = − vw
µ , (29)

provided the pair interaction potential uint(x, y) is a func-
tion of the particle distance (x − y) only. Local densities
and currents of the two corresponding systems are related

by [56]

ϱTW(x, t) = ϱ(x − vwt, t), (30)

jTW(x, t) = vwϱ(x − vwt, t) + j(x − vwt, t) . (31)

A remarkable aspect of thismapping that has not been

discussed in our previous work relates to the fundamental

difference of dissipations (their physical origins and their

values) in the two pictures. In fact, hopping events that

contribute positively to the dissipation (total entropy pro-

duction) in one picture cause a decrease of the dissipation

in the other.

In the BASEP, the dissipation equals the average work

done by a constant nonconservative force on all the par-

ticles; see (26). In the TW system, there is no nonconser-

vative force. Instead, each particle is acted upon by the

time-dependent force [−U′(x−vwt)], and the sum of these

actions over all particles gives the total power input into

the system. In the steady state, this power is dissipated

into the ambient heat bath via friction. Therefore, in the

TWmodel, the total entropy production averaged over one

period τ = v
w
/λ reads (the bar denoting period-averaging
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.

2 L. Balzer et al.: TMLE for Rare Outcomes

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)

L. Balzer et al.: TMLE for Rare Outcomes 3

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM



6 | D. Lips et al.: Nonequilibrium Transport and Phase Transitions in Driven Diffusion of Interacting Particles

where Ω is the space of all system microstates consistent

with the hardcore constraints. As the next step, we replace

∂ ln pN /∂xi via (4), which gives us two terms

˙S
sys
(t)

k
B

=
∫︁

Ω

d

Nx |J(x, t)|2

DpN(x, t)

−
∫︁

Ω

d

Nx J(x, t) · F(x)
k
B
T . (22)

Herewe have introduced the total force F(x)with com-

ponents Fi(x) = f ext(xi) + f inti (x). The first term is always

positive and equal to the total entropy production [70]. The

second term, proportional to themeandissipatedpower, is

the entropy production in the medium.

In the steady state, the system entropy is constant,

˙S
sys
(t) = 0, and the total entropy production equal to the

entropy produced in the surrounding medium:

0 ≤ ˙S
tot

=
1

T

∫︁

Ω

d

Nx J(x) · F(x)

=
1

T

N∑︁
i=1

∫︁

Ω

d

Nx Ji(x)
[︃
f − ∂U(xi)

∂xi
− ∂Uint

(x)
∂xi

]︃
.

(23)

Here, each single-particle term simplifies after intro-

ducing the current density ji(x) =
∫︀
Ω

d

Nx Ji(x)δ(xi − x) of
the ith particle, andbyusing that ji(x) = j

ss
/N in the steady

state, we obtain

∫︁

Ω

d

Nx Ji(x)
[︂
f − ∂U(xi)

∂xi

]︂
=

j
ss

N Lf . (24)

The sum over all interaction forces in (23) yields, after

integration by parts,

−
N∑︁
i=1

∫︁

Ω

d

Nx Ji(x)
∂Uint

(x)
∂xi

=
∫︁

Ω

d

Nx Uint

(x) ∇ · J(x). (25)

Because the divergence of the current is zero in the

steady state, this term vanishes. From (23) and (24), we

thus obtain the total entropy production in the Onsager

form (current times thermodynamic force)

˙S
tot

=
j
ss
f

T L ≥ 0. (26)

It is extensive in the system size, and the numerator

equals themean heat dissipated at any point of the system

in the steady state. As a consequence of the inequality in

(26), the steady-state current must have the same sign as

the drag force f.

2.4 Entropy Production in
Travelling-Wave–Driven Systems and
Current Bounds

A feasibleway to verify BASEP current–density relations in

a laboratory is to consider an equivalent ring system with

the TW external periodic potential U(x − vwt) and f = 0

[62, 71–74]. In such a TW system, the ith component of the

probability current vector is

JTWi (x, t) = µ
[︂
−∂U(xi − vwt)

∂xi
+ f inti (x)

]︂
pTWN (x, t)

− D ∂pTWN (x, t)
∂xi

. (27)

Under a Galilean transformation

xi(t) = xTWi (t) − vwt. (28)

the TW system maps to the corresponding BASEP with

potential U(x) and constant drag force

f = − vw
µ , (29)

provided the pair interaction potential uint(x, y) is a func-
tion of the particle distance (x − y) only. Local densities
and currents of the two corresponding systems are related

by [56]

ϱTW(x, t) = ϱ(x − vwt, t), (30)

jTW(x, t) = vwϱ(x − vwt, t) + j(x − vwt, t) . (31)

A remarkable aspect of thismapping that has not been

discussed in our previous work relates to the fundamental

difference of dissipations (their physical origins and their

values) in the two pictures. In fact, hopping events that

contribute positively to the dissipation (total entropy pro-

duction) in one picture cause a decrease of the dissipation

in the other.

In the BASEP, the dissipation equals the average work

done by a constant nonconservative force on all the par-

ticles; see (26). In the TW system, there is no nonconser-

vative force. Instead, each particle is acted upon by the

time-dependent force [−U′(x−vwt)], and the sum of these

actions over all particles gives the total power input into

the system. In the steady state, this power is dissipated

into the ambient heat bath via friction. Therefore, in the

TWmodel, the total entropy production averaged over one

period τ = v
w
/λ reads (the bar denoting period-averaging
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in time)

˙STW
tot

= −1

T

N∑︁
i=1

1

τ

τ∫︁

0

dt
⟨
∂U(xi − vwt)

∂t

⟩
. (32)

After some algebra similar to that in Section 2.3, one

obtains [56]

˙STW
tot

=
vwjTWss
µT L ≥ 0, (33)

which means that the period-averaged stationary current

jTW
st

must have the same sign as vw. Hence, there are no
current reversals in a TW system.

Furthermore, we can relate the TW current in (33) to

the corresponding BASEP by taking the period-averaged

form of (31) in the steady state:

˙STW
tot

=
v2wρ + vwjss

µT L ≥ 0. (34)

Here, the two terms in the numerator have clear physi-

calmeanings. The first contains the expression v2w/µ equal
to the dissipated power by a particle moving at constant

velocity vw in the fluid characterised by the friction coef-

ficient 1/µ. This term gives the maximal possible dissipa-

tion in the TW system corresponding to the case with no

jumps over potential barriers where the motion of each

particle is exactly phase-locked with the TW potential

U(x − vwt). The second term contains the current in the

corresponding BASEP and is negative because vw and f
have opposite signs. Recalling (29), we see that the second

term equals exactly the dissipation in the BASEP (26) up

to the minus sign. It tells us that the total TW dissipation

is diminished by the difference of the average number of

jumps over potential barriers in and against bias direction.

Overall, the inequality in (34) implies

0 ≤ j
ss
(ρ, σ) ≤ µfρ, (35)

for f > 0; that is, we obtain the upper bound µfρ for the
current, whereas the lower bound follows from (26) as

already discussed.

3 Hardcore Interacting Particles in
Harmonic Potential

The paradigmatic variant of the BASEP with hardcore-

interacting particles diffusing in the external harmonic

potential

U(x) =
U
0

2

cos

(︂
2πx
λ

)︂
(36)

0

0.01

0.02j s
s

0.03

0.04

0 0.2 0.4 0.6

r

0.8 1

Figure 1: Simulated steady-state current jss in the BASEP with cosine
potential (36) as a function of the density ρ for different particle
sizes σ. The solid black line marks the current of noninteracting par-
ticles j0(ρ) = v0ρ; and the dashed line, the current–density relation
jASEP(ρ) = v0ρ(1 − ρ) of a corresponding ASEP [v0 = 0.043 from
(37)].

has been studied thoroughly in our previous works

[55, 56, 63]. Here, we review its basic properties that

shall serve as a “reference case” for the following

analysis.

In all illustrations, we fix units setting λ = 1 (defines

units of length), λ2/D = 1 (time), k
B
T = 1 (energy); this

implies that µ = D/(k
B
T) = 1 also. We assume U

0
≫ 1,

which leads to a hopping-like motion between potential

wells that resembles the dynamics on a lattice.

Four representative shapes of current–density rela-

tions are shown in Figure 1. In the low-density limit, all

curves collapse to the linear behaviour j
0
(ρ) = v

0
ρ with

the slope given by the velocity v
0
of a single (noninteract-

ing) particle. This is given by [75]

v
0

=
Dλ(1 − e−βfλ

)∫︀ λ
0

dx
∫︀ x+λ
x dy exp[β(U(y) − fy − U(x) + fx)]

,

(37)

where β = 1/(k
B
T). Beyond the small-ρ region, the shapes

change strongly with the particle size σ. This com-

plex behaviour is caused by three competing collective

effects:

(i) The barrier reduction effect leads to a current

increase with ρ. It appears in multioccupied wells,

where particles are pushing each other to regions of

higher potential energy and thus decrease an effec-

tive barrier for a transition to neighbouring wells.

The effect is best visible for small σ causing cur-

rents to be larger than j
0
(ρ) = v

0
ρ (solid black line

in Fig. 1). Likewise, for small and moderate σ, the
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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strong current increase at larger ρ is due to the

occurrence of double-occupied wells.

(ii) The blocking effect suppresses the current by reduc-
ing the number of transitions between neighbour-

ing wells. It occurs for larger particle sizes: an

extended particle is more easily blocked by another

one occupying the neighbouring well (compared to

smaller σ). To contrast with the most extreme case

of blocking, the parabolic current–density relations

j
ASEP

(ρ) = v
0
ρ(1 − ρ) of a corresponding ASEP is

shown as the dashed line in Figure 1.

(iii) The exchange symmetry effect causes a deformation

of the current–density relation towards the linear

behaviour j
0
(ρ) = v

0
ρ if the particle size is close to

σ = m,m = 0, 1, 2, . . ., that is, a multiple integer

of λ. In the commensurate case σ = m, the current
of interactingparticles becomes equal to that of non-

interacting ones. This effect is a consequence of the

general relation

j
ss
(ρ, σ) = (1 − mρ) j

ss

(︂
ρ

1 − mρ , σ − mλ
)︂

(38)

that maps the stationary current in a system with

particles of diameter σ and density ρ to that with

particles of diameter σ−mλ and density ρ/(1−mρ),
where m = int(σ/λ) is the integer part of σ/λ.

4 Impact of External Periodic
Potential

As discussed in the Introduction, we consider further

external potentials, namely, the Kronig–Penney, a piece-

wise linear, and a triple-well potential. These potentials

are plotted in Figure 2b–d together with the cosine poten-

tial of our reference system in Figure 2a.

4.1 Kronig–Penney Potential

The Kronig–Penney potential has the form

U(x) =

{︃
0 , 0 ≤ x < λ

w
,

U
0
, λ

w
≤ x < λ ,

(39)

where λ
w
is width of the rectangular well, and λ

b
= λ− λ

w

is the width of the rectangular barrier. We are interested in

the current–density relation for different λ
w
in the limit of

large U
0

≫ 1. Specifically, we take the same valueU
0

= 6

as for the reference BASEPwith cosine potential discussed

in Section 3. In particular, we aim to clarify whether a

current enhancement over that of noninteracting parti-

cles still occurs. As all particles dragged from one well

to a neighbouring one have to surmount the same barrier

heightU
0
now, it is not clearwhethermultiple occupations

ofwells lead to an effective barrier reduction. The blocking

and exchange symmetry effect are expected to influence

the current in an analogous manner.

Inserting the Kronig–Penney potential in (37) yields

v
0
(λ

w
) =

A
B (40a)

A =
D
λ (βfλ)

2

(eβfλ − 1) (40b)

B = 2[eβf λw + eβf (λ−λ
w
) − eβfλ − 1]

× [1 − cosh(βU
0
)] + βfλ(eβfλ − 1) (40c)

for the single-particle velocity. This result is plotted in

Figure 3. As expected, v
0
(λ

w
) approaches the mean drift

velocity µf of a single particle in a flat potential in the

limits λ
w

→ 0 (zero well width) and λ
w

→ 1 (zero barrier

width). With increasing width of the wells (or of the barri-

ers), v
0
(λ

w
) rapidly decreases. Interestingly, (40c) implies

the symmetry v
0
(λ

w
) = v

0
(1− λ

w
) = v

0
(λ

b
), whichmeans

the single-particle velocity remains unaltered if the barri-

ers and wells are interchanged.
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Figure 2: The different periodic externals potentials investigated for comparing current–density relations: (a) cosine (36), (b) Kronig–
Penney (39), (c) piecewise linear (42), and (d) triple-well (43).
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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strong current increase at larger ρ is due to the

occurrence of double-occupied wells.

(ii) The blocking effect suppresses the current by reduc-
ing the number of transitions between neighbour-

ing wells. It occurs for larger particle sizes: an

extended particle is more easily blocked by another

one occupying the neighbouring well (compared to

smaller σ). To contrast with the most extreme case

of blocking, the parabolic current–density relations

j
ASEP

(ρ) = v
0
ρ(1 − ρ) of a corresponding ASEP is

shown as the dashed line in Figure 1.

(iii) The exchange symmetry effect causes a deformation

of the current–density relation towards the linear

behaviour j
0
(ρ) = v

0
ρ if the particle size is close to

σ = m,m = 0, 1, 2, . . ., that is, a multiple integer

of λ. In the commensurate case σ = m, the current
of interactingparticles becomes equal to that of non-

interacting ones. This effect is a consequence of the

general relation

j
ss
(ρ, σ) = (1 − mρ) j

ss

(︂
ρ

1 − mρ , σ − mλ
)︂

(38)

that maps the stationary current in a system with

particles of diameter σ and density ρ to that with

particles of diameter σ−mλ and density ρ/(1−mρ),
where m = int(σ/λ) is the integer part of σ/λ.

4 Impact of External Periodic
Potential

As discussed in the Introduction, we consider further

external potentials, namely, the Kronig–Penney, a piece-

wise linear, and a triple-well potential. These potentials

are plotted in Figure 2b–d together with the cosine poten-

tial of our reference system in Figure 2a.

4.1 Kronig–Penney Potential

The Kronig–Penney potential has the form

U(x) =

{︃
0 , 0 ≤ x < λ

w
,

U
0
, λ

w
≤ x < λ ,

(39)

where λ
w
is width of the rectangular well, and λ

b
= λ− λ

w

is the width of the rectangular barrier. We are interested in

the current–density relation for different λ
w
in the limit of

large U
0

≫ 1. Specifically, we take the same valueU
0

= 6

as for the reference BASEPwith cosine potential discussed

in Section 3. In particular, we aim to clarify whether a

current enhancement over that of noninteracting parti-

cles still occurs. As all particles dragged from one well

to a neighbouring one have to surmount the same barrier

heightU
0
now, it is not clearwhethermultiple occupations

ofwells lead to an effective barrier reduction. The blocking

and exchange symmetry effect are expected to influence

the current in an analogous manner.

Inserting the Kronig–Penney potential in (37) yields

v
0
(λ

w
) =

A
B (40a)

A =
D
λ (βfλ)

2

(eβfλ − 1) (40b)

B = 2[eβf λw + eβf (λ−λ
w
) − eβfλ − 1]

× [1 − cosh(βU
0
)] + βfλ(eβfλ − 1) (40c)

for the single-particle velocity. This result is plotted in

Figure 3. As expected, v
0
(λ

w
) approaches the mean drift

velocity µf of a single particle in a flat potential in the

limits λ
w

→ 0 (zero well width) and λ
w

→ 1 (zero barrier

width). With increasing width of the wells (or of the barri-

ers), v
0
(λ

w
) rapidly decreases. Interestingly, (40c) implies

the symmetry v
0
(λ

w
) = v

0
(1− λ

w
) = v

0
(λ

b
), whichmeans

the single-particle velocity remains unaltered if the barri-

ers and wells are interchanged.
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Figure 2: The different periodic externals potentials investigated for comparing current–density relations: (a) cosine (36), (b) Kronig–
Penney (39), (c) piecewise linear (42), and (d) triple-well (43).
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Figure 3: Drift velocity of a single particle in dependence of λw for
the Kronig–Penney potential in (39); the velocity is normalised to
f, i.e. its value in a flat (vanishing) external potential. The barrier
height and drag force are U0 = 6 and f = 0.2.

Current–density relations for hardcore-interacting

particles calculated from the SDA (cf. Section 2.2) are

shown in Figure 4 for five different values of λ
w
. For each

λ
w
, we plotted j

ss
/v

0
vs. ρ for eight rod lengths σ anal-

ogous to our representation of current–density curves in

Figure 1. As can be seen from the graphs, the shapes of

the current–density relation are qualitatively compara-

ble to that in Figure 1 for all λ
w
, as well as their overall

change with the diameter σ. This means that the inter-

play of the barrier reduction, blocking, and exchange sym-

metry is still present. As expected, the overall strengths
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Figure 4: Current jss, normalised with respect to v0(λw) (Fig. 3), for the Kronig–Penney potential in the small-driving approximation as a
function of ρ for different σ and (a) λw = 0.1, (b) 0.3, (c) 0.5, (d) 0.7, and (e) 0.9. The barrier height is U0 = 6.

of the effects in modifying the current of noninteracting

particles become weaker with increasing λ
w
; for λ

w
→ 1,

the current j
ss
(ρ, λ

w
) indeed approaches j

0
(ρ, λ

w
→ 1) =

ρv
0
(λ

w
→ 1) = µfρ.

The barrier reduction, however, can no longer be asso-

ciated with a decrease of an effective barrier height, when

two or more particles occupy a potential well. For the

Kronig–Penneypotential in (39), all particles in amultiple-

occupied well have zero energy and need to overcome U
0
.

Nevertheless,we canattribute the enhancement of the cur-

rent compared to that of noninteracting particles with a

barrier reduction. To see this, we analyse the potential of

mean force

U
mf
(x) = k

B
T ln ϱ

eq
(x) + C = U

mf
(x + λ) (41)

for both the cosine and the Kronig–Penney potential,

where the constant C is chosen to give a potential mini-

mumequal to zero. If considering driven Brownianmotion

of noninteracting particles in the potential U
mf
(x), the cur-

rent in the linear response limit would be equal to the

many-particle current in the SDA. We therefore can inter-

pretU
mf
as an effective barrier in themany-particle system.

In Figure 5, we show U
mf
/U

0
for both the cosine and the

Kronig–Penney potential. At the maximum of the cosine
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 5: Potential of mean force Umf for the cosine potential (blue
dashed line) and the Kronig–Penney potential with λw = 0.2 (solid
red line). Parameters are σ = 0.2, ρ = 0.5, and U0 = 6 for both
potentials.

potential at x = 0, we find U
mf
/U

0
< 1, which means the

barrier height is reduced. In contrast, the barrier at the

step of the Kronig–Penney potential equals U
0
(U

mf
(x =

λ
w
)/U

0
= 1 in Figure 5). However, a barrier reduction is

now clearly seen in the plateau part of the barrier in the

range λ
w

< x < 1. We thus can distinguish between two

types of barrier reduction, namely, the first type associated

with a reduction of the barrier height and the second type

associated with a lowering of the barrier plateau.

Generally, a single-well periodic potential can be char-

acterised roughly by the widths of a valley and barrier part

and the flanks in between these parts. A simple represen-

tation is given by the piecewise linear potential

U(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 , 0 ≤ |x| ≤ λ
w

2

,

U
0

λ
f

(︂
|x| − λ

w

2

)︂
,

λ
w

2

≤ |x| ≤ λ
w

2

+ λ
f
,

U
0
,

λ
w

2

+ λ
f
≤ |x| ≤ λ ,

(42)

shown in Figure 2c, where λ
w
, λ

f
, and λ

b
= λ − λ

w
− 2λ

f

are specifying the widths of the valley, barrier, and flanks.

We performed additional calculations in the SDA for this

potential. For various fixed λ
w
and λ

f
, we always found

current–density relations with a behaviour similar to that

found in Figure 1 for the BASEPwith cosine potential. This

model may thus be viewed as representative for Brownian

single-file transport through single-well periodic poten-

tials with barriers much larger than the thermal energy.

Current–density relations with different characteris-

tics can, however, be obtained for multiple-well periodic

potentials, as we discuss next.

4.2 Triple-Well Potential

The triple-well potential shown in Figure 2d is

U(x) = U
0

3∑︁
j=1

(j + 1) cos

(︂
2πjx
λ

)︂
, (43)

where we choose U
0

= 1 here. For this potential, our cal-

culations of j
ss
(ρ) based on the SDA show a very sensitive

dependence on σ. We concentrate here on one particle

diameter σ = 0.323, where several local extrema occur;

see Figure 6. In this figure, currents are shown up to a

density (filling factor) N/M = ρ = 2.98, corresponding to

a coverage ρσ ∼= 96% of the system by the hard rods. If

ρ approaches its maximal value 1/σ ∼= 3.10 correspond-

ing to a complete coverage, the numerical calculation of

the equilibrium density profile from (19) becomes increas-

ingly difficult. Hence, we refrained to show current data

for ρ > 2.98 due to a lack of sufficient numerical accuracy

when calculating ϱ
eq
(x). It is important to state in this con-

text that the current for ρ → 1/σ is expected to approach

that of noninteracting particles in a flat potential [56]; that

is, it should hold j
ss
(ρ, σ) ∼ µfρ for ρ → 1/σ (except for

the singular point ρ = 1/σ, where j
ss
(1/σ, σ) = 0). This

means that the current inFigure 6must steeply rise for ρ →
1/σ; that is, there must appear a further local minimum

for ρ > 2.98. These arguments apply also to the currents

shown in Figures 1 and 4.

To explain the occurrence of the local extrema in

Figure 6, we resort to (15) with χ = 0, that is, the SDA. This

equation can be interpreted by considering µϱ
eq
(x)dx/λ

to be the “local conductivity” of a line segment dx. A
serial connection of these segments implies that the “total
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Figure 6: Current jss, normalised with respect to f, for the triple-well
potential in the small-driving approximation as a function of ρ for
σ = 0.323. Densities at the local maxima are ρmax, 1 = 1.14 and
ρmax, 2 = 2.53, and ρmin = 1.98 at the local minimum.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 5: Potential of mean force Umf for the cosine potential (blue
dashed line) and the Kronig–Penney potential with λw = 0.2 (solid
red line). Parameters are σ = 0.2, ρ = 0.5, and U0 = 6 for both
potentials.

potential at x = 0, we find U
mf
/U

0
< 1, which means the

barrier height is reduced. In contrast, the barrier at the

step of the Kronig–Penney potential equals U
0
(U

mf
(x =

λ
w
)/U

0
= 1 in Figure 5). However, a barrier reduction is

now clearly seen in the plateau part of the barrier in the

range λ
w

< x < 1. We thus can distinguish between two

types of barrier reduction, namely, the first type associated

with a reduction of the barrier height and the second type

associated with a lowering of the barrier plateau.

Generally, a single-well periodic potential can be char-

acterised roughly by the widths of a valley and barrier part

and the flanks in between these parts. A simple represen-

tation is given by the piecewise linear potential

U(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 , 0 ≤ |x| ≤ λ
w

2

,

U
0

λ
f

(︂
|x| − λ

w

2

)︂
,

λ
w

2

≤ |x| ≤ λ
w

2

+ λ
f
,

U
0
,

λ
w

2

+ λ
f
≤ |x| ≤ λ ,

(42)

shown in Figure 2c, where λ
w
, λ

f
, and λ

b
= λ − λ

w
− 2λ

f

are specifying the widths of the valley, barrier, and flanks.

We performed additional calculations in the SDA for this

potential. For various fixed λ
w
and λ

f
, we always found

current–density relations with a behaviour similar to that

found in Figure 1 for the BASEPwith cosine potential. This

model may thus be viewed as representative for Brownian

single-file transport through single-well periodic poten-

tials with barriers much larger than the thermal energy.

Current–density relations with different characteris-

tics can, however, be obtained for multiple-well periodic

potentials, as we discuss next.

4.2 Triple-Well Potential

The triple-well potential shown in Figure 2d is

U(x) = U
0

3∑︁
j=1

(j + 1) cos

(︂
2πjx
λ

)︂
, (43)

where we choose U
0

= 1 here. For this potential, our cal-

culations of j
ss
(ρ) based on the SDA show a very sensitive

dependence on σ. We concentrate here on one particle

diameter σ = 0.323, where several local extrema occur;

see Figure 6. In this figure, currents are shown up to a

density (filling factor) N/M = ρ = 2.98, corresponding to

a coverage ρσ ∼= 96% of the system by the hard rods. If

ρ approaches its maximal value 1/σ ∼= 3.10 correspond-

ing to a complete coverage, the numerical calculation of

the equilibrium density profile from (19) becomes increas-

ingly difficult. Hence, we refrained to show current data

for ρ > 2.98 due to a lack of sufficient numerical accuracy

when calculating ϱ
eq
(x). It is important to state in this con-

text that the current for ρ → 1/σ is expected to approach

that of noninteracting particles in a flat potential [56]; that

is, it should hold j
ss
(ρ, σ) ∼ µfρ for ρ → 1/σ (except for

the singular point ρ = 1/σ, where j
ss
(1/σ, σ) = 0). This

means that the current inFigure 6must steeply rise for ρ →
1/σ; that is, there must appear a further local minimum

for ρ > 2.98. These arguments apply also to the currents

shown in Figures 1 and 4.

To explain the occurrence of the local extrema in

Figure 6, we resort to (15) with χ = 0, that is, the SDA. This

equation can be interpreted by considering µϱ
eq
(x)dx/λ

to be the “local conductivity” of a line segment dx. A
serial connection of these segments implies that the “total
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Figure 6: Current jss, normalised with respect to f, for the triple-well
potential in the small-driving approximation as a function of ρ for
σ = 0.323. Densities at the local maxima are ρmax, 1 = 1.14 and
ρmax, 2 = 2.53, and ρmin = 1.98 at the local minimum.
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conductivity” is given by the inverse of the sum of the

inverse local conductivities, corresponding to a summa-

tion of the respective “local resistivities.” A stronger locali-

sation of ρ
eq
(x) around theminimaof thepotential leads to

a smaller conductivity and hence a smaller current j
ss
(ρ),

whereas less localised density profiles lead to larger j
ss
(ρ).

Using this picture, the occurrence of the first

maximum in j
ss
(ρ) can be traced back to an increasing

occurrence of double-occupied wells for ρ ≳ 1. In double-

occupied wells, particle motion is more restricted, leading

to a stronger particle localisation at the twodeeperminima

at about x ≃ 0.2 and x ≃ 0.8; see Figure 2d. Accordingly,

j
ss
(ρ) starts to decrease with ρ for ρ ≳ 1 (ρ

max, 1

∼= 1.14 in

Fig. 6). The decrease of j
ss
(ρ) continues up to a filling fac-

tor of about two (ρ
min

∼= 1.98 in Fig. 6), above whichmore

than two particles occupy a well on average. With a signif-

icant appearance of triple-occupied wells goes along first

a stronger spreading of the density, as the minimum of the

potential at x = 1/2becomes occupied inwells containing

three particles. The spreading of the density causes j
ss
(ρ)

to increase for ρ ≳ 2. A counteracting effect, however, is

a strong particle localisation at all potential minima in

neighbouring triple-occupied wells, where the hardcore

constraints force the particles to become strongly localised

around the potential minima. For ρ ≳ 2.5 (ρ
max, 2

∼= 2.53

in Fig. 6), every second well is occupied by three particles

on average, which lets j
ss
(ρ) decrease again with further

increasing ρ.
Themore complex current–density relation inFigure 6

leads to a richer variety of NESS phases in open systems

compared to the reference BASEP, which can exhibit up

to five different phases [55, 56]. To identify all possible

NESS phases, we consider the particle exchange with two

reservoirs L and R at the left and right ends of an open

system to be controlled by two parameters ρ
L
and ρ

R
. As

discussed in connection with (1) in the Introduction, these

control parameters can be considered as effective densi-

ties, or they can be associated with true reservoir densities

for specific bulk-adapted couplings of the system to the

reservoirs [33, 34].

Applying (1) with ρ− = ρ
L

and ρ+ = ρ
R

to the

current–density relation in Figure 6 results in the dia-

gram with seven different NESS phases I–VII shown in

Figure 7. The colour coding shows the value of the bulk

density ρ
b
, that is, the order parameter of the phase tran-

sitions. Solid linesmark first-order, and dashed linesmark

second-order phase transitions, which is reflected in the

smooth (continuous) or sudden (jump-like) changes of the

colour. The seven phases can be classified in two cate-

gories: boundary-matching phases, where ρ
b
is equal to

either ρ
L
or ρ

R
, and extremal current phases, where ρ

b
is

Figure 7: Phase diagram of NESS for the triple-well potential
obtained by applying the extremal current principles to the current–
density relation in Figure 6. The colour bar encodes the values of
the bulk density ρb in an open system coupled to particle reser-
voirs. Phases I and V are left-boundary matching phases with
ρb = ρL, phases III and VII are right-boundary matching phases
with ρb = ρR, phases II and VI are maximal current phases with
ρb = ρmax, 1 and ρb = ρmax, 2, respectively, and phase IV is a
minimal current phase with ρb = ρmin. Solid (dashed) lines mark
first-(second-)order phase transitions. The dark black bars at
the boundaries mark the two stripes 2.98 < ρL,R ≤ 1/σ ∼= 3.1,
where additional phases appear (see the discussion in Section 4.2,
Triple-Well Potential).

equal to one of the densities at which j
ss
(ρ) has a local

extremum in Figure 6. Specifically, phases I and V are

left-boundary matching phases with ρ
b

= ρ
L
, phases III

andVII are right-boundarymatching phaseswith ρ
b

= ρ
R
,

phase II is a maximal current phase with ρ
b

= ρ
max, 1

,

phase VI is a maximal current phase with ρ
b

= ρ
max, 2

,

and phase IV is a minimal current phase with ρ
b

= ρ
min

.

If one takes into account the existence of the further mini-

mum for ρ > 2.98 in the current–density relation (see dis-

cussion above), then evenmore phases are possible. These

additional phases, however,must appear in the two stripes

2.98 < ρ
L, R

≤ 1/σ ∼= 3.1, that is, in a very narrow range

of one of the two control parameters (marked in black in

Fig. 7).

5 Impact of Interactions Other Than
Hardcore Exclusions

In this section, we investigate the impact of other par-

ticle interactions beyond hardcore exclusion for the

cosine external potential in (36). This is done in two
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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different settings. First, we investigate the repulsive

Yukawa potential

uintY (r) = AY
e−r/ξ

r/ξ , (44)

between particles at distance r for a fixed small ampli-

tude AY = 1 and different decay lengths ξ . Second, we
combine this Yukawa interaction with hardcore interac-

tions. For obtaining current–density relations, we here

employ Brownian dynamics simulations. This is because

an exact density functional is not available for the Yukawa

interaction, and the SDA with a precise determination of

ϱ
eq
(x) cannot be applied. For performing the Brownian

dynamics simulations, we used a standard Euler integra-

tion scheme of the Langevin equations (2) with a time

step ∆t= 10

−4

. To deal with the hardcore interactions, the

algorithm developed in [76] was applied.

Current–density relations for the Yukawa potential

without additional hardcore interactions are shown in

Figure 8 for six different values of ξ . These may be viewed

to resemble effective particle diameters σ of hardcore-

interacting systems. For small ξ , that is, ξ = 0.166 and

0.333 in Figure 8, j
ss
shows an enhancement over that of

noninteracting particles (solid black line) due to a pre-

vailing barrier reduction effect similar to that in the ref-

erence BASEP for small σ. When enlarging ξ , the current
is reduced for small ρ compared to that of noninteract-

ing particles, while it rises strongly for large ρ. Again, this
behaviour is analogous to that in the reference BASEP for
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Figure 8: Simulated current–density relations for the external
cosine potential (36) and particle interactions given by the Yukawa
potential in (44). The amplitude of the Yukawa potential is AY = 1,
and ξ values specify different decay lengths. The other simulation
parameters are U0 = 6 and f = 2. The solid line marks the cur-
rent j0(ρ) = v0ρ for noninteracting particles, and the dashed line
indicates the current–density relation jASEP(ρ) = v0ρ(1 − ρ) of a
corresponding ASEP (same curves as in Fig. 1).

increasing σ. Because the (effective) blocking effect is not
so strong for AY = 1, the current–density curves do not

approach the limiting j
ASEP

(ρ) as closely as for hardcore

interactions. Nevertheless, one can say that the change of

the current–density relation with varying ξ is reflecting

the interplay of a barrier reduction and blocking effect as

in the reference BASEP.

However, one cannot find certain ξ values, where the
current–density relation equals that of noninteractingpar-

ticles for all ρ. The peculiar exchange symmetry effect in

the BASEP for commensurate σ = m, m = 0, 1, 2 . . ., is
caused by the invariance of the stochastic particle dynam-

ics against a specific coordinate transformation contain-

ing σ [55, 56]. Such coordinate transformation does not

exist for the Yukawa potential.

For the Yukawa potential with additional hardcore

interactions, we found changes of current–density curves

caused by the barrier reduction and blocking effect as dis-

cussed above. But it is interesting to analyse now whether

the relation j
ss
(ρ) = j

0
(ρ) = v

0
ρ for commensurate σ = m

and ξ = 0 is approximately reflected in current–density

relations for ξ > 0, where the exchange symmetry effect is

no longer strictly valid. One may expect that the hardcore-

interacting system should be onlyweakly perturbed by the

Yukawa potential ifAY is of the order of the thermal energy

and ξ not too large compared to σ. This is indeed con-

firmed by simulation results for σ = 1 shown in Figure 9.

The data points for ξ = 0.166 and ξ = 0.333 lie almost

directly on the curve j
0
(ρ) up to the highest simulated den-

sity ρ = 0.9. With increasing ξ , deviations from the linear
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Figure 9: Simulated current–density relations for the cosine exter-
nal potential and Yukawa interactions as in Figure 8, and additional
hardcore interactions for commensurate particle size σ = 1. Param-
eters for the drag force, as well as for the amplitudes of the cosine
and Yukawa potential, are chosen as in Figure 8. The solid line
marks the current j0(ρ) = v0ρ for noninteracting particles (same
line as in Figs. 1 and 8).
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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different settings. First, we investigate the repulsive

Yukawa potential

uintY (r) = AY
e−r/ξ

r/ξ , (44)

between particles at distance r for a fixed small ampli-

tude AY = 1 and different decay lengths ξ . Second, we
combine this Yukawa interaction with hardcore interac-

tions. For obtaining current–density relations, we here

employ Brownian dynamics simulations. This is because

an exact density functional is not available for the Yukawa

interaction, and the SDA with a precise determination of

ϱ
eq
(x) cannot be applied. For performing the Brownian

dynamics simulations, we used a standard Euler integra-

tion scheme of the Langevin equations (2) with a time

step ∆t= 10

−4

. To deal with the hardcore interactions, the

algorithm developed in [76] was applied.

Current–density relations for the Yukawa potential

without additional hardcore interactions are shown in

Figure 8 for six different values of ξ . These may be viewed

to resemble effective particle diameters σ of hardcore-

interacting systems. For small ξ , that is, ξ = 0.166 and

0.333 in Figure 8, j
ss
shows an enhancement over that of

noninteracting particles (solid black line) due to a pre-

vailing barrier reduction effect similar to that in the ref-

erence BASEP for small σ. When enlarging ξ , the current
is reduced for small ρ compared to that of noninteract-

ing particles, while it rises strongly for large ρ. Again, this
behaviour is analogous to that in the reference BASEP for
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Figure 8: Simulated current–density relations for the external
cosine potential (36) and particle interactions given by the Yukawa
potential in (44). The amplitude of the Yukawa potential is AY = 1,
and ξ values specify different decay lengths. The other simulation
parameters are U0 = 6 and f = 2. The solid line marks the cur-
rent j0(ρ) = v0ρ for noninteracting particles, and the dashed line
indicates the current–density relation jASEP(ρ) = v0ρ(1 − ρ) of a
corresponding ASEP (same curves as in Fig. 1).

increasing σ. Because the (effective) blocking effect is not
so strong for AY = 1, the current–density curves do not

approach the limiting j
ASEP

(ρ) as closely as for hardcore

interactions. Nevertheless, one can say that the change of

the current–density relation with varying ξ is reflecting

the interplay of a barrier reduction and blocking effect as

in the reference BASEP.

However, one cannot find certain ξ values, where the
current–density relation equals that of noninteractingpar-

ticles for all ρ. The peculiar exchange symmetry effect in

the BASEP for commensurate σ = m, m = 0, 1, 2 . . ., is
caused by the invariance of the stochastic particle dynam-

ics against a specific coordinate transformation contain-

ing σ [55, 56]. Such coordinate transformation does not

exist for the Yukawa potential.

For the Yukawa potential with additional hardcore

interactions, we found changes of current–density curves

caused by the barrier reduction and blocking effect as dis-

cussed above. But it is interesting to analyse now whether

the relation j
ss
(ρ) = j

0
(ρ) = v

0
ρ for commensurate σ = m

and ξ = 0 is approximately reflected in current–density

relations for ξ > 0, where the exchange symmetry effect is

no longer strictly valid. One may expect that the hardcore-

interacting system should be onlyweakly perturbed by the

Yukawa potential ifAY is of the order of the thermal energy

and ξ not too large compared to σ. This is indeed con-

firmed by simulation results for σ = 1 shown in Figure 9.

The data points for ξ = 0.166 and ξ = 0.333 lie almost

directly on the curve j
0
(ρ) up to the highest simulated den-

sity ρ = 0.9. With increasing ξ , deviations from the linear
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Figure 9: Simulated current–density relations for the cosine exter-
nal potential and Yukawa interactions as in Figure 8, and additional
hardcore interactions for commensurate particle size σ = 1. Param-
eters for the drag force, as well as for the amplitudes of the cosine
and Yukawa potential, are chosen as in Figure 8. The solid line
marks the current j0(ρ) = v0ρ for noninteracting particles (same
line as in Figs. 1 and 8).
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behaviour are seen, which become the more pronounced

the larger ρ. But even for ξ = 2, j
ss
(ρ) follows j

0
(ρ) closely

up to ρ = 0.4. We thus conclude that slight deviations

from a perfect hardcore interaction, as they are always

present in experiments, still allow an identification of the

exchange symmetry effect.

6 Summary and Conclusions
To analyse how generic our previous findings are for

the nonequilibrium physics of the BASEP in a sinusoidal

potential, we have studied the driven Brownian motion

of hardcore-interacting particles for other external peri-

odic potentials. Our calculations were carried out based

on a small-driving approximation, which refers to the lin-

ear response under neglect of a period-averaged mean

interaction force. If the external periodic potential exhibits

a single-well structure between barriers, that is, if there

is only one local minimum per period, our results pro-

vide evidence that the various characteristic shapes of

bulk current–density relations j
ss
(ρ) for different particle

sizes σ are always occurring. There are differences in the

exact functional form and at which σ the type of shape is

changing. For all single-well periodic potentials, it is the

interplay of a barrier reduction, blocking, and exchange

symmetry effect that causes a particular shape to appear.

Even for a Kronig–Penney potential with alternating rect-

angular well and barrier parts, where the barrier reduction

effect is not so obvious, we showed that an enhancement

of the current over that of noninteracting particles occurs.

For that potential, this enhancement can be attributed to

an effective reduction of the barrier plateau parts. The

generic behaviour of the bulk current–density relations

implies that for single-well periodic potentials up to five

different NESS phases appear in open BASEP systems cou-

pled to particle reservoirs. This can be concluded by apply-

ing the extremal current principles [27, 29].

More complex shapes of j
ss
(ρ) can occur in multiple-

well periodic potentials. This was demonstrated for a

particular triple-well potential, where our calculations

yielded a current–density relation with two local maxima

for a certain particle size. In that case, the extremal current

principles predict more than five different NESS phases

in an open system. When neglecting a narrow range of

very high effective reservoir densities, which would be

very difficult to realise by specific system-reservoir cou-

plings in simulations or experiments, up to seven differ-

ent NESS phases are possible. We point out that these

results were obtained here for demonstration purposes.

Systematic investigations of multiple-well external poten-

tials should be performed in the future with a goal to

reach a general classification similar as for the BASEP for

single-well periodic potentials.

Current–density relations with several local maxima

are particularly interesting in the case of “degeneratemax-

ima,” that is, when the current at themaximahas the same

value. In such situations, coexisting NESS phases of max-

imal current can occur in a whole connected region of the

space spanned by the parameters controlling the coupling

to the environment [77]. Such states of coexisting extremal

current phases have not yet been studied in detail in the

literature. Preliminary results for driven lattice gases indi-

cate that fluctuations of interfaces separating extremal

current phases exhibit an anomalous scaling with time

and system length.² This is in contrast to the already well-

studied interface fluctuations between the low- and high-

density phases in the ASEP, which at long times show a

simple random-walk behaviour.

We furthermore performed Brownian dynamics sim-

ulations of driven single-file diffusion through a cosine

potential for a repulsive particle interaction other than

hardcore exclusion. Specifically, we chose a Yukawa inter-

action with a small interaction amplitude equal to the

thermal energy and studied the behaviour for different

decay lengths ξ . Current–density relations for this system
showed similar shapes as for the BASEP except for the

effects implied by the exchange symmetry effect, which is

absent for other interactions than hardcore. The change of

shapes is solely determined by the interplay of a barrier

reduction and effective blocking effect. If the hardcore

interaction and the weak Yukawa interaction are com-

bined, the consequences of the exchange symmetry effect

can still be seen for particle sizes commensurate with the

wavelength of the cosine potential. The current j
ss
(ρ) fol-

lows closely that of noninteracting particles up to high

densities even for large ξ . This means that deviations from

a perfect hardcore interaction in experiments should still

allow one to verify the exchange symmetry.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Appendix: Example for Connection
of ASEP to Quantum Spin Chain
Let p(n, t) denote the probability of configurations n =
{ni , i = 1, . . . , L} of occupation numbers ni ∈ {0, 1}
in a single-species fermionic lattice gas at time t. Its time

evolution is described by the master equation

dp(n, t)
dt =

∑︁
n′
[wnn′p(n′, t) − wn′np(n, t)]

=
∑︁
n′

Hnn′p(n′, t) (A.1)

where wnn′ is the transition rate from configuration n′
to n (for n′ ̸= n; otherwise, wnn = 0), and Hnn′ = wnn′ −
δnn′

∑︀
n′′ wn′′n. This master equation corresponds to the

occupation number representation of a Schrödinger equa-

tion

d|p⟩
dt = H|p⟩ (A.2)

in imaginary time [3, 4].

For the ASEP with periodic boundary conditions

(nL+1
= n

1
, n

0
= nL), the transitions rates wnn′ can be

written as

wnn′ =
L∑︁

j=1

δn′n(j) [Γ−n′j+1
(1 − n′j) + Γ+n′j(1 − n′j+1

)]

=
L∑︁

j=1

δn′n(j) [Γ−(1 − nj+1
)nj + Γ+(1 − nj)nj+1

] ,

(A.3)

where n(j) denotes the configuration nwith the occupation
numbers at sites j and (j+1) interchanged, i.e. n(j)k = nk for
k ̸= j, (j+1), n(j)j = nj+1

, and n(j)j+1

= nj. Accordingly, the
matrix elements Hnn′ = ⟨n|H|n′⟩ = wnn′ − δnn′

∑︀
n′′ wn′′n

are

Hnn′ =
L∑︁

j=1

{δn′n(j) [Γ−nj(1 − nj+1
) + Γ+(1 − nj)nj+1

]

− δnn′[Γ−(1 − nj)nj+1
+ Γ+nj(1 − nj+1

)]}.
(A.4)

Because ⟨n|c†j cj+1
|n′⟩ = δn′n(j)nj(1−nj+1

) for creation

and annihilation operators c†j and cj of a particle at site

j, the matrix elements in (A.4) are equal to those of the

Hamiltonian

H =
L∑︁

j=1

{Γ−[c†j cj+1
− nj+1

(1 − nj)]

+ Γ+[c†j+1
cj − nj(1 − nj+1

)]} (A.5)

of spinless fermions,which for Γ+ ̸= Γ− is non-Hermitian.

In a representation by Pauli matrices, one can write c†j =
σ+
j /2 = (σxj + iσyj )/2, cj = σ−

j /2 = (σxj − iσyj )/2, and nj =
(1 + σzj )/2, giving

H =
1

4

L∑︁
j=1

[Γ−σ+
j σ

−
j+1

+ Γ+σ+
j+1

σ−
j

+ (Γ− + Γ+)(σzj σzj+1
− 1)]. (A.6)

The periodic boundary conditions imply σ±
L+1

= σ±
1

and σzL+1
= σz

1
.

A transformed H′ = VHV−1

with (nonsingular) oper-

ator V has the same spectrum as H, where eigenstates

|φ⟩ and |φ′⟩ of H and H′ to the same eigenvalue are

related by |φ′⟩ = V|φ⟩. Such transformation can be used

to symmetrise the non-Hermitian part (Γ−σ+
j σ

−
j+1

+

Γ+σ+
j+1

σ−
j ) in (A.6) by choosing V = exp(α

∑︀L
j=1

jσzj )
with some constant α, because Vσ±

j V
−1 = e±2αjσ±

j [6].

With Vσ+
j σ

−
j+1

V−1 = Vσ+
j VV

−1σ−
j+1

V−1 = e−2ασ+
j σ

−
j+1

and Vσ+
j+1

σ−
j V

−1 = e2ασ+
j+1

σ−
j , the symmetrisation is

achieved by requiring Γ−e−2α = Γ+e2α, that is, by setting
eα = (Γ−/Γ+)

1/4

. The transformed Hamiltonian is that of

a quantum XXZ chain,

H′ =
√
Γ−Γ+

2

L∑︁
j=1

(σxj σxj+1
+σyj σ

y
j+1

+∆ σzj σzj+1
−∆) (A.7)

with ∆ = (Γ− + Γ+)/(2
√
Γ−Γ+), but now non-Hermitian

boundary conditions Vσ±
L+1

V−1 = Vσ±
1

V−1

, that is,

σ±
L+1

= e∓2αLσ±
1

= (Γ−/Γ+)
∓L/2σ±

1

and σzL+1
= σz

1
.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Appendix: Example for Connection
of ASEP to Quantum Spin Chain
Let p(n, t) denote the probability of configurations n =
{ni , i = 1, . . . , L} of occupation numbers ni ∈ {0, 1}
in a single-species fermionic lattice gas at time t. Its time

evolution is described by the master equation

dp(n, t)
dt =

∑︁
n′
[wnn′p(n′, t) − wn′np(n, t)]

=
∑︁
n′

Hnn′p(n′, t) (A.1)

where wnn′ is the transition rate from configuration n′
to n (for n′ ̸= n; otherwise, wnn = 0), and Hnn′ = wnn′ −
δnn′

∑︀
n′′ wn′′n. This master equation corresponds to the

occupation number representation of a Schrödinger equa-

tion

d|p⟩
dt = H|p⟩ (A.2)

in imaginary time [3, 4].

For the ASEP with periodic boundary conditions

(nL+1
= n

1
, n

0
= nL), the transitions rates wnn′ can be

written as

wnn′ =
L∑︁

j=1

δn′n(j) [Γ−n′j+1
(1 − n′j) + Γ+n′j(1 − n′j+1

)]

=
L∑︁

j=1

δn′n(j) [Γ−(1 − nj+1
)nj + Γ+(1 − nj)nj+1

] ,

(A.3)

where n(j) denotes the configuration nwith the occupation
numbers at sites j and (j+1) interchanged, i.e. n(j)k = nk for
k ̸= j, (j+1), n(j)j = nj+1

, and n(j)j+1

= nj. Accordingly, the
matrix elements Hnn′ = ⟨n|H|n′⟩ = wnn′ − δnn′

∑︀
n′′ wn′′n

are

Hnn′ =
L∑︁

j=1

{δn′n(j) [Γ−nj(1 − nj+1
) + Γ+(1 − nj)nj+1

]

− δnn′[Γ−(1 − nj)nj+1
+ Γ+nj(1 − nj+1

)]}.
(A.4)

Because ⟨n|c†j cj+1
|n′⟩ = δn′n(j)nj(1−nj+1

) for creation

and annihilation operators c†j and cj of a particle at site

j, the matrix elements in (A.4) are equal to those of the

Hamiltonian

H =
L∑︁

j=1

{Γ−[c†j cj+1
− nj+1

(1 − nj)]

+ Γ+[c†j+1
cj − nj(1 − nj+1

)]} (A.5)

of spinless fermions,which for Γ+ ̸= Γ− is non-Hermitian.

In a representation by Pauli matrices, one can write c†j =
σ+
j /2 = (σxj + iσyj )/2, cj = σ−

j /2 = (σxj − iσyj )/2, and nj =
(1 + σzj )/2, giving

H =
1

4

L∑︁
j=1

[Γ−σ+
j σ

−
j+1

+ Γ+σ+
j+1

σ−
j

+ (Γ− + Γ+)(σzj σzj+1
− 1)]. (A.6)

The periodic boundary conditions imply σ±
L+1

= σ±
1

and σzL+1
= σz

1
.

A transformed H′ = VHV−1

with (nonsingular) oper-

ator V has the same spectrum as H, where eigenstates

|φ⟩ and |φ′⟩ of H and H′ to the same eigenvalue are

related by |φ′⟩ = V|φ⟩. Such transformation can be used

to symmetrise the non-Hermitian part (Γ−σ+
j σ

−
j+1

+

Γ+σ+
j+1

σ−
j ) in (A.6) by choosing V = exp(α

∑︀L
j=1

jσzj )
with some constant α, because Vσ±

j V
−1 = e±2αjσ±

j [6].

With Vσ+
j σ

−
j+1

V−1 = Vσ+
j VV

−1σ−
j+1

V−1 = e−2ασ+
j σ

−
j+1

and Vσ+
j+1

σ−
j V

−1 = e2ασ+
j+1

σ−
j , the symmetrisation is

achieved by requiring Γ−e−2α = Γ+e2α, that is, by setting
eα = (Γ−/Γ+)

1/4

. The transformed Hamiltonian is that of

a quantum XXZ chain,

H′ =
√
Γ−Γ+

2

L∑︁
j=1

(σxj σxj+1
+σyj σ

y
j+1

+∆ σzj σzj+1
−∆) (A.7)

with ∆ = (Γ− + Γ+)/(2
√
Γ−Γ+), but now non-Hermitian

boundary conditions Vσ±
L+1

V−1 = Vσ±
1

V−1

, that is,

σ±
L+1

= e∓2αLσ±
1

= (Γ−/Γ+)
∓L/2σ±

1

and σzL+1
= σz

1
.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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