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Abstract: Driven diffusive systems constitute paradig-
matic models of nonequilibrium physics. Among them,
a driven lattice gas known as the asymmetric simple
exclusion process (ASEP) is the most prominent exam-
ple for which many intriguing exact results have been
obtained. After summarising key findings, including the
mapping of the ASEP to quantum spin chains, we dis-
cuss the recently introduced Brownian ASEP (BASEP) as
a related class of driven diffusive system with contin-
uous space dynamics. In the BASEP, driven Brownian
motion of hardcore-interacting particles through one-
dimensional periodic potentials is considered. We study
whether current-density relations of the BASEP can be
considered as generic for arbitrary periodic potentials and
whether repulsive particle interactions other than hard-
core lead to similar results. Our findings suggest that
shapes of current—-density relations are generic for single-
well periodic potentials and can always be attributed
to the interplay of a barrier reduction, blocking, and
exchange symmetry effect. This implies that in general up
to five different phases of nonequilibrium steady states
are possible for such potentials. The phases can occur
in systems coupled to particle reservoirs, where the bulk
density is the order parameter. For multiple-well periodic
potentials, more complex current—density relations are
possible, and more phases can appear. Taking a repul-
sive Yukawa potential as an example, we show that the
effects of barrier reduction and blocking on the current are
also present. The exchange symmetry effect requires hard-
core interactions, and we demonstrate that it can still be
identified when hardcore interactions are combined with
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weak Yukawa interactions. The robustness of the collective
dynamics in the BASEP with respect to variations of model
details can be a key feature for a successful observation of
the predicted current-density relations in actual physical
systems.
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1 Introduction

Driven diffusive systems of interacting particles consti-
tute an important class of systems to study fundamen-
tal aspects of nonequilibrium physics. This holds in
particular for one-dimensional models, where exact ana-
lytical derivations are possible or reliable approximations
are known, for example, when information about exact
equilibrium properties can be utilised for the treatment of
nonequilibrium states.

A prominent model in the field of driven diffusive sys-
tems is the asymmetric simple exclusion process (ASEP),
where particles hop between nearest-neighbour sites of a
lattice with a bias in one direction and where the sole inter-
action between particles is a mutual site exclusion, imply-
ing that a lattice site cannot be occupied by more than
one particle [1, 2]. In the ASEP on a one-dimensional lat-
tice with L sites and periodic boundary conditions, i.e. a
ring of L sites, particles jump to vacant nearest-neighbour
sites with rates I'y and I'_ in clockwise and counterclock-
wise direction, respectively, where I' . > I'_ for a bias in
clockwise direction. In a corresponding open system with
L sites, where the leftmost and rightmost lattice site can
exchange particles with reservoirs L and R, respectively,
additional rates l"iLn, Fﬁ, and I, TR, specify the corre-
sponding rates for particle injection and ejection. Many
properties of the ASEP can be inferred from the even sim-
pler totally asymmetric simple exclusion process (TASEP)
with unidirectional transport (I~ = 0).

Stochastic processes in driven lattice gases are
described by a master equation for the probabilities of
particle configurations, which can be viewed also as
the occupation number representation of a Schrédinger
equation in imaginary time [3, 4]. This leads to some
interesting connections to quantum systems with in
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general non-Hermitian Hamilton operator H [2, 3, 5, 6]. As

an example, we recapitulate in the Appendix the connec-

tion of the ASEP with periodic boundary conditions to the

XXZ quantum spin chain with non-Hermitian boundary

conditions [6]. Spin chains are often used to study fun-

damental aspects of nonequilibrium quantum physics.

Several examples related to current problems, in partic-

ular to questions of equilibration in nonintegrable spin

chain models, can be found in this special issue on the
physics of non-equilibrium systems.

The ASEP has been intensively studied in the past. Let
us summarise here some of the most important findings
for the ASEP and variants of it:

— Using the Bethe ansatz for corresponding quantum spin
chain models, or a construction in terms of matrix prod-
uct states, exact results for microstate distributions in
nonequilibrium steady states (NESSs) could be derived
[1, 2, 7]. Matrix product states in principle exist for
driven lattice gases with arbitrary nearest-neighbour
interactions [8], although their explicit construction
may be difficult.

— Based on the exact approaches for deriving distribu-
tion of microstates in NESS, large deviation functions
for fluctuations of time-averaged densities and cur-
rents were derived [9-11]. They have been computed
also for coarse-grained descriptions by the macroscopic
fluctuation theory [12]. Large deviation functions are
argued to play a similar role for time-averaged quanti-
ties in NESS as the free energy in equilibrium systems
[13]. They can exhibit singularities [14-17], sometimes
referred to as “dynamical phase transitions,” which for
certain classes of systems are caused by a violation of
an “additivity principle” [18].

— The Bethe ansatz turned out to be a valuable tool also
for deriving microstate distributions of nonsteady states
[19, 20]. The propagator for the microstate time evolu-
tion in the ASEP was related to integrated Fredholm
determinants [21] and led to the derivation of the Tracy—
Widom distribution of random matrix theory for the
asymptotic behaviour in case of a step initial condi-
tion [22]. This result generalised an earlier one derived
for the TASEP [23] and proved that the propagation of
density fluctuations in the ASEP belongs to the Kardar—
Parisi-Zhang (KPZ) universality class [24].

— In open systems coupled to particle reservoirs, phase
transitions between NESS occur [25-28], where, upon
change of control parameters characterising the system-
reservoir couplings, the bulk density p, changes
discontinuously, or its derivative with respect to the
control parameters. Knowing the density dependence of
the steady-state bulk current jss(p), e.g. from results for
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a system with periodic boundary conditions, all possi-
ble NESS phases with bulk density py, are predicted by
the extremal current principles [25, 27, 29]:

argmin {jss(0)}, p- <p+,
pP-<p<p
P = 4]
argmax {jss(p)}, p+ <p-.
p+<p<p-

Here p_ and p4 can be any densities bounding a mono-
tonically varying region encompassing the plateau part
with bulk density p,, (which may strictly exist only in
the thermodynamic limit of infinite system size). Which
of the phases predicted by (1) really occurs for a given
control scheme of system-reservoir couplings is given
by the dependence of p_ and p+ on respective control
parameters.

The extremal current principles can be reasoned based
on the consideration of shock front motions [27, 29,
30] or by resorting to a decomposition of the steady-
state current into its drift and diffusive part inside the
region of monotonically varying density profile [25].
Because these reasonings do not require specific prop-
erties of the ASEP, they are quite generally valid for
driven diffusive systems coupled to particle reservoirs.
This includes driven lattice gases with interactions
other than site exclusion [30-33], systems with contin-
uous space dynamics, and systems with periodic space
structure and/or time-periodic driving, when consider-
ing period-averaged densities [34]. For specific system-
reservoir couplings termed “bulk-adapted,” it is possi-
ble to parameterise the exchange of particles by reser-
voir densities such that all possible NESS phases must
appear. The bulk-adapted couplings can be determined
by a general method for driven lattice gases with short-
range interactions [33, 34].

For random and non-Poissonian hopping rates, Bose—
Einstein—type condensations of vacancies can occur in
front of the slowest particle with the smallest jump rate
[35, 36].

Coarse-grained continuum descriptions of the ASEP
and of multilane variants [37] give rise to an infinite dis-
crete family of nonequilibrium universality classes in
nonlinear hydrodynamics, where density fluctuations
spread in time by power laws with exponents given
by the Kepler ratios of consecutive Fibonacci num-
bers [38]. This includes the KPZ class, for which an
exact expression for the scaling function was derived
[39]. Predictions of the theory of fluctuating nonlin-
ear hydrodynamics were recently confirmed in an exact
treatment by considering a two-species exclusion pro-
cess [40].
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As for applications, the ASEP appears as a basic
building block in manifold descriptions of biological traf-
fic [41, 42]. In fact, the ASEP was introduced first to
describe protein synthesis by ribosomes [43], and it is fre-
quently used in connection with the motion of motor pro-
teins along microtubules or actin tracks [44, 45]. An in vitro
study with fluorescently labelled single-headed kinesin
motors moving along a microtubule provided experimen-
tal evidence for a state of coexisting phases with different
motor densities [46]. Other applications concern vehicular
traffic [47, 48], diffusion of ions through cell membranes
[49] and of molecules through nanopores [50, 51], and
electron transport along molecular wires in the incoher-
ent classical limit [52, 53]. However, a direct experimental
realisation of the ASEP is difficult, because of its discrete
nature. Hence, it is important to see whether the nonequi-
librium physics in the ASEP is reflected in models with
continuous space dynamics.

For a single particle, it is well known that effective
hopping transport emerges from an overdamped Brown-
ian motion in a periodic potential with amplitude much
larger than the thermal energy. The particle can be viewed
to jump between neighbouring wells on a coarse-grained
time scale with a rate determined by the inverse Kramers
time [54]. One is thus led to ask whether the driven dif-
fusion of many hardcore-interacting particles in a peri-
odic energy landscape can reflect the driven lattice gas
dynamics in the ASEP. To answer this question, we recently
introduced a corresponding class of nonequilibrium pro-
cesses termed Brownian ASEP (BASEP) [55, 56|, where
hard spheres with diameter ¢ are driven through a peri-
odic potential with wavelength A by a constant drag force
f. For a sinusoidal external potential, we found that the
current-density relation of the ASEP is indeed recaptured
in the BASEP, but only for a limited range of particle
diameters o. For other g, quite different behaviours are
obtained.

The nonequilibrium physics of the BASEP should
be explorable directly by experiment, for example, in
setups utilising advanced techniques of microfluidics and
optical and/or magnetic micromanipulation [57-61]. This
includes arrangements where the particles are driven by
travelling-wave (TW) potentials [62]. Many of the new col-
lective transport properties seen in the BASEP can be even
identified by studying local dynamics of individual transi-
tions between potential wells [63].

In this work, we address the question how the
current—density relations found for the BASEP in a sinu-
soidal external potential are affected when considering
different external potentials and short-range interactions
other than hardcore exclusions. Our investigation for the
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different external potentials is carried out based on the
small-driving approximation introduced in [55] and [56].
With respect to short-range interactions other than hard-
core exclusions, we focus on a Yukawa pair potential. It
is shown that the current-density relation for single-well
periodic potentials and for the Yukawa interaction has
similar features as that of the BASEP. This suggests that the
BASEP can serve as a reference model for a wide class of
external periodic potentials and pair interactions.

In addition, we extend a former analysis to prove that
current reversals cannot occur in systems driven by a con-
stant drag and by travelling waves. These proofs are based
on an exact calculation of the total entropy production
in corresponding NESS for particles with arbitrary pair
interactions. Current reversals refer to steady states, where
particle flow is opposite to the external bias. They were
reported for lattice models [34, 64-67] and were recently
found experimentally in a rocking Brownian motor [59].
Their absence in TW driven systems was conjectured based
on simulation results and a perturbative expansion of
the single-particle density in the NESS around its period-
averaged value [68].

The article is organised as follows. In Section 2,
Current-Density Relations: Analytical Results, we present
an analytical treatment of densities and currents for the
overdamped one-dimensional Brownian motion of parti-
cles with arbitrary pair interactions. This section partly
summarises results presented earlier [55, 56] and intro-
duces the small-driving approximation used subsequently
for our investigation of hardcore-interacting particles. It
also contains our proofs on the absence of current rever-
sals for general pair interactions. In Section 3, Hardcore
Interacting Particles in Harmonic Potential, we outline our
findings for the BASEP with sinusoidal external potential,
and in Section 4, Impact of External Periodic Potential,
we contrast them with results for a Kronig-Penney and
triple-well periodic potential. In Section 5, Impact of Inter-
actions Other Than Hardcore Exclusions, we discuss our
results for the Yukawa interaction. Section 6, Summary
and Conclusions, concludes the article with a summary
and outlook.

2 Current-Density Relations:
Analytical Results
The overdamped single-file Brownian motion of N parti-

clesin a periodic potential U(x) = U(x + A) with pair inter-
action under a constant drag force f is described by the
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Langevin equations:

dxi

o =K O+Wtaw“>+J*mm )

where y and D = ukgT are the bare mobility and diffu-
sion coefficient, kg T is the thermal energy, and fl-i“t is the
interaction force on the i particle. The n;(t) are indepen-
dent and §-correlated Gaussian white noise processes with
zero mean and unit variance, (n;) = 0 and (n;()n;(")) =
6;;6(t — t'). Unless noted otherwise, we consider closed
systems with periodic boundary conditions, which means
that the particles are dragged along a ring.

Hardcore interactions imply the boundary conditions
|x; — xj| > o, i.e. overlaps between neighbouring particles
are forbidden. For the BASEP with only hardcore inter-
actions, these boundary conditions must be taken into
account, while the interaction force fiint can be set to zero
in (2). We define the density as a (dimensionless) filling
factor of the potential wells, i.e. by p = N/M, where M
denotes the total number of periods of U(x). The system
length is L = MA, and the number density is p/A. For
hardcore-interacting particles of size o, the filling factor
p has the upper bound A/a.

The joint probability function (PDF) of the parti-
cle centre coordinates x = (x1, ..., xy) evolves in time
according to the N-particle Smoluchowski equation?,

opn(x, )

S = -V (x, 0, 6)

where the divergence operator acts on the probability cur-
rent vector J(x, t) with the i component given by

Jix, O = p|f — "U("‘) +£00| e, 0
aPN(X t)
-l @)

The first term describes the drift probability current
caused by all forces acting on the i particle, and the sec-
ond term gives the diffusive current. The interaction force
is assumed to be conservative and due to pair interactions
u™(x;, x;), ie. fi"(x) = —oU™(x)/dx; with

int _ 1 o int .
Um0 = 5 > u, x). (5)

i#]

1 To implement the periodic boundary conditions, we assume an
ordered initial configuration 0 < x; < x3... < xy < L and intro-
duce two fictive particles with enslaved coordinates xo = xy — L and
XN+1 = X1 + L, which implies xy — x1 < L — 0.
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Additional hardcore interactions are not included in
the potential (5) but are incorporated into the dynamics by
requiring no-flux (reflecting) boundary conditions

[]i(X, t) — ]i+1(xa t)]‘xi+1:xi+0 =0, (6)

if neighbouring particles hit each other. These boundary
conditions ensure conservation of an initial ordering x; <
X2 < ... < xy of the particle positions for all times.

2.1 Exact Current-Density Relation

The local density is

N
olx, t) = <Z 5[X—Xi(t)]>, @)

i=1

where the average is taken with respect to the solution
of the Smoluchowski equation (3) subject to some initial
condition. It satisfies the continuity equation

60(;; H__ 6)(;(;( 2 ®)
with the particle current density given by [55]
0o 0= W00 + ™, 0] etr, - D22%0 ()
Here we introduced the total external force
00 = f - 29 (10)

The local interaction force f"(x, t)in (9) is given by

L
: 1
Y, )= ——— [ dy fulx, Ypalx, y, B,  (11)
plx, t)o/

where

N

0:2(x, y, t) = <Z 8[x — xi(0] 6ly - Xj(t)]> (12)
i#]

is the two-point local density, and f>(x, y) is the inter-

action force of a particle at position y on a particle at

position x. It can by expressed as a sum of two distinct

contributions:

folx, y) = kgT[6(y — x + 0) —

B auint(x, y)
ox )

6(x —y —o)]
(13)

The first term is due to a positive and a negative force,
if a particle is in contact with other particles at positions
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x — o and x + 0, respectively. We note that the 6 functions
should not be interpreted as a derivative of a rectangu-
lar potential barrier of height kgT. Instead, they are a
consequence of the noncrossing boundary conditions (6)
[55]. The amplitude in front of the § functions must be
an energy on dimensional reasons, for which kgT is the
only relevant scale. It corresponds to the typical collision
energy due to the thermal noise. The second term in (13) is
the force due to the interaction potential (5).

In the steady state of a closed system with periodic
boundary conditions, the density profile is time-
independent and periodic, gss(x + A) = pss(x), and the
current constant everywhere in the system. It follows
directly from (9) [55]

ulF+ 1 Jy dx R 0o]

14
Lt dx ot (0) )

jss(Pa 0) =

Up to this point, no approximation has been made.
The exact value of the steady-state current (14) depends on
both pss(x) and the steady-state limit of the two-point den-
sity (12). However, a derivation of the two densities in NESS
represents a challenging problem, which can be solved in
a few special cases only. Therefore, to proceed further, we
need to develop an appropriate approximate theory.

2.2 Small-Driving Approximation

For hardcore interactions, the small-driving approxima-
tion (SDA) turned out to be particularly successful in
capturing qualitative behaviours of jss(p, o) [56]. The
approximation is carried out in two steps. First, we
linearise the current (14) with respect to f,

. 1+

juslp, o) IO p o )

7 Jo dX 0eq (00

where the response coefficient reads

5 A
_ Y 1 int
X= 5 |3 [l (16)
0 f=0

and, second, we approximate the linear-response expres-
sion (15) by setting y = 0.

The ad hoc y = 0 approximation works well in an
extended region of particle sizes except for a narrow range
0 =~ A/2 [56]. The equilibrium density profile is obtained
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by minimising the exact density functional for hard rods
[69],

A
Qlo()] = / dx g(x){U(x) .
0
o(x)

()}

where uy, is the chemical potential, and

17)

R0 = / dy oy). (18)

The minimisation yields the structure equation

~ 6Qo]
0= "5

0=0eq

Qeq(x) :|

=kgT In
B [1 - ﬂeq(X)

(19)

X+0 ( )
il [ ay 290 U6 ~ i,
X

— Neq(y)

which we discretised and solved numerically under peri-
odic boundary conditions (geq(x) = geq(x+A)). The chem-
ical potential pq, was adjusted to give the desired global
density (filling factor) p = f(? dx Qeq(x).

2.3 Entropy Production and Absence of
Current Reversals

Theory for hardcore-interacting particles with U™(x) =
0 was the subject of our previous works on the BASEP
[55, 56, 63]. Here we extend the analysis to nonzero U™ (x).
We start with considerations related to the total entropy
production:

Stot(t) = Ssys(£) + Smea(t) » (20)

where Ssys(t) and Speq(t) are the entropy production in the
system and surrounding medium.

For calculating the time derivative of Ssys(t) =
—kg [ dVx py(x, )Inpy(x, t), we can replace the time
derivative of the PDF by the divergence of the current
according to (3). After integrating by parts each individual
term of the divergence, we get

Ssys(t)
ks

_ / dVx Jx, - Vinpyx, 0, (1)
Q
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where Q is the space of all system microstates consistent
with the hardcore constraints. As the next step, we replace
0In py/ox; via (4), which gives us two terms

Ssys(t) _/dNX U(X, t)|2
ks
Q

Dpy(x, t)

[l DR,

ksT 22)

Q

Here we have introduced the total force F(x) with com-
ponents F;(x) = f(x;) + fI"(x). The first term is always
positive and equal to the total entropy production [70]. The
second term, proportional to the mean dissipated power, is
the entropy production in the medium.

In the steady state, the system entropy is constant,
Ssys(t) = 0, and the total entropy production equal to the
entropy produced in the surrounding medium:

0< S = / d"x J0) - ()
int
~ 33 [ateon]y - 20 2000,
i=1 a l 1
&8

Here, each single-particle term simplifies after intro-
ducing the current density j;(x) = [, dVx J:(x)8(x; — x) of
the i particle, and by using that j;(x) = jss/N in the steady
state, we obtain

N oU(X;))] _ Jss
[ dxnoo)r - 2500 ey,
Q

(24)

1

The sum over all interaction forces in (23) yields, after
integration by parts,

-5 JERY e Umt(")

110

_ / dx U™ () ¥ - J(x). (25)
2

Because the divergence of the current is zero in the
steady state, this term vanishes. From (23) and (24), we
thus obtain the total entropy production in the Onsager
form (current times thermodynamic force)

Stot = ’%fL > 0. 26)

It is extensive in the system size, and the numerator
equals the mean heat dissipated at any point of the system
in the steady state. As a consequence of the inequality in
(26), the steady-state current must have the same sign as
the drag force f.

DE GRUYTER

2.4 Entropy Production in
Travelling-Wave-Driven Systems and
Current Bounds

A feasible way to verify BASEP current—density relations in
a laboratory is to consider an equivalent ring system with
the TW external periodic potential U(x — vyt) and f = 0
[62, 71-74]. In such a TW system, the i component of the
probability current vector is

oU(x; — vyt)

™ _ _ int
Ji'(x, ) =pu ox; + A0 |py (x, B
T™W
pOPN (x, t)' 27)
aXi
Under a Galilean transformation
xi(©) = x7V () — vut. (28)

the TW system maps to the corresponding BASEP with
potential U(x) and constant drag force
Vw

f:—jy

(29)

provided the pair interaction potential u™(x, y) is a func-
tion of the particle distance (x — y) only. Local densities
and currents of the two corresponding systems are related
by [56]

™Wx, ) = ox — vut, 0), (30)

™Wix, t) = vwolx — vt, ) +jlx—vut, ). (31)

A remarkable aspect of this mapping that has not been
discussed in our previous work relates to the fundamental
difference of dissipations (their physical origins and their
values) in the two pictures. In fact, hopping events that
contribute positively to the dissipation (total entropy pro-
duction) in one picture cause a decrease of the dissipation
in the other.

In the BASEP, the dissipation equals the average work
done by a constant nonconservative force on all the par-
ticles; see (26). In the TW system, there is no nonconser-
vative force. Instead, each particle is acted upon by the
time-dependent force [—U’(x — vy t)], and the sum of these
actions over all particles gives the total power input into
the system. In the steady state, this power is dissipated
into the ambient heat bath via friction. Therefore, in the
TW model, the total entropy production averaged over one
period T = vy/A reads (the bar denoting period-averaging
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in time)

N

T
= 1 1 oU(x; — vwt)
T™W __ 1
i=1 0
After some algebra similar to that in Section 2.3, one
obtains [56]

g iR g (33)
T - ’

tot —

which means that the period-averaged stationary current
jgj must have the same sign as vy. Hence, there are no
current reversals in a TW system.

Furthermore, we can relate the TW current in (33) to
the corresponding BASEP by taking the period-averaged

form of (31) in the steady state:

"S'TiW _ Va,p + Vwjss

tot — LZO'

(34)
Here, the two terms in the numerator have clear physi-

cal meanings. The first contains the expression v,/ equal
to the dissipated power by a particle moving at constant
velocity vy in the fluid characterised by the friction coef-
ficient 1/p. This term gives the maximal possible dissipa-
tion in the TW system corresponding to the case with no
jumps over potential barriers where the motion of each
particle is exactly phase-locked with the TW potential
U(x — vwt). The second term contains the current in the
corresponding BASEP and is negative because vy and f
have opposite signs. Recalling (29), we see that the second
term equals exactly the dissipation in the BASEP (26) up
to the minus sign. It tells us that the total TW dissipation
is diminished by the difference of the average number of
jumps over potential barriers in and against bias direction.
Overall, the inequality in (34) implies

0 <jss(p, o) < ufp, (35)

for f > 0; that is, we obtain the upper bound ufp for the
current, whereas the lower bound follows from (26) as
already discussed.

3 Hardcore Interacting Particles in
Harmonic Potential

The paradigmatic variant of the BASEP with hardcore-
interacting particles diffusing in the external harmonic

potential
_Uo 2nx
Ulx) = > cos(—}l > (36)
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Figure 1: Simulated steady-state current jss in the BASEP with cosine
potential (36) as a function of the density p for different particle
sizes 0. The solid black line marks the current of noninteracting par-
ticles jo(p) = vop; and the dashed line, the current—density relation
Jjaser(p) = vop(1 — p) of a corresponding ASEP [vo = 0.043 from
@7l

has been studied thoroughly in our previous works
[55, 56, 63]. Here, we review its basic properties that
shall serve as a “reference case” for the following
analysis.

In all illustrations, we fix units setting A = 1 (defines
units of length), A2/D = 1 (time), kgT = 1 (energy); this
implies that y = D/(kgT) = 1 also. We assume Up > 1,
which leads to a hopping-like motion between potential
wells that resembles the dynamics on a lattice.

Four representative shapes of current—density rela-
tions are shown in Figure 1. In the low-density limit, all
curves collapse to the linear behaviour jo(p) = vop with
the slope given by the velocity v of a single (noninteract-
ing) particle. This is given by [75]

DA(1 — e Py

B fcﬁl dx [} dy explBUY) — fy — U) + )]
(37

Vo

where 8 = 1/(kgT). Beyond the small-p region, the shapes

change strongly with the particle size o. This com-

plex behaviour is caused by three competing collective
effects:

(i)  The barrier reduction effect leads to a current
increase with p. It appears in multioccupied wells,
where particles are pushing each other to regions of
higher potential energy and thus decrease an effec-
tive barrier for a transition to neighbouring wells.
The effect is best visible for small o causing cur-
rents to be larger than jo(p) = vop (solid black line
in Fig. 1). Likewise, for small and moderate o, the
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strong current increase at larger p is due to the 4.1 Kronig—Penney Potential
occurrence of double-occupied wells.

(ii))  The blocking effect suppresses the current by reduc- The Kronig—Penney potential has the form
ing the number of transitions between neighbour-
ing wells. It occurs for larger particle sizes: an Ux) = {0 s 0<x<Aw, (39)
extended particle is more easily blocked by another Uop, Aw<x<A,
one occupying the neighbouring well (compared to
smaller ¢). To contrast with the most extreme case Where Ay is width of the rectangular well, and A, = A —Aw
of blocking, the parabolic current—density relations is the width of the rectangular barrier. We are interested in
jasep(p) = vop(1 — p) of a corresponding ASEP is the current-density relation for different Ay, in the limit of
shown as the dashed line in Figure 1. large Uy > 1. Specifically, we take the same value Uy = 6

(iii) The exchange symmetry effect causes a deformation s for the reference BASEP with cosine potential discussed
of the current-density relation towards the linear ~in Section 3. In particular, we aim to clarify whether a
behaviour jo(p) = vop if the particle size is close to ~current enhancement over that of noninteracting parti-
oc=mm=0, 1, 2, ..., thatis, a multiple integer cles still occurs. As all particles dragged from one well
of A. In the commensurate case o = m, the current  t0 @ neighbouring one have to surmount the same barrier
ofinteracting particles becomes equal to that of non-  neight Uo now, itis not clear whether multiple occupations
interacting ones. This effect is a consequence of the ~©f wellslead to an effective barrier reduction. The blocking
general relation and exchange symmetry effect are expected to influence

the current in an analogous manner.

Inserting the Kronig—Penney potential in (37) yields

jss(p, 0) =(1 —mp)jss< p o’ o— m/l) (38)

1-m A
volw) = % (402)
that maps the stationary current in a system with D 2, BfA
particles of diameter ¢ and density p to that with A= j(ﬁf D™ -1) (40Db)

articles of diameter 0 — mA and density p/(1 —mp),
P yp P I[P 4 BFA-A) _ oA

where m = int(o/A) is the integer part of o/A. B = —1]

x [1 — cosh(BUo)] + BfA(eP™ — 1) (40¢)

4 ImpaCt Of External Peri 0 di C fc?r the single-particle velocity. This result is plotted 'in
Figure 3. As expected, vo(Aw) approaches the mean drift

Potential velocity uf of a single particle in a flat potential in the
limits Aw — O (zero well width) and Aw — 1 (zero barrier

As discussed in the Introduction, we consider further width). With increasing width of the wells (or of the barri-
external potentials, namely, the Kronig—Penney, a piece- ers), vo(Aw) rapidly decreases. Interestingly, (40c) implies
wise linear, and a triple-well potential. These potentials the symmetry vo(Aw) = vo(1 — Aw) = vo(Ap), which means
are plotted in Figure 2b—d together with the cosine poten- the single-particle velocity remains unaltered if the barri-

tial of our reference system in Figure 2a. ers and wells are interchanged.
(a) 61 (b) 0\ (© (d)
2
5
4 4
Eo = = =
5 S S )
2 2 0
-2
0 0 =5
0 0.5 1 0 0.5 1 -0.5 0 0.5 0 0.5 1

Figure 2: The different periodic externals potentials investigated for comparing current-density relations: (a) cosine (36), (b) Kronig—
Penney (39), (c) piecewise linear (42), and (d) triple-well (43).
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Figure 3: Drift velocity of a single particle in dependence of A,, for
the Kronig—Penney potential in (39); the velocity is normalised to
f,i.e.its value in a flat (vanishing) external potential. The barrier

height and drag force are Uy = 6 and f = 0.2.

Current-density relations for hardcore-interacting
particles calculated from the SDA (cf. Section 2.2) are
shown in Figure 4 for five different values of Ay. For each
Aw, we plotted jss/vo vs. p for eight rod lengths ¢ anal-
ogous to our representation of current—density curves in
Figure 1. As can be seen from the graphs, the shapes of
the current-density relation are qualitatively compara-
ble to that in Figure 1 for all Ay, as well as their overall
change with the diameter o. This means that the inter-
play of the barrier reduction, blocking, and exchange sym-
metry is still present. As expected, the overall strengths
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of the effects in modifying the current of noninteracting
particles become weaker with increasing Aw; for Ay — 1,
the current jss(p, Aw) indeed approaches jo(p, Aw — 1) =
pvo(Aw — 1) = ufp.

The barrier reduction, however, can no longer be asso-
ciated with a decrease of an effective barrier height, when
two or more particles occupy a potential well. For the
Kronig—Penney potential in (39), all particles in a multiple-
occupied well have zero energy and need to overcome Uy.
Nevertheless, we can attribute the enhancement of the cur-
rent compared to that of noninteracting particles with a
barrier reduction. To see this, we analyse the potential of
mean force

Unt(x) = kpTIngeq(x) + C = Une(x +A)  (41)
for both the cosine and the Kronig-Penney potential,
where the constant C is chosen to give a potential mini-
mum equal to zero. If considering driven Brownian motion
of noninteracting particles in the potential Upy¢(x), the cur-
rent in the linear response limit would be equal to the
many-particle current in the SDA. We therefore can inter-
pret Upsas an effective barrier in the many-particle system.
In Figure 5, we show U,/ Ug for both the cosine and the
Kronig-Penney potential. At the maximum of the cosine

12

1.2 12
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1 1 1
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o =) =
= = =
~ 06 = 06 = 06
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Figure 4: Current jss, normalised with respect to vo(Ay) (Fig. 3), for the Kronig—Penney potential in the small-driving approximation as a
function of p for different o and (a) Aw = 0.1, (b) 0.3, () 0.5, (d) 0.7, and (e) 0.9. The barrier heightis Uy = 6.
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Figure 5: Potential of mean force Uy for the cosine potential (blue
dashed line) and the Kronig—Penney potential with A, = 0.2 (solid
red line). Parameters are ¢ = 0.2, p = 0.5, and Uy = 6 for both
potentials.

potential at x = 0, we find U,¢/ Uy < 1, which means the
barrier height is reduced. In contrast, the barrier at the
step of the Kronig—Penney potential equals Uy (Up(x =
Aw)/Uo = 1 in Figure 5). However, a barrier reduction is
now clearly seen in the plateau part of the barrier in the
range Ay < x < 1. We thus can distinguish between two
types of barrier reduction, namely, the first type associated
with a reduction of the barrier height and the second type
associated with a lowering of the barrier plateau.

Generally, a single-well periodic potential can be char-
acterised roughly by the widths of a valley and barrier part
and the flanks in between these parts. A simple represen-
tation is given by the piecewise linear potential

Aw
< < —
0, 0—‘X|— 2 ’
Uk)=1¢ = _ o W <y < 22
() Af (|X 2)9 2 _|X|— ) +/1f’
Aw
Uo, 7+/\f§‘x|§/1,

(42)

shown in Figure 2c, where Ay, Af, and A, = A — Ay — 2A¢
are specifying the widths of the valley, barrier, and flanks.
We performed additional calculations in the SDA for this
potential. For various fixed Aw and As, we always found
current-density relations with a behaviour similar to that
found in Figure 1 for the BASEP with cosine potential. This
model may thus be viewed as representative for Brownian
single-file transport through single-well periodic poten-
tials with barriers much larger than the thermal energy.

Current—density relations with different characteris-
tics can, however, be obtained for multiple-well periodic
potentials, as we discuss next.
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4.2 Triple-Well Potential

The triple-well potential shown in Figure 2d is

3 .
U0) = Uo > G + 1)cos<¥), 43)
j=1

where we choose Uy = 1 here. For this potential, our cal-
culations of jss(p) based on the SDA show a very sensitive
dependence on g. We concentrate here on one particle
diameter ¢ = 0.323, where several local extrema occur;
see Figure 6. In this figure, currents are shown up to a
density (filling factor) N/M = p = 2.98, corresponding to
a coverage po = 96% of the system by the hard rods. If
p approaches its maximal value 1/¢ = 3.10 correspond-
ing to a complete coverage, the numerical calculation of
the equilibrium density profile from (19) becomes increas-
ingly difficult. Hence, we refrained to show current data
for p > 2.98 due to a lack of sufficient numerical accuracy
when calculating peq(x). It is important to state in this con-
text that the current for p — 1/0 is expected to approach
that of noninteracting particles in a flat potential [56]; that
is, it should hold jss(p, o) ~ ufp for p — 1/0 (except for
the singular point p = 1/0, where jss(1/0, 0) = 0). This
means that the current in Figure 6 must steeply rise forp —
1/0; that is, there must appear a further local minimum
for p > 2.98. These arguments apply also to the currents
shown in Figures 1 and 4.

To explain the occurrence of the local extrema in
Figure 6, we resort to (15) with y = 0, that is, the SDA. This
equation can be interpreted by considering pgeq(x)dx/A
to be the “local conductivity” of a line segment dx. A
serial connection of these segments implies that the “total

6 %107

Figure 6: Current jss, normalised with respect to f, for the triple-well
potential in the small-driving approximation as a function of p for
o = 0.323. Densities at the local maxima are pmax, 1 = 1.14 and
Pmax, 2 = 2.53, and ppin = 1.98 at the local minimum.
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conductivity” is given by the inverse of the sum of the
inverse local conductivities, corresponding to a summa-
tion of the respective “local resistivities.” A stronger locali-
sation of peq(x) around the minima of the potential leads to
a smaller conductivity and hence a smaller current jss(p),
whereas less localised density profiles lead to larger jss(p).

Using this picture, the occurrence of the first
maximum in jss(p) can be traced back to an increasing
occurrence of double-occupied wells for p = 1. In double-
occupied wells, particle motion is more restricted, leading
to a stronger particle localisation at the two deeper minima
at about x ~ 0.2 and x ~ 0.8; see Figure 2d. Accordingly,
jss(p) starts to decrease with p forp > 1 (Pmax, 1 = 1.141in
Fig. 6). The decrease of jss(p) continues up to a filling fac-
tor of about two (pin = 1.98 in Fig. 6), above which more
than two particles occupy a well on average. With a signif-
icant appearance of triple-occupied wells goes along first
a stronger spreading of the density, as the minimum of the
potential at x = 1/2 becomes occupied in wells containing
three particles. The spreading of the density causes jss(p)
to increase for p Z 2. A counteracting effect, however, is
a strong particle localisation at all potential minima in
neighbouring triple-occupied wells, where the hardcore
constraints force the particles to become strongly localised
around the potential minima. Forp 2> 2.5 (pmax, 2 = 2.53
in Fig. 6), every second well is occupied by three particles
on average, which lets jss(p) decrease again with further
increasing p.

The more complex current—density relation in Figure 6
leads to a richer variety of NESS phases in open systems
compared to the reference BASEP, which can exhibit up
to five different phases [55, 56]. To identify all possible
NESS phases, we consider the particle exchange with two
reservoirs L and R at the left and right ends of an open
system to be controlled by two parameters p; and pg. As
discussed in connection with (1) in the Introduction, these
control parameters can be considered as effective densi-
ties, or they can be associated with true reservoir densities
for specific bulk-adapted couplings of the system to the
reservoirs [33, 34].

Applying (1) with p_ =p; and p4 =pr to the
current-density relation in Figure 6 results in the dia-
gram with seven different NESS phases I-VII shown in
Figure 7. The colour coding shows the value of the bulk
density py, that is, the order parameter of the phase tran-
sitions. Solid lines mark first-order, and dashed lines mark
second-order phase transitions, which is reflected in the
smooth (continuous) or sudden (jump-like) changes of the
colour. The seven phases can be classified in two cate-
gories: boundary-matching phases, where py, is equal to
either pr, or pg, and extremal current phases, where py, is
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P

Figure 7: Phase diagram of NESS for the triple-well potential
obtained by applying the extremal current principles to the current-
density relation in Figure 6. The colour bar encodes the values of
the bulk density p, in an open system coupled to particle reser-
voirs. Phases | and V are left-boundary matching phases with

Pb = p1, phases lll and VIl are right-boundary matching phases
with pp, = pg, phases Il and VI are maximal current phases with

Pb = Pmax, 1and P, = Pmax, 2, respectively, and phase IVis a
minimal current phase with p, = ppin. Solid (dashed) lines mark
first-(second-)order phase transitions. The dark black bars at

the boundaries mark the two stripes 2.98 < pr < 1/0 3.1,
where additional phases appear (see the discussion in Section 4.2,
Triple-Well Potential).

equal to one of the densities at which jss(p) has a local
extremum in Figure 6. Specifically, phases I and V are
left-boundary matching phases with p, = pr, phases III
and VII are right-boundary matching phases with py, = pg,
phase II is a maximal current phase with py = pmax, 1,
phase VI is a maximal current phase with py = pmax, 2,
and phase IV is a minimal current phase with py = ppin-
If one takes into account the existence of the further mini-
mum for p > 2.98 in the current-density relation (see dis-
cussion above), then even more phases are possible. These
additional phases, however, must appear in the two stripes
2.98 < pr, r < 1/0 = 3.1, that is, in a very narrow range
of one of the two control parameters (marked in black in
Fig. 7).

5 Impact of Interactions Other Than
Hardcore Exclusions
In this section, we investigate the impact of other par-

ticle interactions beyond hardcore exclusion for the
cosine external potential in (36). This is done in two
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different settings. First, we investigate the repulsive
Yukawa potential

e Tl
r/&’

between particles at distance r for a fixed small ampli-
tude Ay = 1 and different decay lengths . Second, we
combine this Yukawa interaction with hardcore interac-
tions. For obtaining current-density relations, we here
employ Brownian dynamics simulations. This is because
an exact density functional is not available for the Yukawa
interaction, and the SDA with a precise determination of
Qeq(x) cannot be applied. For performing the Brownian
dynamics simulations, we used a standard Euler integra-
tion scheme of the Langevin equations (2) with a time
step At= 10~*. To deal with the hardcore interactions, the
algorithm developed in [76] was applied.

Current-density relations for the Yukawa potential
without additional hardcore interactions are shown in
Figure 8 for six different values of . These may be viewed
to resemble effective particle diameters o of hardcore-
interacting systems. For small £, that is, £ = 0.166 and
0.333 in Figure 8, jss shows an enhancement over that of
noninteracting particles (solid black line) due to a pre-
vailing barrier reduction effect similar to that in the ref-
erence BASEP for small 0. When enlarging &, the current
is reduced for small p compared to that of noninteract-
ing particles, while it rises strongly for large p. Again, this
behaviour is analogous to that in the reference BASEP for

u'(r) = Ay (44)

0.1
o ¢&=0.166
0.08 f o €=0.333 L
£ =1.000 4
A £=1.333 °©
0.06 1 € = 1.666 o 1
£ £ =2.000 o
0.04 | j,, J 0 8 1
JASEP A *
X A
0.02 | °e_x & 8 X 1
[3
0 N N N N T~ ~.
0 0.2 0.4 0.6 0.8 1

Figure 8: Simulated current-density relations for the external
cosine potential (36) and particle interactions given by the Yukawa
potential in (44). The amplitude of the Yukawa potentialis Ay = 1,
and & values specify different decay lengths. The other simulation
parameters are Uy = 6 and f = 2. The solid line marks the cur-
rent jo(p) = vop for noninteracting particles, and the dashed line
indicates the current—density relation jasep(p) = vop(1 — p) of a
corresponding ASEP (same curves as in Fig. 1).

-4 0.06
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increasing o. Because the (effective) blocking effect is not
so strong for Ay = 1, the current-density curves do not
approach the limiting jasgp(p) as closely as for hardcore
interactions. Nevertheless, one can say that the change of
the current-density relation with varying ¢ is reflecting
the interplay of a barrier reduction and blocking effect as
in the reference BASEP.

However, one cannot find certain & values, where the
current—-density relation equals that of noninteracting par-
ticles for all p. The peculiar exchange symmetry effect in
the BASEP for commensurate c =m, m=0, 1, 2...,1is
caused by the invariance of the stochastic particle dynam-
ics against a specific coordinate transformation contain-
ing o [55, 56]. Such coordinate transformation does not
exist for the Yukawa potential.

For the Yukawa potential with additional hardcore
interactions, we found changes of current-density curves
caused by the barrier reduction and blocking effect as dis-
cussed above. But it is interesting to analyse now whether
the relation jss(p) = jo(p) = vop for commensurate 0 = m
and & = 0 is approximately reflected in current-density
relations for & > 0, where the exchange symmetry effect is
no longer strictly valid. One may expect that the hardcore-
interacting system should be only weakly perturbed by the
Yukawa potential if Ay is of the order of the thermal energy
and ¢ not too large compared to o. This is indeed con-
firmed by simulation results for ¢ = 1 shown in Figure 9.
The data points for £ = 0.166 and ¢ = 0.333 lie almost
directly on the curve jo(p) up to the highest simulated den-
sity p = 0.9. With increasing &, deviations from the linear

0.12 T T T T

o &€=0.166

0.1r

D> 2

0.08

0.04

0.02

p

Figure 9: Simulated current—density relations for the cosine exter-
nal potential and Yukawa interactions as in Figure 8, and additional
hardcore interactions for commensurate particle size o = 1. Param-
eters for the drag force, as well as for the amplitudes of the cosine
and Yukawa potential, are chosen as in Figure 8. The solid line
marks the current jo(p) = vop for noninteracting particles (same
line asin Figs. 1and 8).
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behaviour are seen, which become the more pronounced
the larger p. But even for ¢ = 2, jss(p) follows jo(p) closely
up to p = 0.4. We thus conclude that slight deviations
from a perfect hardcore interaction, as they are always
present in experiments, still allow an identification of the
exchange symmetry effect.

6 Summary and Conclusions

To analyse how generic our previous findings are for
the nonequilibrium physics of the BASEP in a sinusoidal
potential, we have studied the driven Brownian motion
of hardcore-interacting particles for other external peri-
odic potentials. Our calculations were carried out based
on a small-driving approximation, which refers to the lin-
ear response under neglect of a period-averaged mean
interaction force. If the external periodic potential exhibits
a single-well structure between barriers, that is, if there
is only one local minimum per period, our results pro-
vide evidence that the various characteristic shapes of
bulk current-density relations jss(p) for different particle
sizes ¢ are always occurring. There are differences in the
exact functional form and at which ¢ the type of shape is
changing. For all single-well periodic potentials, it is the
interplay of a barrier reduction, blocking, and exchange
symmetry effect that causes a particular shape to appear.
Even for a Kronig-Penney potential with alternating rect-
angular well and barrier parts, where the barrier reduction
effect is not so obvious, we showed that an enhancement
of the current over that of noninteracting particles occurs.
For that potential, this enhancement can be attributed to
an effective reduction of the barrier plateau parts. The
generic behaviour of the bulk current-density relations
implies that for single-well periodic potentials up to five
different NESS phases appear in open BASEP systems cou-
pled to particle reservoirs. This can be concluded by apply-
ing the extremal current principles [27, 29].

More complex shapes of jss(p) can occur in multiple-
well periodic potentials. This was demonstrated for a
particular triple-well potential, where our calculations
yielded a current—density relation with two local maxima
for a certain particle size. In that case, the extremal current
principles predict more than five different NESS phases
in an open system. When neglecting a narrow range of
very high effective reservoir densities, which would be
very difficult to realise by specific system-reservoir cou-
plings in simulations or experiments, up to seven differ-
ent NESS phases are possible. We point out that these
results were obtained here for demonstration purposes.
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Systematic investigations of multiple-well external poten-
tials should be performed in the future with a goal to
reach a general classification similar as for the BASEP for
single-well periodic potentials.

Current-density relations with several local maxima
are particularly interesting in the case of “degenerate max-
ima,” that is, when the current at the maxima has the same
value. In such situations, coexisting NESS phases of max-
imal current can occur in a whole connected region of the
space spanned by the parameters controlling the coupling
to the environment [77]. Such states of coexisting extremal
current phases have not yet been studied in detail in the
literature. Preliminary results for driven lattice gases indi-
cate that fluctuations of interfaces separating extremal
current phases exhibit an anomalous scaling with time
and system length.? This is in contrast to the already well-
studied interface fluctuations between the low- and high-
density phases in the ASEP, which at long times show a
simple random-walk behaviour.

We furthermore performed Brownian dynamics sim-
ulations of driven single-file diffusion through a cosine
potential for a repulsive particle interaction other than
hardcore exclusion. Specifically, we chose a Yukawa inter-
action with a small interaction amplitude equal to the
thermal energy and studied the behaviour for different
decay lengths &. Current—density relations for this system
showed similar shapes as for the BASEP except for the
effects implied by the exchange symmetry effect, which is
absent for other interactions than hardcore. The change of
shapes is solely determined by the interplay of a barrier
reduction and effective blocking effect. If the hardcore
interaction and the weak Yukawa interaction are com-
bined, the consequences of the exchange symmetry effect
can still be seen for particle sizes commensurate with the
wavelength of the cosine potential. The current jss(p) fol-
lows closely that of noninteracting particles up to high
densities even for large . This means that deviations from
a perfect hardcore interaction in experiments should still
allow one to verify the exchange symmetry.
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Appendix: Example for Connection
of ASEP to Quantum Spin Chain

Let p(n, t) denote the probability of configurations n =
{n;, i=1, , L} of occupation numbers n; € {0, 1}
in a single-species fermionic lattice gas at time t. Its time
evolution is described by the master equation

dp(n ) Z[Wnnp(n £) = Wanp(n, 0]

= ZHnn’p(n', t)
”

where wy,, is the transition rate from configuration n’
to n (for n’ # n; otherwise, wnn = 0), and Hp,y = Wy —
Onn' Y W This master equation corresponds to the
occupation number representation of a Schrédinger equa-
tion

(A1)

dlp)

T (A.2)

= H|p)

in imaginary time [3, 4].

For the ASEP with periodic boundary conditions
(npy+1 = n1, no = nr), the transitions rates wy, can be
written as

L

Whnn = Z 6n’n(i) [r—n],Jrl(l -
j=1

nj) +Tnj(1 — njq)]

L
=3 8o [T-(1 = njp)n; + T (1 = nnjpal,

(A3)

where n? denotes the configuration n with the occupation
numbers at sites jand (j+ 1) interchanged, i.e. ng) = ny for
k+#7j, j+1), n].m = nj;q1,and ”1(‘)11 = n;. Accordingly, the
matrix elements Hy,y = (n|H|') = Wnpr — Gnn' D Wan
are

L
Hypy = Z{Sn,nm[l‘_n;(l —njp1) + T+ (1 — nj)njg4]
=1
ST —(1 — nj)njrq + Tyni(1 — nj1)}.

(A4)

Because (n|c}rc]-+1 [n’) = 6,,,»nj(1—n;;,) for creation

and annihilation operators c}r and ¢; of a particle at site

j, the matrix elements in (A.4) are equal to those of the
Hamiltonian

L
H=> {T_[cjcjs1 —

j=1

nj)]

nj (1 —

+ F+[C}+1Cj — n]-(l — nj+1)]} (AS)
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of spinless fermions, which for ' # I'_ is non-Hermitian.
In a representation by Pauli matrices, one can write C;-L =
a].+/2 = (o}‘+ia;.')/2, ¢=0;/2= (a}‘—ioly)/z, and nj =
(1 + 07)/2, giving

i1+ T+0 +10

1 L
=290
j=1

+ (- +T)(0f 05,1 — D). (A.6)

The periodic boundary conditions imply oal = 01i
and o7 ., = of.

A transformed H’ = VHV ! with (nonsingular) oper-
ator V has the same spectrum as H, where eigenstates
|@) and |@’) of H and H’ to the same eigenvalue are
related by |@’) = V|@). Such transformation can be used

to symmetrise the non-Hermitian part (I‘_ofoj’+1 +

7) in (A.6) by choosing V = exp(a Zle ja}-z)
with some constant a, because Vai Vol = et af[ [6].
With Vo o7,V = Vo vV o;HV—1 =e oo,
and Vafjrlo] vl = ezaajjrl +, the symmetrisation is
achieved by requiring I _e 2% = I', e?%, that is, by setting

® — (I_/T4+)Y*. The transformed Hamiltonian is that of

a quantum XXZ chain,

['+0710;

L
’ V r*r+
H = === (0§ 0fs1+0]0],, +A0j0j,1 —A) (A7)
j=1

with A = (T~ + I';+)/(2/T_-T), but now non-Hermitian
boundary conditions Vazﬁer_1 = VoiV~!, that is,

02[+1 = esz‘)‘Loi (T- /I“Jr)jFL/2 and 07 | = of.
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