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Abstract: Exponential decay laws describe systems rang-
ing from unstable nuclei to fluorescent molecules, in
which the probability of jumping to a lower-energy state in
any given time interval is static and history-independent.
These decays, involving only a metastable state and fluc-
tuations of the quantum vacuum, are the most funda-
mental nonequilibrium process and provide a microscopic
model for the origins of irreversibility. Despite the fact
that the apparently universal exponential decay law has
been precisely tested in a variety of physical systems, it is
a surprising truth that quantum mechanics requires that
spontaneous decay processes have nonexponential time
dependence at both very short and very long times. Cold-
atom experiments have proven to be powerful probes of
fundamental decay processes; in this article, we propose
the use of Bose condensates in Floquet-Bloch bands as a
probe of long-time nonexponential decay in single isolated
emitters. We identify a range of parameters that should
enable observation of long-time deviations and experi-
mentally demonstrate a key element of the scheme: tun-
able decay between quasi-energy bands in a driven optical
lattice.

Keywords: Nonequilibrium Dynamics; Non-Markovian
Dynamics; Spontaneous Decay; Ultracold Atoms.

1 Introduction

Given the ubiquity of exponential decay, it is surprising
that quantum mechanics requires that decay processes to
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a continuum with a ground state exhibit nonexponential
long-time dynamics [1-6]. Classic experiments on the sub-
ject include negative results from studies of *°Mn nuclear
decay tests [7] and an indirect observation claimed in
investigations of 8Be scattering phase shifts [8]. More
recently, a variety of physical systems ranging from inte-
grated photonics [9] to Feshbach molecules [10] have
emerged as platforms for the exploration of nonexponen-
tial decay. Extensive theoretical work has been directed
toward nonexponential decay of autoionising resonances
in atomic systems [11-13] and laser-induced ionisation
effects [14, 15], although this remains at the frontier of
experimental feasibility.

Negative ions are often considered in this context,
in part due to their simple structure: there is usually
only one bound state and a few resonances that sim-
plify the study of laser-induced negative ion photodetach-
ment [14]. Another reason [2, 13] is the possibility of find-
ing broad resonances decaying with a very small energy
release, which, as discussed below, should result in a
deviation at an earlier time when more is left of the par-
ent. On the experimental side, however, negative ions also
pose certain difficulties, especially due to the low tar-
get densities available. To our knowledge, no experiments
on nonexponential decay in negative ions have been
reported.

In a very different physical context, cold atoms in opti-
cal lattices can also serve as a probe of decay dynam-
ics [16], as shown, for example, in two seminal experi-
ments. The quantum Zeno effect was first detected using
cold sodium atoms in an accelerated optical lattice [17];
more recently, non-Markovian long-time dynamics were
observed in an optically dense ensemble of lattice-trapped
atoms driven by an applied microwave field [18, 19]. These
results demonstrate the promise of degenerate gases in
optical lattices for observing long-time modifications to
memoryless exponential decay in an ensemble of single
emitters.

Here we propose the use of ultracold noninteract-
ing “Li Bloch oscillating in a tilted modulated optical
lattice to directly observe long-time nonexponential inter-
band decay. A schematic of the proposed setup and
its relationship to an idealised decay process is pre-
sented in Figure 1. While the proposed experiments, in
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Figure 1: () Schematic of a potential in which nonexponential
decay is expected. 7 is the decay time of the exponential part of
the tunnelling process, and 1z = h/Ey is the timescale associated
with the energy of the decay product. (b) Schematic of proposed
optical lattice experiment probing nonexponential decay. £; and
E; are different possible characterisations of the decay product
energy.

principle, can be performed in unmodulated lattices (in
close analogy to [17] and to pioneering experiments in opti-
cal lattice Stiickelberg interferometry [20]), we will show
that signatures of nonexponential long-time evolution can
be greatly enhanced using recently developed tools of Flo-
quet engineering for modification and mapping of band
structure [21, 22].

The proposed platform for the exploration of non-
exponential decay has several unique advantages. Most
important is the extreme tunability afforded by the use
of flexible Floquet engineering techniques. Another key
advantage, arising from the choice of atomic species,
is the presence of broadly Feshbach-tunable interac-
tions in ‘Li. In this work, we emphasize the ability to
access the single-emitter regime by tuning the scatter-
ing length to zero. However, the ability to work at arbi-
trary scattering length may also enable a future system-
atic study of the effects of interactions on spontaneous
decay.

In Section 2 of this article, we review a heuristic
explanation for nonexponential decay based on a simple
analysis of the survival probability and the Breit-Wigner
energy distribution. We present numerical calculations of
the emergence of nonexponential behaviour as a result
of imposing the lowest energy bound, revealing decay
rate and decay energy as key parameters for experimen-
tal observation. In Section 3, we discuss the details and
feasibility of the proposed experiment. In particular, we
experimentally demonstrate the use of Floquet engineer-
ing to engineer the bandgap and tune the decay rate, a key
step on the path to realisation of long-time nonexponential
decay of an isolated emitter. Section 4 offers conclusions
and outlook.
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2 Origins of Nonexponential Decay

We begin by recalling a heuristic argument for non-
exponential decay that makes no reference to the partic-
ular form of the unstable state or decay mechanism [5].
Given some initial state |) with Hamiltonian H, the sur-
vival or undecayed amplitude A(t) can be calculated as
the overlap of the initial state with the time-evolved state
exp(—iHt/h)[o). For a continuous spectrum, the time-
evolved state can be expanded over the complete set of
energy eigenstates |¢g) as

e HUIR o) = / dE|p) (Prlpo)e B (1)

Taking the overlap of (1) with |1o) and recognising the
initial density of states as p(E) = |(¢g|1po)|?, the survival
amplitude is the Fourier transform

A) = / dEp(E)e /M, @

The survival probability is |[A%|. A simple assumed
form for the energy distribution p(E) is a Lorentzian or
Breit-Wigner distribution:

p(E) = I !

— 6)
27 (E ~ Eo)’ + ()’

where E is the mode, and T is the linewidth. Inserting (3)
into (2) and squaring yield the familiar result of exponen-
tially decaying survival probability with decay rate 1/1 =
I'/h.

Nonexponential decay at long times arises from
including in this simple argument the fact that real sys-
tems necessarily have the lowest energy state, requiring
either a truncation of p(E) or a bounding of the integral
in (2) from below. This alters the form of the survival prob-
ability from a pure exponential, giving rise to corrections
at long timescales. Figure 2 shows the nonexponential
population dynamics that result from imposing such a
lower energy bound. The absolute square of A(t) is plot-
ted for varying values of the decay product energy Ej,
demonstrating a clear change from almost purely expo-
nential behaviour when E; is many linewidths away from
the ground state to large oscillations and strongly non-
exponential dynamics for small values of E,. Here, the
ground state energy is set to 0. This slower than exponen-
tial decay at very long times is well understood theoreti-
cally [5, 23], but poses a major challenge for experimental
observation due to the small scale of the deviations (note
the logarithmic y axis of Figure 2) and the many half-lives
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Figure 2: Emergence of nonexponential decay due to truncation of
the energy distribution. The survival probability is plotted versus
time for various values of Ey, as indicated in the legend. The ground
state energy is set to 0. & is set to 1 with time measured in life-
times t and energy in linewidths I'. The inset highlights the largest
deviations in the first lifetime.

elapsed before their onset. However, the inset of Figure 2
reveals that significant nonexponential behaviour arises
even within the first lifetime when the truncation occurs
within a few linewidths of the distribution peak. The scale
of these deviations is on the order of 10 %, which should
be readily accessible to detection.

It is instructive to compare these results to the predic-
tion of [2] that the timescale 7; for long time deviations is
approximately given by

71 ~ 31log(Eot/h) = 37 log(Eo/T), (4)

where Ej is the energy released in the decay. Intuitively,
this indicates that 7;/7 (or Eo/I') cannot be much larger
than unity in order for there to be a significant remain-
ing population to exhibit nonexponential behaviour. In
Figure 3, we map out the numerical integration of (2) for
therange of Ey/T = 0.2—10. We also plot the results of (4).
While the prediction is qualitatively correct, for Eg/T =~ 2 —
3 it somewhat overestimates the onset time; there is clear
non-Markovian behaviour even within the first time con-
stant. Note the logarithmic scale of the colour bar. Over-
all, though, Figure 3 confirms the intuitive result of (4)
that minimising the decay product energy with respect to
the decay rate yields the largest signal for nonexponential
behaviour.

In passing, we note that short-time deviations from
exponential decay arise from a related but distinct mecha-
nism: the finite expectation value of energy leading to a
survival probability with initially vanishing time deriva-
tive [24]. This phenomenon underlies the quantum Zeno
effect, which was also first realised experimentally with
cold atoms [25].
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Figure 3: Nonexponential population dynamics as a function of time
and the ratio Eo/T. Note that the survival probability colour map

is normalised to an exponential law in time, with black indicating
an order of magnitude population excess with respect to the expo-
nential decay prediction. Dotted green line is the prediction for the
onset of nonexponential decay as given by (4).

3 Probing Nonexponential Decay in
Modulated Optical Lattices

The experimental probe of nonexponential decay we pro-
pose here is based on Bloch oscillations of an ultracold
atom ensemble through partially avoided band crossings
in modulated optical lattices. Our experimental platform
consists of a Bose condensate of 10° “Li atoms in a far-
red-detuned (A = 1064 nm) optical lattice. Interatomic
interactions can be eliminated entirely using the shallow
zero-crossing below ’Li’s broad magnetic Feshbach res-
onance [26]; this crucially allows us to probe the funda-
mental question of nonexponential decay of a single emit-
ter. The lattice induces an energy band structure, shown
in Figure 4, which can be probed with Bloch oscillations
induced by an applied tilt of the harmonic magnetic con-
finement. In fact, the high tunnelling rate of ’Li enables
spatial resolving of different band populations in situ
without the use of band maps or time-of-flight imaging
[22]. Time-periodic modulation of the lattice depth enables
the creation of hybridised Floquet—Bloch bands [21] with a
drive-dependent band structure; as argued below, this is a
key capability for realistic observation of nonexponential
decay.

We begin by considering the use of Bloch oscillations
in an undriven lattice as a probe of decay dynamics. In
such an experiment, the atoms are adiabatically loaded
into the ground band of the lattice and then undergo Bloch
oscillations due to the applied force from the inhomoge-
neous magnetic potential. Ignoring the field curvature, the
main correction to the single-band approximation for the
Wannier-Stark problem comes from tunnelling between
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Figure 4: Band structure of a 3.5 Eg deep undriven optical lattice.
Solid lines are the lowest three energy bands. Dashed line overlays
the lattice potential in position space (top axis). Dotted black line
depicts the drive hybridisation scheme used in Figure 5, ignoring
coupling to higher bands.

adjacent bands. As the atoms traverse the edge of the Bril-
louin zone, they have a chance to “decay” by tunnelling
across the first bandgap once per Bloch cycle. The fea-
sibility of observing long-time deviations from exponen-
tial decay in such an experiment can be quantitatively
estimated using a Landau-Zener model of interband tun-
nelling [27]. Semiclassically, the probability of tunnelling
across the n'™ bandgap Ay in a single Bloch cycle is

L
2 hfgg|€n— En-al|’

Pn=exp|— (5)

where fp is the Bloch frequency, and &, is the dispersion
of the n® band in the free particle limit, indexed with
n = 0 as the ground band. The derivative with respect to
the undimensionalised quasi-momentum (g = k/k; and
ki = 2m/A) is evaluated at the point of avoided crossing.
By modelling the decay as a discrete process happening
once per Bloch cycle and then taking a continuum limit,
the effective tunnelling rate across the n™ bandgap is
approximated as

1 1
;zf310g<1_Pn>. (6)

In a shallow lattice, tunnelling between all excited
bands is large, and we can treat them as a continuum,
so we need to focus only on tunnelling across the first
bandgap. In calculating the probability P; to tunnel out
of the ground band, we have a%|81 — Eo| = 4 Eg eval-
uated at the Brillouin zone edge g = 1, where the recoil
energy is Egr = h?k?/2m with m = 7 amu. Equations (5)
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and (6) reveal two important parameters for optimising the
decay rate of static Bloch oscillations: the bandgap A; and
the Bloch frequency fz. These cannot be tuned arbitrarily,
although the bandgap is minimised for low lattice depths,
and the Bloch frequency is maximised for large mag-
netic field gradients. Our experiment can reliably achieve
Bloch frequencies fg ~ 100 Hz and minimum usable lat-
tice depths of around 1Eg, yielding A; ~ 0.5 Eg. Insert-
ing these values into (5) and (6) reveals that the resulting
tunnelling probability will be minimal: P; ~ 1072, lead-
ing to a decay time T ~ 10° s. Clearly more tunability is
needed to reach a regime where the predicted long-time
deviations from exponential decay can be observed. One
route could be to use the much stronger gradients attain-
ablein accelerating lattices, but this intrinsically limits the
attainable measurement time as the atoms leave the region
of interest. A more flexible possibility is the use of Floquet
engineering to tune the bandgap.

Thus motivated, we consider the addition of time-
periodic lattice depth modulation to the experimental
protocol outlined above. Resonant coupling of two static
bands by such a modulation generically creates a hybrid
quasi-energy band structure featuring at least one new
gap, of a size determined by drive strength rather than lat-
tice depth [21]. Figure 5b shows calculated quasi-energy
band structure near such a gap, for several different val-
ues of the drive strength. Tunnelling across this tunable
gap during a Bloch oscillation in a modulated lattice can
realize a much more controllable decay process, in which
the decay time can be tuned independently of lattice depth
and potential tilt.

To demonstrate this central element of the proposed
realisation of nonexponential decay, we have experimen-
tally measured tunable Landau-Zener decay in a Floquet-
engineered quasi-energy band structure. Figure 5 presents
an experimental measurement of the Landau-Zener decay
probability of (5) across a Floquet-tunable bandgap as a
function of drive strength, for the case of resonant driv-
ing between the lowest two energy bands. Images of the
two spatially resolved band populations after half a Bloch
period in the amplitude-modulated lattice are shown in
Figure 5a, and the calculated band crossing in the quasi-
energy picture is shown in Figure 5b. The spatial sepa-
ration between “decayed” and “undecayed” populations
is a consequence of position-space Bloch oscillations in
the two different band dispersions [22]. Plotting the frac-
tion of undecayed atoms that remain in the ground band,
we measure a tunable decay in qualitative agreement with
the Landau-Zener tunnelling theory of (5), as shown in
Figure 5b. Deviations of the data from theory may be the
result of uncertainty in the lattice depth or inhomogeneity
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Figure 5: Experimental demonstration of Floquet-tunable decay. (a) Images of a sample of cold lithium atoms after a single Landau-Zener
tunnelling event during a Bloch oscillation in a quasi-energy band. The “undecayed” upper clouds are those that remain in the ground band
of the corresponding undriven system. The lattice depth is 3.5 Eg, the modulation frequency is 55 kHz, and the Bloch frequency is 27.8 Hz.
(b) Calculated quasi-energy band structure around the avoided crossing for different modulation depths (indicated in legend). Note the
drive-tunable gap. (c) Undriven ground band fraction as a function of drive strength. Solid theory line is calculated from (5).

of the force. Note that, in this case, it is actually the atoms
that fail to undergo the tunnelling event that correspond
to the decayed population. To obtain a decay rate then,
we must actually subtract (5) from 1. In any case, these
results demonstrate the capacity to use lattice modula-
tion to tune the tunnelling probability over a wide range,
including an enhancement of roughly four orders of mag-
nitude over the tunnelling probability in a static band for
equivalent conditions. Crucially, this allows I' to approach
our achievable Bloch frequencies of up to 100 Hz, allow-
ing for reasonable experimental run times and detectable
nonexponential dynamics.

4 Conclusion

We have proposed a measurement of nonexponential
decay of individual emitters that is based on interband
tunnelling of cold atoms during a Bloch oscillation
in a Floquet-engineered quasi-energy band. A simple

theoretical treatment of expected dynamics indicates that
deviations from exponential decay should be measur-
able. Preliminary experimental tests of the proposed tun-
able decay mechanism demonstrate widely tunable decay
rates and the feasibility of the underlying concept. These
results lay the groundwork for realising a new experi-
mental probe of universal non-Markovian evolution and
open up new possibilities for exerting quantum control
over an irreducible element of nonequilibrium quantum
dynamics.
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