
Z. Naturforsch. 2020; aop

Michael Engbers, Mattes Heerwagen*, Sebastian Rosmej and Andreas Engel

Work Statistics and Energy Transitions in Driven
Quantum Systems
https://doi.org/10.1515/zna-2020-0017
Received January 17, 2020; accepted February 23, 2020

Abstract: Thermodynamic quantities of small systems
fluctuate and have to be characterised by their appropri-
ate probability distributions. Within the two-point energy
measurement prescription, the distribution of work in a
quantum system can be derived from the transition proba-
bility from initial to final energy. We consider a simple yet
representative model system starting in thermodynamic
equilibrium and driven by an external force, and com-
pare two different numerical techniques to determine this
transition probability with respect to accuracy and numer-
ical effort. In addition, we perform a semi-classical anal-
ysis of the process using the WKB approximation. The
results agreewellwith the numerically exact values if Airy-
tails modelling the tunnelling into classically forbidden
regions of phase space are properly taken into account.

Keywords: Driven Quantum Systems; Transition
Probabilities; Work Statistics.

1 Introduction
The ongoing miniaturisation of technical devices like
engines and frigistors as well as the rapid development
of new experimental techniques in biophysics aiming
at the analysis of single molecules, molecular motors,
and ion pumps require new concepts for the theoretical
modelling of energy conversion at the nanoscale. Within
the last 20 years thermodynamics has been extended
to small systems with energy turnover comparable to
their energy fluctuations. The key concept is to describe
thermodynamics quantities like work, heat, and entropy
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by their corresponding probability distributions. The
new field of stochastic thermodynamics (for introduc-
tory reviews, see [1–3]) has meanwhile proven to provide
the appropriate framework for analysing the efficiency of
nanomachines [4–6], estimating free-energydifferences in
single-molecule experiments [7], and highlighting the role
of information as thermodynamic resource [8].

Focussing on small systems invariably brings quan-
tum effects into play. While stochastic thermodynamics
has reached a fairly mature state for classical systems,
the thermodynamic description of fluctuating quantum
systems is much less complete. One reason is that central
thermodynamic quantities like work and heat are no state
variables, and their proper quantum definition remains
controversial [9–12]. Work performed on a classical sys-
tem, e.g. depends on the complete trajectory the system
undergoes during the process. However, no entire quan-
tum analogue of the system trajectory is available. One
possible workaround restricts the analysis to isolated sys-
tems for which the work performed or delivered must be
equal to the energy difference of the system as required
by the first law of thermodynamics [12]. Then, measuring
the systems energy twice, first before the driving and sec-
ond after its end, should yield a first estimate for the work.
Although being simple and operative, this prescription
has its own deficiencies because it involves two projec-
tive measurements that destroy existing quantum correla-
tions. As a result, the system dynamics is merely replaced
by a classical stochastic process with just the transition
rates derived from quantummechanics.

After the first energymeasurement, the system is in an
eigenstate of the initial Hamiltonian. Being isolated from
its surroundings, it then follows a unitary evolution spec-
ified by the process under consideration. The final state
of this evolution determines the probability for the results
of the second energy measurement. In the simplest set-
ting, the system starts in equilibrium at some temperature
T, so the probability for the first energy value is given by
the Gibbs measure. The central quantity of interest deter-
mining the histogram of work values is then the transition
probability from the initial state to the one corresponding
to the value of the energy at the second measurement.

In the present paper, we study this transition proba-
bility for a simple but representative and not analytically
solvable model system introduced in [13]. We compare
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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two different numerical methods for its determination,
characterise their accuracy as a function of the various
parameters, and recommend suitable choices for these.
Finally, we check our results against an approximate ana-
lytic treatment within a semi-classical framework.

The paper is organised as follows. Section 2 con-
tains the basic equations and fixes the notation. Section 3
describes the two numerical methods we use for our com-
parison. In section 4we compare the results of thesemeth-
ods with each other and discuss in detail the influence of
the various parameters on accuracy and computing time.
Section 5 is devoted to the semi-classical analysis. Finally,
section 6 contains our conclusions.

2 Basic Equations
We consider the one-dimensional motion of a quantum
particle of massM in a potential

V(x) = λ(t) x4 (1)

in the time interval 0 ≤ t ≤ tf with the parameter λ(t)
changing from λ0 := λ(0) at t = 0 to λf := λ(tf ) at final
time tf [13]. The dynamics is described by the time-
dependent Schrödinger equation for the wave function
ψ(x, t) of the particle:

i�∂tψ(x, t) = − �2

2M∂2xψ(x, t) + λ(t) x4 ψ(x, t). (2)

By the first energy measurement at t = 0, the sys-
tem is prepared in an energy eigenstate ψ(0)

m of the initial
Hamiltonian H(0) satisfying

− �2

2M∂2xψ(0)
m (x) + λ0 x4ψ(0)

m (x) = E(0)m ψ(0)
m (x), (3)

with E(0)m denoting the corresponding energy eigenvalue.
For t > 0, the state then follows the unitary time evolution
described by

U(t, 0) = 𝒯𝒯 e− i
�

∫︀ t
0 dt′H(t′) (4)

where 𝒯𝒯 denotes time ordering. The driving of the sys-
tem is specified by the explicit time dependence of the
Hamiltonian H(t). At the final time t = tf , a second energy
measurement is performed that projects the state on an
eigenstate ψ(f )

n of the final Hamiltonian H(f ) with corre-
sponding eigenvalue E(f )n .

Our central quantity of interest is the transition prob-
ability

P(n|m) := |⟨ψ(f )
n |U(tf , 0)|ψ(0)

m ⟩|2 (5)

for the state to be projected onto ψ(f )
n at t = tf when

starting in ψ(0)
m at t = 0. We will only consider protocols

linear in time, i.e.

λ(t) = λ0 + (λf − λ0)
t
tf
. (6)

Introducing

(︂
�2

2Mλ0

)︂1/6

, (2M)2/3

(�λ0)1/3
, and

(︂
�2

2M

)︂2/3

λ1/30 , (7)

as units for length, time, and energy, respectively, and
measuring λ inmultiples of λ0, we arrive at the dimension-
less form of the Schrödinger equation (2)

i∂tψ(x, t) = −∂2xψ(x, t) + λ(t) x4 ψ(x, t) (8)

with λ(t) starting at λ0 = 1.
For the classical x4− oscillator, the dependence of the

oscillation period T on the amplitude A is given by

T(A) =
Γ( 14 )Γ(

1
2 )

2Γ( 34 )

√︂
2M
λ

1
A . (9)

Replacing A by the energy E of the particle, this corre-
sponds in dimensionless units to

T(E) =
Γ( 14 )Γ(

1
2 )

2Γ( 34 )
1√
λ

(︂
λ
E

)︂1/4
≃ 2.622 (λE)−1/4. (10)

On the other hand, we get for the energy of the m-th
quantum level in the potential V(x) = λ x4 from Bohr–
Sommerfeld quantisation the approximate expression [14]

Em(λ) ≃

(︃
3
Γ( 12 )Γ(

3
4 )

Γ( 14 )

)︃4/3

λ1/3
(︂
m +

1
2

)︂4/3

≃ 2.185 λ1/3
(︂
m +

1
2

)︂4/3
. (11)

Combining (10) and (11), we find

Tm := T(Em) ≃ 2.155 λ−1/3
(︂
m +

1
2

)︂−1/3
(12)

for the classical oscillation period corresponding to the
m-th quantum level of energy.Wewillmainly be interested
in values of λ between 1 and 5 and energy levels up to
m = 200. The relevant dimensionless oscillation periods
then lie in the range 0.2...1. In order to find appreciable
probabilities P(n|m) for off-diagonal transitions, m ̸= n,
the driving process parametrised by λ(t) should not be
slow on these time scales. Accordingly, for our numerical
investigations, we choose tf = 0.5 and λf = 5.

434     M. Engbers et al.: Work Statistics and Energy Transitions in Driven Quantum Systems

1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.

2 L. Balzer et al.: TMLE for Rare Outcomes

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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two different numerical methods for its determination,
characterise their accuracy as a function of the various
parameters, and recommend suitable choices for these.
Finally, we check our results against an approximate ana-
lytic treatment within a semi-classical framework.

The paper is organised as follows. Section 2 con-
tains the basic equations and fixes the notation. Section 3
describes the two numerical methods we use for our com-
parison. In section 4we compare the results of thesemeth-
ods with each other and discuss in detail the influence of
the various parameters on accuracy and computing time.
Section 5 is devoted to the semi-classical analysis. Finally,
section 6 contains our conclusions.

2 Basic Equations
We consider the one-dimensional motion of a quantum
particle of massM in a potential

V(x) = λ(t) x4 (1)

in the time interval 0 ≤ t ≤ tf with the parameter λ(t)
changing from λ0 := λ(0) at t = 0 to λf := λ(tf ) at final
time tf [13]. The dynamics is described by the time-
dependent Schrödinger equation for the wave function
ψ(x, t) of the particle:

i�∂tψ(x, t) = − �2

2M∂2xψ(x, t) + λ(t) x4 ψ(x, t). (2)

By the first energy measurement at t = 0, the sys-
tem is prepared in an energy eigenstate ψ(0)

m of the initial
Hamiltonian H(0) satisfying

− �2

2M∂2xψ(0)
m (x) + λ0 x4ψ(0)

m (x) = E(0)m ψ(0)
m (x), (3)

with E(0)m denoting the corresponding energy eigenvalue.
For t > 0, the state then follows the unitary time evolution
described by

U(t, 0) = 𝒯𝒯 e− i
�

∫︀ t
0 dt′H(t′) (4)

where 𝒯𝒯 denotes time ordering. The driving of the sys-
tem is specified by the explicit time dependence of the
Hamiltonian H(t). At the final time t = tf , a second energy
measurement is performed that projects the state on an
eigenstate ψ(f )

n of the final Hamiltonian H(f ) with corre-
sponding eigenvalue E(f )n .

Our central quantity of interest is the transition prob-
ability

P(n|m) := |⟨ψ(f )
n |U(tf , 0)|ψ(0)

m ⟩|2 (5)

for the state to be projected onto ψ(f )
n at t = tf when

starting in ψ(0)
m at t = 0. We will only consider protocols

linear in time, i.e.

λ(t) = λ0 + (λf − λ0)
t
tf
. (6)

Introducing

(︂
�2

2Mλ0

)︂1/6

, (2M)2/3

(�λ0)1/3
, and

(︂
�2

2M

)︂2/3

λ1/30 , (7)

as units for length, time, and energy, respectively, and
measuring λ inmultiples of λ0, we arrive at the dimension-
less form of the Schrödinger equation (2)

i∂tψ(x, t) = −∂2xψ(x, t) + λ(t) x4 ψ(x, t) (8)

with λ(t) starting at λ0 = 1.
For the classical x4− oscillator, the dependence of the

oscillation period T on the amplitude A is given by

T(A) =
Γ( 14 )Γ(

1
2 )

2Γ( 34 )

√︂
2M
λ

1
A . (9)

Replacing A by the energy E of the particle, this corre-
sponds in dimensionless units to

T(E) =
Γ( 14 )Γ(

1
2 )

2Γ( 34 )
1√
λ

(︂
λ
E

)︂1/4
≃ 2.622 (λE)−1/4. (10)

On the other hand, we get for the energy of the m-th
quantum level in the potential V(x) = λ x4 from Bohr–
Sommerfeld quantisation the approximate expression [14]

Em(λ) ≃

(︃
3
Γ( 12 )Γ(

3
4 )

Γ( 14 )

)︃4/3

λ1/3
(︂
m +

1
2

)︂4/3

≃ 2.185 λ1/3
(︂
m +

1
2

)︂4/3
. (11)

Combining (10) and (11), we find

Tm := T(Em) ≃ 2.155 λ−1/3
(︂
m +

1
2

)︂−1/3
(12)

for the classical oscillation period corresponding to the
m-th quantum level of energy.Wewillmainly be interested
in values of λ between 1 and 5 and energy levels up to
m = 200. The relevant dimensionless oscillation periods
then lie in the range 0.2...1. In order to find appreciable
probabilities P(n|m) for off-diagonal transitions, m ̸= n,
the driving process parametrised by λ(t) should not be
slow on these time scales. Accordingly, for our numerical
investigations, we choose tf = 0.5 and λf = 5.
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3 Numerical Methods
We use two different procedures to solve the Schrödinger
equation (8) numerically. The first one is the well-known
Crank–Nicolson method [15] that provides a direct pre-
scription to compute the wave function ψ(x, t) at times
t > 0 given its initial form at t = 0. The second method
employs a special ansatz for the wave function ψ(x, t)
involving time-dependent coefficients cn(t) [13]. It trans-
forms the Schrödinger equation (8) into a system of ordi-
nary differential equations for these coefficients that is
then solved numerically. In the following, we shortly char-
acterise both methods.

3.1 Crank–Nicolson Method

The central point of the Crank–Nicolson method is the
discretisation of the time evolution operator (4) in Cayley
form

U(t + ∆t, t) = 𝒯𝒯 e−i
∫︀ t+∆t
t dt′H(t′)

=
1 − iH(t) ∆t2
1 + iH(t) ∆t2

+ O(∆t2), (13)

where ∆t denotes the temporal step size. The main virtue
of this replacement is that the first term on the r.h.s. of (13)
is unitary and, therefore, norm preserving. The discretised
Schrödinger equation acquires the form

(︂
1 + iH(t)∆t2

)︂
ψ(x, t + ∆t)

=
(︂
1 − iH(t)∆t2

)︂
ψ(x, t) (14)

with

H(t) = −∂2x + λ(t) x4 (15)

as given by (8).
It is convenient to rewrite (14) in terms of a new func-

tion

y(x, t) := ψ(x, t + ∆t) + ψ(x, t), (16)

and using the customary notations yk(x) := y(x, k∆t),
λk := λ(k∆t), and ψk(x) := ψ(x, k∆t) where k = 0, . . . , K
we find

∂2yk(x)
∂x2 = gk(x) yk(x) + f k(x) (17)

with the abbreviations

gk(x) :=
(︂
λkx4 − i 2∆t

)︂
(18)

and

f k(x) := i 4∆t ψ
k(x). (19)

The second-order differential equation (17) has to be
solved numerically at every time step. To this end, we also
discretise the space coordinate x → xj = x0+ j∆xwith the
spatial step size ∆x and j = 0, . . . , J and use the notation
ykj := yk(xj), etc.

From its structure, (17) is amenable to the Numerov
method that allows to improve on the accuracy of the solu-
tion with very little additional effort. Themethod is partic-
ularly efficient if a recursive procedure is used to perform
the necessarymatrix inversion (see [16, 17]). Themain idea
is the replacement

∂4yk

∂x4 (x) =
∂2

∂x2 (g
k(x) yk(x) + f k(x)) (20)

as implied by (17) in the approximation

∂2yk

∂x2 (xj) =
ykj+1 + ykj−1 − 2ykj

∆x2

− 1
12

∂4yk

∂x4 (xj)∆x2 + O(∆x4).

for the second derivative with respect to x. In terms of the
auxiliary quantities

dkj := 1 − ∆x2

12 gkj (21)

and

wk
j := dkj ykj − ∆x2

12 f kj (22)

one then gets a three-term recursion relation of the form

wk
j+1 + wk

j−1 =

(︃
2 + ∆x2

gkj
dkj

)︃
wk
j + ∆x2

f kj
dkj

(23)

that approximates the original Schrödinger equation (8) to
order O(∆t2) and O(∆x6).

The procedure is then as follows. With ψk
j given from

the k-th time step, f kj is determined using (19). The poten-
tial λ(t) x4 fixes gkj according to (18) and, subsequently,
dkj by using (21). Therefore, the recursion (23) allows to
determine all wk

j from two initial values, wk
0 and wk

1. From
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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wk
j , we find ykj using (22), which via (16) gives .., the wave

function at the next time step:

wk
j

dkj
+

∆x2

12
f kj
dkj

= ykj = ψk+1
j + ψk

j (24)

The final dodge of the algorithm concerns the point
that (17) has to be solved as a boundary value problem
with ψk

j (and therefore also wk
j ) given for j = 0 and j = J

rather than as an initial value problem fixing wk
j for j = 0

and j = 1. As detailed in [17], this problem can be dealt
with by introducing yet another set of variables qkj and ekj
according to

wk
j+1 =: ekj wk

j + qkj (25)

which transforms the recursion (23) into

ekj = 2 + ∆x2
gkj
dkj

− 1
ekj−1

(26)

qkj = ∆x2
f kj
dkj

+
qkj−1

ekj−1
. (27)

The initial conditions ek0 → ∞ and qk0 finite ensure
wk
0 = 0 and allow to successively calculate all ekj qkj using

(26) and (27). From these all, wk
j can be determined using

(25) by starting with wk
j = 0 and decreasing j in each step

down to j = 1.

3.2 Expansion in Instantaneous Eigenstates

The second method to solve the Schrödinger equation (8)
builds on an ansatz for the wave function [13]. We intro-
duce the eigenstates |ψn(λt)⟩ and corresponding eigenval-
ues En(λt) of the Hamiltonian H(t) for a fixed value λt of
the parameter λ(t),

H(t) |ψn(λt)⟩ = En(λt) |ψn(λt)⟩. (28)

Next, we expand the state |ψ(x, t)⟩ at time t on the
basis of these instantaneous eigenstates according to

|ψ(t)⟩ =
N∑︁

n=1
cn(t)|ψn(λt)⟩e−iαn(t) (29)

where

αn(t) :=
t∫︁

0

dt′ En(λt′). (30)

Themaximal valueN of n in this expansion is a crucial
parameter for the accuracy of this method (cf. Section 4).
Plugging (29) into the Schrödinger equation (8), it trans-
forms into a set of linear ordinary differential equations
for the time evolution of the expansion coefficients cn(t):

∂tcn(t) = −∂λ
∂t

∑︁
l
cl(t)

⟨
ψn(λt)

⃒⃒
⃒⃒∂ψl(λt)

∂λt

⟩
ei(αn(t)−αl(t))

= −∂λ
∂t

∑︁
l ̸=n

cl(t)
⟨ψn(λt)|x4|ψl(λt)⟩
El(λt) − En(λt)

ei(αn(t)−αl(t)).

(31)

Here, the second line follows from (28) and the
Hellmann–Feynman-theorem.

To solve this system of coupled ordinary differential
equations, we need thematrix elements ⟨ψn(λt)|x4|ψl(λt)⟩
and the instantaneous eigenvalues El(λt) for each value of
λ. Since the stationary Schrödinger equation is not ana-
lytically solvable, this can be a time-consuming numerical
task. However, if we rescale the space coordinate x in the
initial, i.e. λt = 1, Schrödinger equation (28)

− ∂2x ψl(x, 1) + x4 ψl(x, 1) = El(1)ψl(x, 1) (32)

according to

x = λ1/6t x̃ (33)

we are left with

− ∂2x̃ ψl(λ1/6t x̃, 1) + λt x̃4 ψl(λ1/6t x̃, 1)

= λ1/3t El(1)ψl(λ1/6t x̃, 1). (34)

Adapting the normalisation of the eigenfunctions to
the rescaled coordinate we therefore find the simple map-
pings

ψl(x, λt) = λ1/12t ψl(λ1/6t x, 1) (35)

El(λt) = λ1/3t El(1). (36)

These in turn allow to rewrite the system (31) in the
form

∂tcn(t) = −1
λ
∂λ
∂t

∑︁
l ̸=n

cl(t)
⟨ψn(1)|x4|ψl(1)⟩(︀
El(1) − En(1)

)︀

× ei(En(1)−El(1))γ(t) (37)

with

γ(t) :=
t∫︁

0

dt′ λ1/3t′ . (38)
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.

2 L. Balzer et al.: TMLE for Rare Outcomes

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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wk
j , we find ykj using (22), which via (16) gives .., the wave

function at the next time step:

wk
j

dkj
+

∆x2

12
f kj
dkj

= ykj = ψk+1
j + ψk

j (24)

The final dodge of the algorithm concerns the point
that (17) has to be solved as a boundary value problem
with ψk

j (and therefore also wk
j ) given for j = 0 and j = J

rather than as an initial value problem fixing wk
j for j = 0

and j = 1. As detailed in [17], this problem can be dealt
with by introducing yet another set of variables qkj and ekj
according to

wk
j+1 =: ekj wk

j + qkj (25)

which transforms the recursion (23) into

ekj = 2 + ∆x2
gkj
dkj

− 1
ekj−1

(26)

qkj = ∆x2
f kj
dkj

+
qkj−1

ekj−1
. (27)

The initial conditions ek0 → ∞ and qk0 finite ensure
wk
0 = 0 and allow to successively calculate all ekj qkj using

(26) and (27). From these all, wk
j can be determined using

(25) by starting with wk
j = 0 and decreasing j in each step

down to j = 1.

3.2 Expansion in Instantaneous Eigenstates

The second method to solve the Schrödinger equation (8)
builds on an ansatz for the wave function [13]. We intro-
duce the eigenstates |ψn(λt)⟩ and corresponding eigenval-
ues En(λt) of the Hamiltonian H(t) for a fixed value λt of
the parameter λ(t),

H(t) |ψn(λt)⟩ = En(λt) |ψn(λt)⟩. (28)

Next, we expand the state |ψ(x, t)⟩ at time t on the
basis of these instantaneous eigenstates according to

|ψ(t)⟩ =
N∑︁

n=1
cn(t)|ψn(λt)⟩e−iαn(t) (29)

where

αn(t) :=
t∫︁

0

dt′ En(λt′). (30)

Themaximal valueN of n in this expansion is a crucial
parameter for the accuracy of this method (cf. Section 4).
Plugging (29) into the Schrödinger equation (8), it trans-
forms into a set of linear ordinary differential equations
for the time evolution of the expansion coefficients cn(t):

∂tcn(t) = −∂λ
∂t

∑︁
l
cl(t)

⟨
ψn(λt)

⃒⃒
⃒⃒∂ψl(λt)

∂λt

⟩
ei(αn(t)−αl(t))

= −∂λ
∂t

∑︁
l ̸=n

cl(t)
⟨ψn(λt)|x4|ψl(λt)⟩
El(λt) − En(λt)

ei(αn(t)−αl(t)).

(31)

Here, the second line follows from (28) and the
Hellmann–Feynman-theorem.

To solve this system of coupled ordinary differential
equations, we need thematrix elements ⟨ψn(λt)|x4|ψl(λt)⟩
and the instantaneous eigenvalues El(λt) for each value of
λ. Since the stationary Schrödinger equation is not ana-
lytically solvable, this can be a time-consuming numerical
task. However, if we rescale the space coordinate x in the
initial, i.e. λt = 1, Schrödinger equation (28)

− ∂2x ψl(x, 1) + x4 ψl(x, 1) = El(1)ψl(x, 1) (32)

according to

x = λ1/6t x̃ (33)

we are left with

− ∂2x̃ ψl(λ1/6t x̃, 1) + λt x̃4 ψl(λ1/6t x̃, 1)

= λ1/3t El(1)ψl(λ1/6t x̃, 1). (34)

Adapting the normalisation of the eigenfunctions to
the rescaled coordinate we therefore find the simple map-
pings

ψl(x, λt) = λ1/12t ψl(λ1/6t x, 1) (35)

El(λt) = λ1/3t El(1). (36)

These in turn allow to rewrite the system (31) in the
form

∂tcn(t) = −1
λ
∂λ
∂t

∑︁
l ̸=n

cl(t)
⟨ψn(1)|x4|ψl(1)⟩(︀
El(1) − En(1)

)︀

× ei(En(1)−El(1))γ(t) (37)

with

γ(t) :=
t∫︁

0

dt′ λ1/3t′ . (38)
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Hence, we have to solve the stationary Schrödinger
equation only once, namely, for λt = 1, which can be
done, e.g. with the matrix Numerov method [18]. Plug-
ging the results for |ψl(1)⟩ and El(1) into (37) a completely
determined system of coupled linear differential equa-
tions with time-dependent coefficients for the expansion
parameters cn have to be solved numerically. For a bet-
ter comparison between the two methods, we use for this
task a second-order Runge–Kutta algorithm,whichhas the
same accuracy as in the Crank–Nicolson method.

4 Comparison of Results
In the present section, we compare the two numerical
methods described above with respect to their accuracy
as a function of the various parameters. To this end, we
study four representative examples for transition probabil-
ities corresponding to the combinations (n,m) = (46, 50),
(50, 50), (58, 50) and (50, 46). Their respective numeri-
cally exact values obtained with parameter combinations
detailed beloware compiled in Table 1.We then change the
parameters such as, e.g. to reduce the necessary compu-
tation time and monitor the resulting deviations ∆P(n,m)
from these reference values.

Let us first look at the influence of the temporal and
spatial resolution on the results. Figure 1 shows the depen-
dence of the relative accuracy ∆P(n|m)/P(n|m) on the spa-
tial step size ∆x. Irrespective of the specific values of m
and n, both methods yield accurate results for ∆x ≤ 10−2

already. This is due to the high convergence rate of the
Numerov method discussed in Section 3.

The dependence on the time step ∆t is qualitatively
similar, but now, step sizes of the order of ∆t ≃ 10−4

or smaller are necessary to obtain reliable results. This
reflects the fact that the chosen time integration methods
are only accurate to order ∆t2. Nevertheless, bothmethods

Table 1: Quantum mechanical and semi-classical transition
probabilities P(n|m).

n m Pqm(n|m) Psc(n|m) Pad(n|m)

46 50 0.2695 0.2626 0.0023
50 50 0.1090 0.1089 0.8222
58 50 0.0449 0.0194 2.8 · 10−6

50 46 0.2010 0.2009 0.0026

The numerically exact values of the second column were determined
by the Crank–Nicolson method with ∆x = 7.5 · 10−4 and ∆t= 10−6.
The expansion method yields exactly the same values for the digits
shown. The semi-classical results displayed in the third column
were obtained using 105 classical trajectories. The last column
shows the Crank–Nicolson values for a slower process with tf = 2.5.

Figure 1: Relative accuracy ∆P(n|m)/P(n|m) of the transition
probabilities as function of the spatial resolution ∆x for the Crank–
Nicolson (top) and the expansion methods (bottom). The other
parameters are ∆t = 2.5 · 10−5 and N = 200.

are accurate and reliable for sufficiently small increments
in x and t.

The plateau values to which ∆P/P converge in
Figures 1 and 2 for small step sizes depend on the value
of the complementary parameter ∆t and ∆x, respectively,
and for the expansion method also on N. As an example
for the interplay of these parameters, we show in Figure 3
examples of heat maps of the accuracy in the ∆x-∆t plane.
The qualitative behaviour is as expected: both ∆x and ∆t
have to be sufficiently small to obtain high accuracy. But
the figure also offers quantitative information. It is again
clearly seen that ∆t has to be significantly smaller than ∆x
for getting adesiredaccuracy.Moreover, comparisonof the
figures with each other shows that for higher values of m
and n, a finer resolution in x and t is necessary to get the
same accuracy. This is in line with intuition since higher
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 2: Relative accuracy ∆P(n|m)/P(n|m) of the transition proba-
bilities as function of the temporal resolution ∆t for Crank–Nicolson
(top) and expansion methods (bottom). The other parameters are
∆x = 10−3 and N = 200.

values of m and n imply shorter wavelengths and higher
frequencies of the participating states.

When applying the expansion method, the maximal
value N of the expansion parameter is an additional
important parameter affecting the accuracy of the results.
Although it is obvious thatN has to exceed bothm and n, it
is not so clear to which extent, since during the driving of
the system between t = 0 and t = tf , a proper approxima-
tion of its state |ψ(t)⟩ may well require eigenstates |ψl⟩ in
the superposition (29) with values of l significantly larger
than those of n and m. Figure 4 gives an impression on
how the relative accuracies of the considered transition
probabilities dependonN. It shows that in thepresent con-
text, it is sufficient to include roughly 20moremodes than
given by the maximum of n and m. Note the large error in
P(58|50) if N remains below this threshold.

Figure 3: Heat maps of the accuracy of the Crank–Nicolson method
for (n,m) = (50, 46) (top) and (n,m) = (58, 50) (bottom). Note that
the colour code in both figures is the same.

Figure 4: Relative accuracy of the transition probabilities result-
ing from the expansion method as a function of the number N of
modes included in the expansion (29). The other parameters are
∆x = 10−3 and ∆t = 2.5 · 10−5.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 2: Relative accuracy ∆P(n|m)/P(n|m) of the transition proba-
bilities as function of the temporal resolution ∆t for Crank–Nicolson
(top) and expansion methods (bottom). The other parameters are
∆x = 10−3 and N = 200.

values of m and n imply shorter wavelengths and higher
frequencies of the participating states.

When applying the expansion method, the maximal
value N of the expansion parameter is an additional
important parameter affecting the accuracy of the results.
Although it is obvious thatN has to exceed bothm and n, it
is not so clear to which extent, since during the driving of
the system between t = 0 and t = tf , a proper approxima-
tion of its state |ψ(t)⟩ may well require eigenstates |ψl⟩ in
the superposition (29) with values of l significantly larger
than those of n and m. Figure 4 gives an impression on
how the relative accuracies of the considered transition
probabilities dependonN. It shows that in thepresent con-
text, it is sufficient to include roughly 20moremodes than
given by the maximum of n and m. Note the large error in
P(58|50) if N remains below this threshold.

Figure 3: Heat maps of the accuracy of the Crank–Nicolson method
for (n,m) = (50, 46) (top) and (n,m) = (58, 50) (bottom). Note that
the colour code in both figures is the same.

Figure 4: Relative accuracy of the transition probabilities result-
ing from the expansion method as a function of the number N of
modes included in the expansion (29). The other parameters are
∆x = 10−3 and ∆t = 2.5 · 10−5.
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Guided by the results displayed above, we have cho-
sen the parameters for the numerically exact reference val-
ues as given in the caption of Table 1. In the last column
of this table, we have included the values of the transi-
tion probabilities for tf = 2.5 instead of tf = 0.5, i.e. for
five times slower driving. These values show the approach
of the transition probabilities to P(n|m) = δnm as required
by the adiabatic theorem of quantum mechanics. These
values, therefore, may serve as an additional independent
check of our numerical code.

5 Semi-Classical Analysis
In addition to the numerical methods discussed above,
we give in the following a short report on a semi-classical
treatment of the problem. Quite generally, semi-classical
methods yield approximations to quantum mechanical
results by building on classical trajectories [19]. For the
problem at hand, the classical equations of motion have
again to be solved numerically.

To obtain a semi-classical approximation for the tran-
sition probabilities (5),weneed semi-classical expressions
for both the eigenfunctions ψ(f )

n of the final Hamiltonian
and the state |ψ(tf )

m ⟩ = U(tf , 0)|ψ(0)
m ⟩ to which the initial

state |ψ(0)
m ⟩ evolved at the end of the driving. Following

[13], we implement WKB wave functions of the form

ψ(tf )
m,sc(x) =

∑︁
b

√︁
ρ(tf )b (x) exp

[︂
i
� S(tf )b (x) − iπ

2 µ(tf )b

]︂
, (39)

ψ(f )
n,sc(x) =

∑︁
b

√︁
ρ(f )b (x) exp

[︂
i
� S(f )b (x) − iπ

2 µ(f )b

]︂
, (40)

where ρ(tf )b (x) and ρ(f )b (x) denote the classical phase space
densities corresponding to the states |ψ(tf )

m ⟩ and |ψ(f )
n ⟩,

S(tf )b (x) and S(f )b (x) are their classical actions, and µ(tf )b (x)
and µ(f )b (x) denote the Maslov indices labelling the differ-
ent possible branches b of classical transitions [19]. For
notational simplicity, we suppressed the dependence on
n andm in the r.h.s. (39) and (40), respectively.

The scalar product in (5) then acquires the form

⟨ψ(f )
n,sc|ψ

(tf )
m,sc⟩ =

∑︁
b,b′

∞∫︁

−∞

dx
√︁
ρ(f )b ρ(tf )b′ eiϕbb′ (x) , (41)

with

ϕbb′ (x) =
1
�

(︁
S(tf )b (x) − S(f )b′ (x)

)︁
− π

2

(︁
µ(tf )b − µ(f )b′

)︁
.

In a semi-classical analysis, one is interested in the
leading behaviour for � → 0; the integral in (41) may

therefore be performed by the stationary phase approxi-
mation. Because of

dS
dx = p(x), (42)

where p(x) stands for the classical momentum as function
of position, the condition

d
dx ϕbb′(xs) = 0 (43)

for the stationary point xs translates to leading order into

p(tf )b (xs) = p(f )b′ (xs) . (44)

The stationary points xs are therefore nothing but the
crossing points between the final classical orbit in phase
space and the curve Hcl(x, p) = En. Here Hcl denotes the
classical Hamilton function.

Expanding the densities ρ(f )b (x) and ρ(tf )b′ (x) as well as
ϕbb′(x) to second order in (x − xs), we may replace the
sum over the branches b and b′ by a sum over the crossing
points and find to leading order in �

⟨ψ(f )
n,sc|ψ

(tf )
m,sc⟩ =

∑︁
s

√︁
ρ(f )s ρ(tf )s eiϕs

∞∫︁

−∞

dx e
i
�

κs
2 (x−xs)2

=
∑︁
s

√︁
ρ(f )s ρ(tf )s eiϕs

√︃
2π�
|κs|

e
iπ
4 sgn(κs) ,

with

ρ(f )s = ρ(f )b (xs), ρ(tf )s = ρ(tf )b′ (xs) ,

ϕs =
1
�

(︁
S(tf )b (xs) − S(f )b′ (xs)

)︁
− π

2

(︁
µ(tf )s − µ(f )s

)︁
,

κs =
d2S(tf )b
dx2 (xs) −

d2S(f )b′
dx2 (xs)

=
dp(tf )b
dx (xs) −

dp(f )b′
dx (xs) .

Here, b and b′ denote the branches corresponding to
the crossing point xs.

Finally, the transition probabilities are given by

P(n|m) =
⃒⃒
⃒⟨ψ(f )

n,sc|ψ
(tf )
m,sc⟩

⃒⃒
⃒
2

=

⃒⃒
⃒⃒
⃒
∑︁
s
aseiθs

⃒⃒
⃒⃒
⃒
2

, (45)

with

as =

√︃
2π�
|κs|

ρ(f )s ρ(tf )s , θs = ϕs +
π
4 sgn(κs) .
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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The amplitudes as and phases θs are fully determined
by the properties of the classical trajectories at the inter-
section points xs. Integrating the classical equations of
motion numerically for a certain number of different ini-
tial conditions corresponding to the same initial energy,
Hcl(x, p) = E(0)m , we determine the values of ϕs and κs
and produce reliable estimates for the densities ρ(f )s and
ρ(tf )s . Table 1 shows results for the transition probabili-
ties obtained in this way using 105 initial conditions and
compares them to the findings of Section 3.

For P(46|50), P(50|50) and also for P(50|46), the
results from the numerical solution of the Schrödinger
equation and those coming from the semi-classical anal-
ysis agree rather well. For P(58|50), there is a larger dis-
crepancy. It is due to the fact that, classically, only a finite
interval of energy transfers can be accomplished and the
difference E(f )58 − E(0)50 lies just outside this energy window.
Building solely on classical trajectories, the semi-classical
method as described above must then fail. This is a stan-
dard problem of theWKBmethod that can be remedied by
a higher-order expansion of ϕbb′ resulting in Airy-tails of
the semi-classical wave function extending into the clas-
sically forbidden region. Proceeding as described in detail
in Section V of [13], we get in this way the refined semi-
classical value Psc(58|50) = 0.0452 that agreesmuchbet-
ter with the corresponding result of Section 3.

In some circumstances, the semi-classical limit� → 0
is found to be tantamount to the adiabatic limit tf → ∞.
This seems tomake aWKB treatment of non-diagonal tran-
sition probabilities P(n|m), n ̸= m questionable. How-
ever, � cannot be compared with a time scale as such,
but only with a product of a time scale and a charac-
teristic energy. By considering rather large energy levels
m ≃ 50, we chose this energy scale large enough to keep
the small � limit compatible with a comparatively short
driving time tf .

6 Conclusion
In the present paper, we have studied twonumericalmeth-
ods to determine the transition amplitude between energy
eigenstates of a simple quantum system driven by a time-
dependent external protocol. The corresponding transi-
tion probability is the pivotal quantity to compile the work
statistics of the system, which in turn determines many
of its thermodynamic properties. Our motivation was two-
fold: on the one hand, we systematically investigated the
accuracy of both methods as function of their parameters,
in particular of the temporal and spatial resolution used
in the discretisation. On the other hand, we compared the

twomethodswith each otherwith respect to the numerical
effort involved.

Technically speaking, the problem consists of solving
the time-dependent Schrödinger equation for the one-
dimensional model system. No analytical solution is
available. Our first procedure implements the standard
Crank–Nicolson method for partial differential equations.
The second one builds on an expansion of the quantum
state into a superposition of instantaneous eigenstates of
the Hamiltonian.

Implementation of the Crank–Nicolson method gives
rise to a rather universal solver for the initial value prob-
lem of the Schrödinger equation with Dirichlet boundary
conditions. It is easily implemented, reliable, and yields
accurate results. However, it is a purely mathematical pre-
scription to solve a partial differential equation. There is
no way to improve its performance by using additional
physical insight into the dynamics of the system.

Expanding the searched-for wave function in the
instantaneous eigenfunctions of the system, on the other
hand, allows to calculate part of its time dependence
analytically. Moreover, studying the dependence of the
results on the number of states included valuable infor-
mation on which states contribute substantially to a spe-
cific transition and which do not. On the down side, this
method requires to solve the stationary Schrödinger equa-
tion of the system for each value of the protocol parameter
λ(t) separately. As far as numerical effort is concerned,
the method is hence only competitive with the Crank–
Nicolson method if a way is found to circumvent the
repeated numerical solution of the eigenvalue problem of
the Hamiltonian. For our system, this was possible by a
scaling transformation as explained in Section 3.

In both methods, we found the Numerov prescrip-
tion for the spatial discretisation extremely valuable. With
only little additional effort, the accuracy is considerably
improved. As a result, rather large spatial step sizes ∆x
could be used, which reduced the computation time sub-
stantially.

Given appropriate values of its parameters, both
methods gave consistent results for the transition
probabilities considered. In order to additionally verify
their correctness, we compared them with the outcome of
a semi-classical analysis using the WKB method. Again,
very good agreement was obtained if Airy-tails extend-
ing into the classically forbidden region were taken into
account.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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The amplitudes as and phases θs are fully determined
by the properties of the classical trajectories at the inter-
section points xs. Integrating the classical equations of
motion numerically for a certain number of different ini-
tial conditions corresponding to the same initial energy,
Hcl(x, p) = E(0)m , we determine the values of ϕs and κs
and produce reliable estimates for the densities ρ(f )s and
ρ(tf )s . Table 1 shows results for the transition probabili-
ties obtained in this way using 105 initial conditions and
compares them to the findings of Section 3.

For P(46|50), P(50|50) and also for P(50|46), the
results from the numerical solution of the Schrödinger
equation and those coming from the semi-classical anal-
ysis agree rather well. For P(58|50), there is a larger dis-
crepancy. It is due to the fact that, classically, only a finite
interval of energy transfers can be accomplished and the
difference E(f )58 − E(0)50 lies just outside this energy window.
Building solely on classical trajectories, the semi-classical
method as described above must then fail. This is a stan-
dard problem of theWKBmethod that can be remedied by
a higher-order expansion of ϕbb′ resulting in Airy-tails of
the semi-classical wave function extending into the clas-
sically forbidden region. Proceeding as described in detail
in Section V of [13], we get in this way the refined semi-
classical value Psc(58|50) = 0.0452 that agreesmuchbet-
ter with the corresponding result of Section 3.

In some circumstances, the semi-classical limit� → 0
is found to be tantamount to the adiabatic limit tf → ∞.
This seems tomake aWKB treatment of non-diagonal tran-
sition probabilities P(n|m), n ̸= m questionable. How-
ever, � cannot be compared with a time scale as such,
but only with a product of a time scale and a charac-
teristic energy. By considering rather large energy levels
m ≃ 50, we chose this energy scale large enough to keep
the small � limit compatible with a comparatively short
driving time tf .

6 Conclusion
In the present paper, we have studied twonumericalmeth-
ods to determine the transition amplitude between energy
eigenstates of a simple quantum system driven by a time-
dependent external protocol. The corresponding transi-
tion probability is the pivotal quantity to compile the work
statistics of the system, which in turn determines many
of its thermodynamic properties. Our motivation was two-
fold: on the one hand, we systematically investigated the
accuracy of both methods as function of their parameters,
in particular of the temporal and spatial resolution used
in the discretisation. On the other hand, we compared the

twomethodswith each otherwith respect to the numerical
effort involved.

Technically speaking, the problem consists of solving
the time-dependent Schrödinger equation for the one-
dimensional model system. No analytical solution is
available. Our first procedure implements the standard
Crank–Nicolson method for partial differential equations.
The second one builds on an expansion of the quantum
state into a superposition of instantaneous eigenstates of
the Hamiltonian.

Implementation of the Crank–Nicolson method gives
rise to a rather universal solver for the initial value prob-
lem of the Schrödinger equation with Dirichlet boundary
conditions. It is easily implemented, reliable, and yields
accurate results. However, it is a purely mathematical pre-
scription to solve a partial differential equation. There is
no way to improve its performance by using additional
physical insight into the dynamics of the system.

Expanding the searched-for wave function in the
instantaneous eigenfunctions of the system, on the other
hand, allows to calculate part of its time dependence
analytically. Moreover, studying the dependence of the
results on the number of states included valuable infor-
mation on which states contribute substantially to a spe-
cific transition and which do not. On the down side, this
method requires to solve the stationary Schrödinger equa-
tion of the system for each value of the protocol parameter
λ(t) separately. As far as numerical effort is concerned,
the method is hence only competitive with the Crank–
Nicolson method if a way is found to circumvent the
repeated numerical solution of the eigenvalue problem of
the Hamiltonian. For our system, this was possible by a
scaling transformation as explained in Section 3.

In both methods, we found the Numerov prescrip-
tion for the spatial discretisation extremely valuable. With
only little additional effort, the accuracy is considerably
improved. As a result, rather large spatial step sizes ∆x
could be used, which reduced the computation time sub-
stantially.

Given appropriate values of its parameters, both
methods gave consistent results for the transition
probabilities considered. In order to additionally verify
their correctness, we compared them with the outcome of
a semi-classical analysis using the WKB method. Again,
very good agreement was obtained if Airy-tails extend-
ing into the classically forbidden region were taken into
account.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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