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Abstract: Thermodynamic quantities of small systems
fluctuate and have to be characterised by their appropri-
ate probability distributions. Within the two-point energy
measurement prescription, the distribution of work in a
quantum system can be derived from the transition proba-
bility from initial to final energy. We consider a simple yet
representative model system starting in thermodynamic
equilibrium and driven by an external force, and com-
pare two different numerical techniques to determine this
transition probability with respect to accuracy and numer-
ical effort. In addition, we perform a semi-classical anal-
ysis of the process using the WKB approximation. The
results agree well with the numerically exact values if Airy-
tails modelling the tunnelling into classically forbidden
regions of phase space are properly taken into account.

Keywords: Driven Quantum Systems; Transition

Probabilities; Work Statistics.

1 Introduction

The ongoing miniaturisation of technical devices like
engines and frigistors as well as the rapid development
of new experimental techniques in biophysics aiming
at the analysis of single molecules, molecular motors,
and ion pumps require new concepts for the theoretical
modelling of energy conversion at the nanoscale. Within
the last 20 years thermodynamics has been extended
to small systems with energy turnover comparable to
their energy fluctuations. The key concept is to describe
thermodynamics quantities like work, heat, and entropy
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by their corresponding probability distributions. The
new field of stochastic thermodynamics (for introduc-
tory reviews, see [1-3]) has meanwhile proven to provide
the appropriate framework for analysing the efficiency of
nanomachines [4-6], estimating free-energy differencesin
single-molecule experiments [7], and highlighting the role
of information as thermodynamic resource [8].

Focussing on small systems invariably brings quan-
tum effects into play. While stochastic thermodynamics
has reached a fairly mature state for classical systems,
the thermodynamic description of fluctuating quantum
systems is much less complete. One reason is that central
thermodynamic quantities like work and heat are no state
variables, and their proper quantum definition remains
controversial [9-12]. Work performed on a classical sys-
tem, e.g. depends on the complete trajectory the system
undergoes during the process. However, no entire quan-
tum analogue of the system trajectory is available. One
possible workaround restricts the analysis to isolated sys-
tems for which the work performed or delivered must be
equal to the energy difference of the system as required
by the first law of thermodynamics [12]. Then, measuring
the systems energy twice, first before the driving and sec-
ond after its end, should yield a first estimate for the work.
Although being simple and operative, this prescription
has its own deficiencies because it involves two projec-
tive measurements that destroy existing quantum correla-
tions. As a result, the system dynamics is merely replaced
by a classical stochastic process with just the transition
rates derived from quantum mechanics.

After the first energy measurement, the system is in an
eigenstate of the initial Hamiltonian. Being isolated from
its surroundings, it then follows a unitary evolution spec-
ified by the process under consideration. The final state
of this evolution determines the probability for the results
of the second energy measurement. In the simplest set-
ting, the system starts in equilibrium at some temperature
T, so the probability for the first energy value is given by
the Gibbs measure. The central quantity of interest deter-
mining the histogram of work values is then the transition
probability from the initial state to the one corresponding
to the value of the energy at the second measurement.

In the present paper, we study this transition proba-
bility for a simple but representative and not analytically
solvable model system introduced in [13]. We compare
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two different numerical methods for its determination,
characterise their accuracy as a function of the various
parameters, and recommend suitable choices for these.
Finally, we check our results against an approximate ana-
lytic treatment within a semi-classical framework.

The paper is organised as follows. Section 2 con-
tains the basic equations and fixes the notation. Section 3
describes the two numerical methods we use for our com-
parison. In section 4 we compare the results of these meth-
ods with each other and discuss in detail the influence of
the various parameters on accuracy and computing time.
Section 5 is devoted to the semi-classical analysis. Finally,
section 6 contains our conclusions.

2 Basic Equations

We consider the one-dimensional motion of a quantum
particle of mass M in a potential

V(x) = A(6) x* )

in the time interval 0 < t < t; with the parameter A(t)
changing from Ao := A(0) at t = 0 to Ay := A(ty) at final
time t; [13]. The dynamics is described by the time-
dependent Schrodinger equation for the wave function
Y(x, t) of the particle:

2
ihab(x, ) = —;—Ma,z(w,[)(x, DA Y 0. Q)

By the first energy measurement at t = 0, the sys-
tem is prepared in an energy eigenstate l/)ﬁ,(? of the initial
Hamiltonian H” satisfying

2
— R0 + Ao x W00 = EV 0, 0

with Eﬁ,?) denoting the corresponding energy eigenvalue.
Fort > 0, the state then follows the unitary time evolution
described by

U(t,0) = Te~ # o 41O )

where 7 denotes time ordering. The driving of the sys-
tem is specified by the explicit time dependence of the
Hamiltonian H(t). At the final time ¢ = t;, a second energy
measurement is performed that projects the state on an
eigenstate l,bn(f) of the final Hamiltonian HY) with corre-
sponding eigenvalue En(f).

Our central quantity of interest is the transition prob-
ability

P(n|m) := |<l/)51f)|U(tf, 0)|Y) ©)
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for the state to be projected onto z[),,(f) at t =ty when
starting in L/)S,?) at t = 0. We will only consider protocols
linear in time, i.e.

t
AO) = Ao + (A — AO)E- (6)
Introducing
2\ /6 2/3 2\ 2/3
h %’ and L /1(1)/3 s (7)
2MAq (h)lo)lB 2M

as units for length, time, and energy, respectively, and
measuring A in multiples of Ay, we arrive at the dimension-
less form of the Schrddinger equation (2)

dap(x, t) = —02(x, ) + A(O) x* P(x, t) (8)

with A(t) starting at Ag = 1.
For the classical x*— oscillator, the dependence of the
oscillation period T on the amplitude A is given by

rred) fam 1

T(A) = 2r0) T

©

Replacing A by the energy E of the particle, this corre-
sponds in dimensionless units to

rrd) 1

TE= 7)) v

1 1/4
(E) ~2.622(AE)" Y%, (10)

On the other hand, we get for the energy of the m-th
quantum level in the potential V(x) = Ax* from Bohr—
Sommerfeld quantisation the approximate expression [14]

/3
~ r(;)rQ) ! 1/3 1\*?
Em(A) ~ (3 F(%) A (m—i—i)

4/3
~ 2.185'3 (m+ 1) .

0 (1)

Combining (10) and (11), we find

—1/3
T := T(Em) ~ 2.155 17/ (m + %) (12)

for the classical oscillation period corresponding to the
m-th quantum level of energy. We will mainly be interested
in values of A between 1 and 5 and energy levels up to
m = 200. The relevant dimensionless oscillation periods
then lie in the range 0.2...1. In order to find appreciable
probabilities P(n|m) for off-diagonal transitions, m # n,
the driving process parametrised by A(f) should not be
slow on these time scales. Accordingly, for our numerical
investigations, we choose t; = 0.5 and Ay = 5.
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3 Numerical Methods

We use two different procedures to solve the Schrédinger
equation (8) numerically. The first one is the well-known
Crank-Nicolson method [15] that provides a direct pre-
scription to compute the wave function (x, t) at times
t > 0 given its initial form at ¢ = 0. The second method
employs a special ansatz for the wave function ¥(x, t)
involving time-dependent coefficients c,(t) [13]. It trans-
forms the Schrédinger equation (8) into a system of ordi-
nary differential equations for these coefficients that is
then solved numerically. In the following, we shortly char-
acterise both methods.

3.1 Crank-Nicolson Method

The central point of the Crank-Nicolson method is the
discretisation of the time evolution operator (4) in Cayley
form

Ut + At, £) = Te i d0HO)

_1—iH(t)5

=2 4 o),
. A
1+iH®BS

(13)

where At denotes the temporal step size. The main virtue
of this replacement is that the first term on the r.h.s. of (13)
is unitary and, therefore, norm preserving. The discretised
Schrédinger equation acquires the form

(1 + iH(t)%)zp(x, t+AD)

_ (1 - iH(t)§)¢(x, 0 (14)

with

H(t) = =07 + A x* (15)
as given by (8).

It is convenient to rewrite (14) in terms of a new func-
tion

y(x, t) := P(x, t + At) + P(x, O), (16)

and using the customary notations y*(x) := y(x, kAt),
A .= A(kAt), and 1/;"(x) := P(x, kAt) where k =0, ..., K
we find

9%y*(x)

sz =80y W+

17)
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with the abbreviations

g0 = <Akx‘* - iAit) (18)
and
700 = i 0. 19)

The second-order differential equation (17) has to be
solved numerically at every time step. To this end, we also
discretise the space coordinate x — x; = xo+jAx with the
spatial step size Ax and j = 0, ..., J and use the notation
y]’-‘ = yk(xj), etc.

From its structure, (17) is amenable to the Numerov
method that allows to improve on the accuracy of the solu-
tion with very little additional effort. The method is partic-
ularly efficient if a recursive procedure is used to perform
the necessary matrix inversion (see [16, 17]). The main idea
is the replacement

4.k 2
800 = 200 W) o)

as implied by (17) in the approximation

LA/ L Bt}
ox2 Ax?
1 a4 k
— 15 5 (A + 0(8x"),

for the second derivative with respect to x. In terms of the
auxiliary quantities

2
k Ax® g
and
k Kk Ak

one then gets a three-term recursion relation of the form

k k
why +wh, = <2+Ax2g’>W]’-‘+Ax2] (23)

that approximates the original Schrodinger equation (8) to
order O(At?) and O(Ax®).

The procedure is then as follows. With l/)]’f given from
the k-th time step, fj" is determined using (19). The poten-
tial A(f) x* fixes g}’f according to (18) and, subsequently,
dll-‘ by using (21). Therefore, the recursion (23) allows to
determine all wj-‘ from two initial values, wg and wk. From
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w]’-‘ , we find y]’f using (22), which via (16) gives .., the wave
function at the next time step:
k 2 rk
w; Ax? f;
j ik k4l k
E+Eﬁ_y]_ j + j (24)
j j

The final dodge of the algorithm concerns the point
that (17) has to be solved as a boundary value problem
with l/J]’f (and therefore also w]’f) given forj = Oandj =]
rather than as an initial value problem fixing w]’-‘ forj=0
and j = 1. As detailed in [17], this problem can be dealt
with by introducing yet another set of variables q]’-‘ and e]l‘
according to

whiy =: efwk + qf (25)
which transforms the recursion (23) into
k
8j 1
eJk*2+A2d*Ik*T (26)
J j—1
foar
qf = AL+ = 27)
dj e,

The initial conditions e§ — oo and g finite ensure

w’é = 0 and allow to successively calculate all e]’-‘ q}‘ using
(26) and (27). From these all, w]’f can be determined using
(25) by starting with W}‘ = 0 and decreasing j in each step
downtoj = 1.

3.2 Expansion in Instantaneous Eigenstates

The second method to solve the Schrédinger equation (8)
builds on an ansatz for the wave function [13]. We intro-
duce the eigenstates [)n(As)) and corresponding eigenval-
ues En(A¢) of the Hamiltonian H(t) for a fixed value A; of
the parameter A(t),

H(t) [Yn(Ae)) = En(Ad) [Pn(A0)). (28)

Next, we expand the state |i(x, t)) at time t on the
basis of these instantaneous eigenstates according to

N
() = 3" en®lPa))e 0 (29)
n=1
where
t
an(t) :== [ dt’ En(Ag). (30)
/
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The maximal value N of nin this expansion is a crucial
parameter for the accuracy of this method (cf. Section 4).
Plugging (29) into the Schrodinger equation (8), it trans-
forms into a set of linear ordinary differential equations
for the time evolution of the expansion coefficients cp(t):

a0 =% cl(t)<¢n(At)‘a‘g’A(ff) >ef(an<f>—m<f>>
l

_ ok (W)X [h1(AD) a6 -a(0)
= o0 2O Ry~ By ° ‘

(1)

Here, the second line follows from (28) and the
Hellmann-Feynman-theorem.

To solve this system of coupled ordinary differential
equations, we need the matrix elements () (A¢)|x*|1;(Ar))
and the instantaneous eigenvalues E;(A;) for each value of
A. Since the stationary Schrédinger equation is not ana-
lytically solvable, this can be a time-consuming numerical
task. However, if we rescale the space coordinate x in the
initial, i.e. A = 1, Schrédinger equation (28)

— il D+ x i, 1) = E) Py(x, 1) (32)
according to
x = AM%% (33)
we are left with
— 2 YiAY°%, 1) + A X (A%, 1)
= AP E(1) (A%, 1). (34)

Adapting the normalisation of the eigenfunctions to
the rescaled coordinate we therefore find the simple map-

pings
i(x, A) = A2, (A x, 1) (35)

EA) = ALPE1). (36)

These in turn allow to rewrite the system (31) in the
form

101 (Pn(D) x|, (1))
“Tot 2O 5@~ E(n)

I#n
« ol (EnD—E(D) (0 37)
with
t
o / dr AL, (38)
0
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Hence, we have to solve the stationary Schrodinger
equation only once, namely, for A = 1, which can be
done, e.g. with the matrix Numerov method [18]. Plug-
ging the results for [1);(1)) and E;(1) into (37) a completely
determined system of coupled linear differential equa-
tions with time-dependent coefficients for the expansion
parameters ¢, have to be solved numerically. For a bet-
ter comparison between the two methods, we use for this
task a second-order Runge—Kutta algorithm, which has the
same accuracy as in the Crank-Nicolson method.

4 Comparison of Results

In the present section, we compare the two numerical
methods described above with respect to their accuracy
as a function of the various parameters. To this end, we
study four representative examples for transition probabil-
ities corresponding to the combinations (n, m) = (46, 50),
(50, 50), (58, 50) and (50, 46). Their respective numeri-
cally exact values obtained with parameter combinations
detailed below are compiled in Table 1. We then change the
parameters such as, e.g. to reduce the necessary compu-
tation time and monitor the resulting deviations AP(n, m)
from these reference values.

Let us first look at the influence of the temporal and
spatial resolution on the results. Figure 1 shows the depen-
dence of the relative accuracy AP(n|m)/P(n|m) on the spa-
tial step size Ax. Irrespective of the specific values of m
and n, both methods yield accurate results for Ax < 1072
already. This is due to the high convergence rate of the
Numerov method discussed in Section 3.

The dependence on the time step At is qualitatively
similar, but now, step sizes of the order of At ~ 1074
or smaller are necessary to obtain reliable results. This
reflects the fact that the chosen time integration methods
are only accurate to order At?. Nevertheless, both methods

Table 1: Quantum mechanical and semi-classical transition
probabilities P(n|m).

n m P3™(n|m) Ps¢(n|m) P2e(n|m)
46 50 0.2695 0.2626 0.0023
50 50 0.1090 0.1089 0.8222
58 50 0.0449 0.0194 2.8-1076
50 46 0.2010 0.2009 0.0026

The numerically exact values of the second column were determined
by the Crank-Nicolson method with Ax = 7.5 -10—* and At= 10—°.
The expansion method yields exactly the same values for the digits
shown. The semi-classical results displayed in the third column
were obtained using 10° classical trajectories. The last column
shows the Crank-Nicolson values for a slower process with t; = 2.5.
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Figure 1: Relative accuracy AP(n|m)/P(n|m) of the transition
probabilities as function of the spatial resolution Ax for the Crank—
Nicolson (top) and the expansion methods (bottom). The other
parameters are At = 2.5-107° and N = 200.

are accurate and reliable for sufficiently small increments
in x and t.

The plateau values to which AP/P converge in
Figures 1 and 2 for small step sizes depend on the value
of the complementary parameter At and Ax, respectively,
and for the expansion method also on N. As an example
for the interplay of these parameters, we show in Figure 3
examples of heat maps of the accuracy in the Ax-At plane.
The qualitative behaviour is as expected: both Ax and At
have to be sufficiently small to obtain high accuracy. But
the figure also offers quantitative information. It is again
clearly seen that At has to be significantly smaller than Ax
for getting a desired accuracy. Moreover, comparison of the
figures with each other shows that for higher values of m
and n, a finer resolution in x and ¢ is necessary to get the
same accuracy. This is in line with intuition since higher
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Figure 2: Relative accuracy AP(n|m)/P(n|m) of the transition proba-
bilities as function of the temporal resolution At for Crank—Nicolson
(top) and expansion methods (bottom). The other parameters are
Ax =103 and N = 200.

values of m and n imply shorter wavelengths and higher
frequencies of the participating states.

When applying the expansion method, the maximal
value N of the expansion parameter is an additional
important parameter affecting the accuracy of the results.
Although it is obvious that N has to exceed both m and n, it
is not so clear to which extent, since during the driving of
the system between t = O and t = ty, a proper approxima-
tion of its state |(t)) may well require eigenstates |);) in
the superposition (29) with values of [ significantly larger
than those of n and m. Figure 4 gives an impression on
how the relative accuracies of the considered transition
probabilities depend on N. It shows that in the present con-
text, it is sufficient to include roughly 20 more modes than
given by the maximum of n and m. Note the large error in
P(58|50) if N remains below this threshold.
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Figure 3: Heat maps of the accuracy of the Crank—Nicolson method
for (n, m) = (50, 46) (top) and (n, m) = (58, 50) (bottom). Note that
the colour code in both figures is the same.
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Figure 4: Relative accuracy of the transition probabilities result-
ing from the expansion method as a function of the number N of
modes included in the expansion (29). The other parameters are
Ax =10"3and At =2.5-10°.
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Guided by the results displayed above, we have cho-
sen the parameters for the numerically exact reference val-
ues as given in the caption of Table 1. In the last column
of this table, we have included the values of the transi-
tion probabilities for t; = 2.5 instead of t; = 0.5, i.e. for
five times slower driving. These values show the approach
of the transition probabilities to P(n|m) = &um as required
by the adiabatic theorem of quantum mechanics. These
values, therefore, may serve as an additional independent
check of our numerical code.

5 Semi-Classical Analysis

In addition to the numerical methods discussed above,
we give in the following a short report on a semi-classical
treatment of the problem. Quite generally, semi-classical
methods yield approximations to quantum mechanical
results by building on classical trajectories [19]. For the
problem at hand, the classical equations of motion have
again to be solved numerically.

To obtain a semi-classical approximation for the tran-
sition probabilities (5), we need semi-classical expressions
for both the eigenfunctions 1/)n(f) of the final Hamiltonian
and the state |l/)$f{ )) = Ulty, 0)|1/)£,0,)> to which the initial
state |r,l)§,(1))> evolved at the end of the driving. Following
[13], we implement WKB wave functions of the form

P00 = zx/pﬁff)(x)exp{ 5700 - T] . 69
P (o) = Z\/mexzﬂ[ P -1 (f)}, (40)

where p bf )(x) and p ( ) denote the classical phase space
densities corresponding to the states |1/)(tf )> and |l/)(f)>,
S(tf )(x) and S(f)(x) are their classical actions, and y(tf )(x)
and u, )(x) denote the Maslov indices labelling the differ-
ent possible branches b of classical transitions [19]. For
notational simplicity, we suppressed the dependence on
nand m in the r.h.s. (39) and (40), respectively.
The scalar product in (5) then acquires the form

Wl lhe) = Z / dy/ppys e, (a1)
with
(&) (&)
Do) = 1 (55700~ 5P00) — 2 (1~ )

In a semi-classical analysis, one is interested in the
leading behaviour for 4 — 0; the integral in (41) may
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therefore be performed by the stationary phase approxi-
mation. Because of

ds

— =p©X),

P (42)

where p(x) stands for the classical momentum as function
of position, the condition

i) =0 @

for the stationary point xs translates to leading order into

PP 0cs) = P (xs) . (44)

The stationary points xs are therefore nothing but the
crossing points between the final classical orbit in phase
space and the curve H.(x, p) = E,. Here H, denotes the
classical Hamilton function.

Expanding the densities pg)( ) and p( f )( ) as well as
¢pp(x) to second order in (x — xs), we may replace the
sum over the branches b and b’ by a sum over the crossing
points and find to leading order in %

W eelihe) = vamp“f) i / dx eh %0’
t 2
pgf)pgf) ig; | 2TTh o sgn(Ks)
with

O =pPxs), 7 =pyxs),

1
¢s = 5 (83" 0x) = SPx)) -

04,

dZS(tf) dZS(f)
Ks = b ( s) b (Xs)
(tr)
_dpy d
o () - p—(xs)

Here, b and b’ denote the branches corresponding to
the crossing point xs.
Finally, the transition probabilities are given by

Plnim) = (el 9l N

with

2nh (t)
L pDpgt

aAs =
S ‘KS| S ’

n
0s = ¢s + ngn(xs)-
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The amplitudes as and phases 05 are fully determined
by the properties of the classical trajectories at the inter-
section points xs. Integrating the classical equations of
motion numerically for a certain number of different ini-
tial conditions corresponding to the same initial energy,
Hy(x, p) = E(,g), we determine the values of ¢s and ks
and produce reliable estimates for the densities pgf) and
pgtf ). Table 1 shows results for the transition probabili-
ties obtained in this way using 10° initial conditions and
compares them to the findings of Section 3.

For P(46|50), P(50|50) and also for P(50|46), the
results from the numerical solution of the Schrodinger
equation and those coming from the semi-classical anal-
ysis agree rather well. For P(58|50), there is a larger dis-
crepancy. It is due to the fact that, classically, only a finite
interval of energy transfers can be accomplished and the
difference E(ng - E(s%) lies just outside this energy window.
Building solely on classical trajectories, the semi-classical
method as described above must then fail. This is a stan-
dard problem of the WKB method that can be remedied by
a higher-order expansion of ¢, resulting in Airy-tails of
the semi-classical wave function extending into the clas-
sically forbidden region. Proceeding as described in detail
in Section V of [13], we get in this way the refined semi-
classical value P*°(58|50) = 0.0452 that agrees much bet-
ter with the corresponding result of Section 3.

In some circumstances, the semi-classical limit & — O
is found to be tantamount to the adiabatic limit ¢y — oo.
This seems to make a WKB treatment of non-diagonal tran-
sition probabilities P(n|m), n # m questionable. How-
ever, i cannot be compared with a time scale as such,
but only with a product of a time scale and a charac-
teristic energy. By considering rather large energy levels
m ~ 50, we chose this energy scale large enough to keep
the small % limit compatible with a comparatively short
driving time tf.

6 Conclusion

In the present paper, we have studied two numerical meth-
ods to determine the transition amplitude between energy
eigenstates of a simple quantum system driven by a time-
dependent external protocol. The corresponding transi-
tion probability is the pivotal quantity to compile the work
statistics of the system, which in turn determines many
of its thermodynamic properties. Our motivation was two-
fold: on the one hand, we systematically investigated the
accuracy of both methods as function of their parameters,
in particular of the temporal and spatial resolution used
in the discretisation. On the other hand, we compared the
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two methods with each other with respect to the numerical
effort involved.

Technically speaking, the problem consists of solving
the time-dependent Schrodinger equation for the one-
dimensional model system. No analytical solution is
available. Our first procedure implements the standard
Crank-Nicolson method for partial differential equations.
The second one builds on an expansion of the quantum
state into a superposition of instantaneous eigenstates of
the Hamiltonian.

Implementation of the Crank—Nicolson method gives
rise to a rather universal solver for the initial value prob-
lem of the Schrodinger equation with Dirichlet boundary
conditions. It is easily implemented, reliable, and yields
accurate results. However, it is a purely mathematical pre-
scription to solve a partial differential equation. There is
no way to improve its performance by using additional
physical insight into the dynamics of the system.

Expanding the searched-for wave function in the
instantaneous eigenfunctions of the system, on the other
hand, allows to calculate part of its time dependence
analytically. Moreover, studying the dependence of the
results on the number of states included valuable infor-
mation on which states contribute substantially to a spe-
cific transition and which do not. On the down side, this
method requires to solve the stationary Schrédinger equa-
tion of the system for each value of the protocol parameter
A(t) separately. As far as numerical effort is concerned,
the method is hence only competitive with the Crank-
Nicolson method if a way is found to circumvent the
repeated numerical solution of the eigenvalue problem of
the Hamiltonian. For our system, this was possible by a
scaling transformation as explained in Section 3.

In both methods, we found the Numerov prescrip-
tion for the spatial discretisation extremely valuable. With
only little additional effort, the accuracy is considerably
improved. As a result, rather large spatial step sizes Ax
could be used, which reduced the computation time sub-
stantially.

Given appropriate values of its parameters, both
methods gave consistent results for the transition
probabilities considered. In order to additionally verify
their correctness, we compared them with the outcome of
a semi-classical analysis using the WKB method. Again,
very good agreement was obtained if Airy-tails extend-
ing into the classically forbidden region were taken into
account.
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