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Abstract: In this paper, we study the second harmonic
generation and its interactionwith the fundamentalmode in
a magnetised dense positron-ion plasma interacting with
laser pulses. It has been shown that different harmonics
propagate with different phase velocities. The gradual evo-
lution of the fundamental wave into higher harmonics is
studied, and the conversion efficiency is calculated.
Dependence of conversion efficiency on wavenumber shifts
and the applied magnetic field has also been examined.

Keywords: laser beam; positron acoustic wave; positron-
ion plasma; plasma-vacuum interface; QHD; second har-
monic generation.

1 Introduction

In recent years, particle acceleration by the interaction of
high-intensity laser pulse with plasma has become of great
interest because of its tremendous applicability in funda-
mental research and industrial use. Such laser plasmas
have vast applications inmedical and biological fields. The
development for trapping and storing positrons [1, 2] al-
lows a large number of low-temperature positrons to form a
plasma. The physical properties of such plasma may vary
from the conventional ones, but the collective behaviours
shown by them are complimentary to electrons in plasmas.

Positrons are fundamentally important in the study
of physics because of their recombination with electron
to form neutral plasmas with dynamical symmetry be-
tween charged particles [3, 4]. Such positron-hydrogen
interactions have been often observed in astrophysical

environments. Many wave modes and associated in-
stabilities are found to occur in hydrogen plasmas and
solar system plasmas with an excess of positrons [5–7].

Many a time high energy electron beam propagates
through a dense positron plasma. A part of them recom-
bines releasing a tremendous amount of energy that causes
newer wave modes which may or may not survive
nonlinear Landau damping. Under such conditions, obli-
que propagation of waves is conventional [7]. If there is a
magnetic field present in such a homogeneous plasma
environment, both electrons and positrons may often
transform from a neutral plasma to two oppositely charged
species. Such a flip of state can be obtained by meticu-
lously varying the particle densities. The easy availability
of low energy positron is helpful in experimental studies of
magnetic confinement, positron-atom and positron-
molecule interaction, as well as often fundamental parti-
cles [8]. Because of the plasma ray astronomical studies,
such interactions are of immense value [9, 10]. Slow posi-
trons can be easily obtained from 22Na isotope (with half-
life 2.6 years) used along with a tungsten moderator. This
22Na isotope emits positronwith an energy of 545 KeVwhich
can be slowed down to 2 eV (nonrelativistic) by a tungsten
crystal [11, 12]. Now, that such a positron plasma has been
contained by any physical mean, there exists a plasma
vacuum boundary interface. When a wave is generated in
such a plasma due to nonlinear interactions, higher-order
harmonics are often found to originate. The resonant in-
teractions between the original wave and the newly
generated harmonics give rise to damping-like effects, as
well as energy conversion between them. In order to study
plasma harmonic generation by free particles, without the
competing effect of atomic harmonic generation by bound
particles, a preformed plasma is required [13].

In the present paper, we consider a laser pulse with a
phase velocity comparable to the velocity of light in a dense
magnetised positron plasma with low energy. We further
study the conversion efficiency of the harmonic generated
and the energy distribution arising out of such resonant
interactions.

The paper is organized in the following way: in section
2, starting from the fundamental equations, we derive the
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linear dispersion relation of second harmonics. In the next
section, we study the generation and interaction of the
second harmonics with the fundamental mode. Here, we
study the conversion efficiency and resonant interaction
with associated energy distributions. Finally, we conclude
with some remark on the scope for further study and its
possible applications.

2 Basic equations and model

We consider a magnetised quantum plasma consisting of
positrons and negatively charged ions occupying half-
space (x > 0) and bounded by vacuum (x < 0), as shown in
Figure 1. Wave is travelling along the x-axis, and the
plasma is considered collision less (almost) due to the Pauli
blockingmechanism. Electrostatic waves are considered to
be travelling in such a completely degenerate dense
plasma. The following basic equations govern the dy-
namics of such a plasma:

∂np
∂t

+ ∇
→

⋅ (npγu→p) � 0 (1)

( ∂
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∇ ⋅ E
→ � 4πe(np − Zieni) (3)

where ni = density of the negative ions, Zie = charge of the
negative ions. The Laplace equation in vacuum is given as
follows:

∇ϕν � 0 (4)

Here, up, Pp, ℏ, E, B, b, ni and ϕν are the fluid velocity,
degeneracy pressure, the Planck constant, electric field,
radiation magnetic field, applied magnetic field, ion den-
sity and electric potential in vacuum, respectively. The last
term of Eq. (2) is Bohm potential term. According to
Chandrasekhar [14], one can write the degeneracy pressure
in the following form:
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√
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where ‘c’ is the speed of light in vacuum and R = PF/mc
(PF⇒ Fermi relativistic momentum).

Now, the basic set of Eqs. (1)–(4) is normalised by
employing the following scheme (for simplicity, we will
confine ourselves in one dimension in the linear analysis)

x→ xωp

cs
, t → tωp, ωj → ωj
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, ϕ→ eϕ

2kBTF
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and
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is the plasma oscillation fre-

quency and cs �
����
2kBTF
me

√
is the positron acoustic speed. We

obtained the following equations:
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where ωc is the cyclotron frequency normalised with
respect to plasma oscillation frequency, H is the quantum
diffraction parameter defined as H = ℏωp/2kBTFe, (TFe→
Fermi temperature) and Gp � mpc2

6kBTFe
(R2

0/
��
1

√
+R2

0 ) [R0→
(n /n0)(1/3)]

3 Linear analysis

Weassume that every field quantity (f) has the following form:

f � f 0 + f(x)exp[i(kz − ωt)] + c.c (10)

Using Eq. (10) in Eqs. (6)–(9) and solving the resulting
equation under the boundary condition that electric po-
tential is continuous across the interface, we obtain the
following linear dispersion relation in one dimension:

ω � 1�
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√ ⎛⎝1 + k�
2

√
����������
ΛR0

3
+ H2k2

4

√ ⎞⎠ (11)

Figure 1: Schematic of polarized electromagnetic wave propagating
in homogeneous plasma.
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where Λ � mec2

2kBTFeZie
. The normalised frequency (ω) depends

on the wavenumber (k), electron Fermi temperature (TFe),
Quantum diffraction parameter (H ) and relativistic de-
generacy factor (R0).

4 Generation of second harmonic

Now, consider a linearly polarized (along the x-axis) laser
pulse propagating along the z-direction in a uniform
quantum plasma containing positive and negative ions.
The plasma is embedded in a transversemagneticfield in y-
direction. The electric field component of the laser beam is
given as follows:

E
→
l � 1

2
êxE0ei(k0z−ω0t) + c.c (12)

where ω0 =
ωp���
1−μ2

√ , µ is the refractive index of plasma, ωp is
plasma frequency and êx is a unit vector along x-direction.
As the wave propagates in the plasma, transverse current
densities at double the fundamental frequency are gener-
ated due to nonlinear laser-plasma interactions. Now, we
can write the corresponding electric fields for the funda-
mental and double fundamental frequencies (ω0 and 2ω0)
as follows:

E
→
1 � 1

2
êxE1ei(k1z−ω0t) + c.c (13)

E
→
2 � 1

2
êxE2ei(k2z−2ω0t) + c.c (14)

Here, E1 and E2 are the amplitudes; k1 and k2 are the
propagation vectors which are given as follows:

k1 � ω0

c
μ1 (15)

k2 � 2
ω0

c
μ2 (16)

where μ1 and μ2 are the corresponding wave refractive
indices for the plasma medium.

The wave equation governing the propagation of laser
beam in the plasma is given by as follows:

(∇2 − 1
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(17)

The total electric field vector due to interaction is given
as follows:

E
→ � E

→
1 + E

→
2 (18)

The plasma current density due to positrons is given as
follows:

J
→ � enu

→
p (19)

Using reductive perturbation expansion and following
the standard procedure, we obtain the first-order trans-
verse and longitudinal velocities as follows:
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While obtaining above velocity components (Eqs. 20
and 21), we assumed the first-order perturbed plasma den-

sity n(1) containing only the contribution from the funda-

mentals and first harmonic terms n(1) � n(1,1) + n(1,2), where
n(1,1) and n(1,2) vary as n1ei(k1z−ω0t) and n2ei(k2z−2ω0t). Now,
substituting perturbed positron density into continuity
equation, we derive the first-order plasma positron density
as follows:

n(1) � −1
2
[(cωcω0 − 2ω0Θq1n1 + 2iωcΘq1n1)k1n0λ1

(ω3
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in which
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Similarly, we can calculate the second ordered trans-
verse and longitudinal velocities as follows:
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The second-order x-component of velocity is generated
due to uniform magnetic field and reduces to zero in its
absence. However, the z-component of velocity is due to
the magnetic vector of the radiation field.

Substituting first-order densities and second-order
velocities in the continuity equation, we get the following
equation:
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The perturbed velocities and densities are used to
obtain the transverse current density from Eq. (19)
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Using Jx, we obtain the first and second harmonic
dispersion relations as follows:
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To obtain the amplitude of the second harmonic
term, we substitute the current density (Eq. 19) in the
wave Eq. (17), equate the second harmonic terms and
then after proper manipulation, we obtain the following
equation:
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where, wavenumber shift Δk is given as follows:

Δk � k2 − 2k1 (32)

The second harmonic conversion efficiency is given as
follows:

η � μ1|λ22|
μ2|λ21|

(33)
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5 Results

We have calculated the conversion efficiency of the funda-
mental into the second harmonic. We have studied the
relationship between the frequency and wavenumber shift
(Δk) and its dependence on the applied magnetic field. The
corresponding results are showngraphically inFigures 2 and
3.Figure 4 shows thedependence of conversionefficiencyon

the wavenumber shift for various values of the applied
magneticfield. It shows that conversion efficiency is large for
small wavenumber shift. Figure 5 shows the conversion ef-
ficiency length of wavenumber shift (η − z − Δk) plots. The
figure is symmetric and there is gradual decay along the
length and flip in directionality due to the phase factor of theFigure 2: : ω0 versus Δk with a varying magnetic field.

Figure 3: A contour plot of ω0 in (Δk − ωc) plane.

Figure 4: η versus Δk with varying ωc
ω0
.

Figure 5: Variation of conversion efficiency (η) with (z − Δk).
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propagating wave. As we knowharmonics carry energy with
it, the energy exchange during such a harmonic conversion
becomes important to study losses in the dispersive media.
Figure 6 shows the variation of maximum conversion effi-
ciency (ηmax) with the magnetic field. It is evident that for
lowmagnetic field strength, ηmax increases very slowly with
magnetic field, but for strong field, it increases rapidly.

6 Conclusions

In this work, analytical study of second harmonic genera-
tion by a polarized laser pulse in homogeneous dense
positron-ion plasma has been presented. The Lorentz force
acting on plasma positrons introduces changes in relativ-
istic mass and causes positron density perturbations, lead-
ing to change in the propagation characteristics of the laser
beam. Thewave equation governing the evolution of second
harmonic is set upbyusingnonlinear current density arising
due to the fundamental radiation. The slowly varying sec-
ond harmonic amplitude and the conversion efficiency are
obtained by solving the wave equation. This present study
reveals that the maximum conversion efficiency increases
with magnetic field strength and decreases with wave-
number shift. Our finding will help in the study of laser-
plasma interaction, as well as laser beam interacting, with
any nonlinear optical medium.
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