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Abstract: Loosely speaking, the concept of quantum
typicality refers to the fact that a single pure state can
imitate the full statistical ensemble. This fact has given rise
to a rather simple but remarkably useful numerical
approach to simulate the dynamics of quantummany-body
systems, called dynamical quantum typicality (DQT). In this
paper, we give a brief overview of selected applications of
DQT, where particular emphasis is given to questions on
transport and thermalization in low-dimensional lattice
systems like chains or ladders of interacting spins or fer-
mions. For these systems, we discuss that DQT provides an
efficient means to obtain time-dependent equilibrium
correlation functions for comparatively large Hilbert-space
dimensions and long time scales, allowing the quantitative
extraction of transport coefficients within the framework
of, e. g., linear response theory (LRT). Furthermore, it is
discussed that DQT can also be used to study the far-from-
equilibrium dynamics resulting from sudden quench sce-
narios, where the initial state is a thermal Gibbs state of the
pre-quench Hamiltonian. Eventually, we summarize a few
combinations of DQT with other approaches such as nu-
merical linked cluster expansions or projection operator
techniques. In this way, we demonstrate the versatility of
DQT.

Keywords: low-dimensional lattice models; numerical
simulation; quantum many-body dynamics; quantum
typicality; transport and thermalization.

1 Introduction

Unraveling the dynamics of isolated quantummany-body
systems is a central objective of modern experimental and
theoretical physics. On the one hand, new experimental
platforms composed of cold atoms or trapped ions have
opened the door to perform quantum simulations with a
high amount of control over Hamiltonian parameters and
initial conditions [1, 2]. On the other hand, there has been
substantial progress from the theoretical side to under-
stand (i) experimental observations and (ii) long-standing
questions about the fundamentals of statistical me-
chanics [3–7]. One such question is how to reconcile the
emergence of thermodynamic behavior with the unitary
time evolution of isolated quantum systems, i. e., to
explain whether and in which way an isolated system
relaxes towards a stationary long-time state which agrees
with the predictions from standard statistical mechanics.
Another similarly intriguing question in this context is to
explain the onset of conventional hydrodynamic trans-
port, i. e., diffusion, from truly microscopic principles [8–
10]. The numerical analysis of thermalization and trans-
port in isolated quantum many-body systems is at the
heart of this paper.

Generally, the theoretical analysis of quantum many-
body dynamics is notoriously difficult. Given a quantum
system H and an arbitrary nonequilibrium state ρ(0),
universal concepts to describe the resulting dynamics are
rare [11–13], and one is usually required to solve the
microscopic equation of motion for the density matrix ρ(t),
i. e., the von-Neumann equation

d
dt

ρ(t) � −i[H,  ρ(t)] (1)

(ħ � 1)which, in the case of a pure state ρ(t) � |ψ(t)〉〈ψ(t)|,
reduces to the Schrödinger equation

d
dt

|ψ(t)〉 � −iH|ψ(t)〉 . (2)

While the presence of strong interactions often pro-
hibits any analytical solution, numerical studies of Eq. (2)
are plagued by the exponential growth of the Hilbert space
upon increasing the number of degrees of freedom. More-
over, since thermalization and transport can potentially be
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very slow processes, the necessity to study long time scales
adds another layer of complexity.

Of course, for situations close to equilibrium, e. g., a
system being weakly perturbed by an external force,
linear response theory (LRT) provides a successful
framework to describe the system’s response in terms of
dynamical correlation functions evaluated exactly at
equilibrium [14]. However, analogous to Eqs. (1) and (2),
the calculation of such time-dependent correlation func-
tions for large system sizes and long time scales is a severe
challenge in practice.

Despite these difficulties, significant progress has
been made over the years thanks to the augmented avail-
ability of computational resources and the development of
sophisticated numerical techniques. Especially for one-
dimensional systems the time-dependent density matrix
renormalization group (tDMRG), including related
methods based on matrix product states, provides a
powerful approach to dynamical properties in the ther-
modynamic limit (for reviews, see [15, 16]). However, due to
the inevitable build-up of entanglement, this approach is
limited in the time scales which can be reached in simu-
lations.

In the present paper, the focus is on another useful
numerical approach to the dynamics of quantum many-
body systems, which is based on the concept of dynamical
quantum typicality (DQT) [17, 18]. In a nutshell, DQT means
that “the vastmajority of all pure states featuring a common
expectation value of somegeneric observable at a given time
will yield very similar expectation values of the same
observable at any later time” [17]. In fact, the idea of using
random vectors has a long and fruitful history [19–26]. By
virtue of an iterative forward propagation of these vectors in
real or imaginary time, dependencies on time and temper-
ature canbeobtained. SinceDQTcanbe implemented rather
memory efficiently, it is possible to study dynamical prop-
erties of quantum many-body systems with Hilbert-space
dimensions significantly larger compared to standard exact
diagonalization (ED). Moreover, there are no conceptual
limitations on the reachable time scales.

It is worth pointing out that DQT can not only be used
to obtain time-dependent properties [27–29] or spectral
functions [22, 30–32] but also static properties such as the
density of states [33] or thermodynamic quantities [34–37].
However, it is the aim of this paper to discuss the useful-
ness and versatility of DQT especially in the context of
thermalization and transport.

This paper is structured as follows. In Sec. 2, we give a
brief introduction to the concept of typicality and also
elaborate on the differences between typicality and the
eigenstate thermalization hypothesis (ETH). In Sec. 3, we

discuss various applications of typicality to the dynamics
of quantum many-body systems. Finally, we summarize
and conclude in Sec. 4, where we also provide an outlook
on further applications of DQT.

2 What is typicality?

Loosely speaking, the notion of typicality means that even
a single pure quantum state can imitate the full statistical
ensemble, or, more precisely, expectation values of typical
pure states are close to the expectation value of the sta-
tistical ensemble [20, 23–26]. While typicality has been put
forward as an important insight to explain the emergence
of thermodynamic behavior (see e. g., Ref. [23] for an
overview), let us here focus on the practical consequences
of typicality. In particular, let us consider the, e. g.,
canonical equilibrium expectation value 〈A〉eq of some

(quasi-local) operator A defined as

〈A〉eq � Tr[Ae−βH]
Ƶ � Tr[e−βH/2Ae−βH/2]

Ƶ , (3)

where Ƶ � Tr[exp(−βH)] is the canonical partition
function, β � 1/T(kB � 1) is the inverse temperature, and
we have used the cyclic invariance of the trace. Exploiting
typicality, it is possible to rewrite 〈A〉eq according to

〈A〉eq �
〈ψβ | A |ψβ〉

〈ψβ | ψβ〉
+ ε, (4)

where we have introduced the abbreviation
|ψβ〉 � e−βH/2|ψ〉, which is sometimes referred to as
thermal pure quantum state [36]. The reference pure state
|ψ〉 is drawn at random from the full Hilbert space with
finite dimension d according to the unitary invariant Haar
measure [17], i. e.,

|ψ 〉 � ∑
d

k�1
(ak + ibk)|k〉, (5)

where the coefficients ak and bk are drawn from a Gaussian
distribution with zero mean (other types of randomness
have been suggested as well [19, 38]), and the pure states |k〉
denote orthogonal basis states of the Hilbert space. (Note
that |ψ〉 is almost maximally entangled [39, 40].)
Importantly, the standard deviation of the statistical error
ϵ � ϵ(|ψ〉) of the approximation (4) scales as σ ∝ 1/

���
deff

√
,

where deff � Tr[exp(−β(H − E0))] is the effective dimension
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of theHilbert spacewith E0 being the ground-state energy of
H. Hereweassume thatA is a local operator (or a low-degree
polynomial in system size), which applies to all examples
discussed in this paper. For more details on error bounds
see, e. g., Refs. [18, 36]. For empirical estimates, see, e. g.,
Ref. [41]. Thus, deff is essentially the number of thermally
occupied states and, for β � 0, we have deff � d. As a
consequence, increasing the number of degrees of freedom
of a quantummany-body system, e. g., the number of lattice
sitesL, leads to an exponential improvement of the accuracy
(the higher the temperature, the faster), and Eq. (4) becomes
exact in the thermodynamic limit L→∞.

The typicality approximation (4) has proven to be
very useful to calculate equilibrium quantities of quan-
tum many-body systems such as the specific heat, en-
tropy, or magnetic susceptibility [34–37, 41]. For the
purpose of this review, however, it is most important to
note that typicality is not just restricted to equilibrium
properties, but also extends to the real-time dynamics of
quantum expectation values [17, 27–29, 42–44]. This
dynamical version of typicality forms the basis of the
numerical approach to time-dependent correlation func-
tions and out-of-equilibrium dynamics more generally,
which is discussed in Sec. 3.

Let us briefly discuss the relationship between typi-
cality and the ETH [45–47]. The ETH states that the
expectation values of local observables evaluated within
individual eigenstates |n〉 of generic (nonintegrable)
Hamiltonians coincide with the microcanonical ensemble
average at the corresponding energy density,

Ann � 〈n|A|n〉 � Amc(E). (6)

While this fact (i. e., pure states can approximate
ensemble expectation values) appears similar to our dis-
cussion of typicality in the context of Eq. (4), let us stress
that typicality and ETH are two distinct concepts. On the
one hand, while the ETH is assumed to hold for few-body
operators and nonintegrablemodels [5, 48–55], a rigorous
proof for its validity is still absent. On the other hand,
typicality is no assumption and essentially requires the
largeness of the effective Hilbert-space dimension. This
difference becomes particularly clear from the following
point of view: since the distribution of the ak and bk in Eq.
(5) is invariant under any unitary transformation, the state
|ψ〉 is a random superposition also in the eigenbasis of H
(whereas the ETH just refers to single eigenstates). Due
to this randomness, Eq. (4) holds even in cases where
the ETH breaks down, i. e., where the expectation values
of observables exhibit strong eigenstate-to-eigenstate
fluctuations.

Since typicality is independent of the validity of the
ETH, it can be used in integrable or many-body localized
models, where the ETH is expected to be violated [56–59].
As a side remark, typicality can also be used to test the
ETH [60].

Eventually, let us emphasize that the choice of the
specific basis |k〉 in Eq. (5) is arbitrary. Therefore, the
random state |ψ〉 can be conveniently constructed in
the working basis which is used to set up the Hamiltonian
and all other observables. For instance, when working
with spin-1/2 systems, a common choice is the so-called

Ising basis, i. e., the states |k〉 then denote the 2L different
combinations of ↑ and ↓. Naturally, it is possible to
combine DQT with the use of symmetries [61], where a
random state is then drawn independently within each
subsector.

3 DQT as a numerical tool

We now discuss the use of DQT as a numerical method. To
begin with, we discuss in Sec. 3.1 the iterative forward
propagation of pure states in large Hilbert spaces. After-
ward, as a first application, we demonstrate in Sec. 3.2
how typicality can be used to study the (local) density of
states. In Sec. 3.3, we then show how DQT can be used to
evaluate equilibrium correlation functions within the
framework of LRT. Sec. 3.4 is concerned with the out-of-
equilibrium dynamics in certain quantum-quench sce-
narios. Eventually, in Sec. 3.5, we discuss howDQT can be
combined with other approaches such as numerical
linked cluster expansions or projection operator
techniques.

3.1 Pure-state propagation

From a numerical point of view, a central advantage of the
typicality approach comes from the fact that one can work
with pure states instead of having to deal with full density
matrices. This fact leads to a substantial reduction of the
memory requirements, since it is possible to efficiently
generate time and temperature dependencies of pure
states. (Note that, while it is always possible to purify a
density matrix, the DQT approach in contrast does not
require to square the Hilbert-space dimension [62].)

Specifically, let us consider the pure state

|ψβ〉 � e−βH/2|ψ〉 introduced in Eq. (4). The time evolution of

|ψβ〉 is given by |ψβ(t)〉 � e−iHt|ψβ〉. The full evolution up to

time t can be subdivided into a product of consecutive steps,
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|ψβ(t)〉 � (e−iHδt)N |ψβ〉, (7)

where δt � t/N is a discrete time step. If δt is chosen
sufficiently small, there is a variety of methods to
accurately evaluate the action of the matrix exponential
e−iHδt without diagonalization of H. A particularly simple
approach in this context is a fourth-order Runge-Kutta
(RK4) scheme,where the time evolution is approximated as
[28, 29],

|ψβ(t + δt)〉 ≈ |ψβ(t)〉 + ∑
4

k�1
| f k〉. (8)

The four auxiliary states | f 1〉 − | f 4〉 are constructed
according to [28, 29],

| f k〉 � −iHδt
k

| f k−1〉, | f 0〉 � |ψβ(t)〉, (9)

and the error of the approximation (8) scales as O(δt5).
Note that the RK4 scheme in Eqs. (8) and (9) is equivalent to
a Taylor expansion of the exponential e−iHδt up to fourth
order. Note further that, in complete analogy to the
propagation in real time, the temperature dependence of
|ψβ〉 can be generated by an evolution in small imaginary
time steps iδβ.

Apart from RK4, other common and more sophisti-
cated methods to propagate pure states without diago-
nalization are, e. g., Trotter decompositions [34, 63],
Krylov subspace techniques [64], as well as Chebyshev
polynomial expansions [65–69]. A unifying property of all
these methods and RK4 is the necessity to calculate ma-
trix-vector products, i. e., to evaluate the action of the
Hamiltonian H onto pure states. Importantly, such ma-
trix-vector multiplications can be carried out relatively
memory efficiently thanks to the sparse matrix structure
of H in models with short-range interactions such as
nearest-neighbor couplings. As a consequence, it is
possible to numerically treat comparatively large system
sizes, i. e., with hugeHilbert-space dimensions far beyond
the range of ED.

3.2 Calculating the (local) density of states

As a first useful application, let us describe how pure
states, in combination with a forward propagation in real
time, can be used to evaluate the (local) density of states
[33]. To begin with, we note that the density of states of
some HamiltonianHwith eigenvalues En can be written as

Ω(E) �∑
n
δ(E − En) (10)

� 1
2π

∫
∞

−∞
eitETr[e−iHt]dt, (11)

where we have used the definition of the δ function. In the
spirit of Eq. (4), we can approximate the trace in Eq. (11) by
a scalar product with a randomly drawn pure state |ψ〉,

Tr[e−iHt]∝ 〈ψ|e−iHt|ψ〉 � 〈ψ | ψ(t)〉, (12)

such that Eq. (11) can be approximated as

Ω(E)∝ ∫
+tmax

−tmax

eitE〈ψ | ψ(t)〉dt, (13)

where 〈ψ(0) | ψ(−t)〉 � 〈ψ(0) | ψ(t)〉∗, and tmax is the
maximum time to which |ψ(t)〉 is evolved. Due to this
cutoff time, the resulting energy resolution ofΩ(E) is given
by ΔE � π/tmax. Thus, the density of states of some
Hamiltonian H can be obtained from the Fourier
transform of the survival probability 〈ψ | ψ(t)〉 of a
random pure state [33].

In fact, the relation (13) turns out to be useful for any

arbitrary pure state |ψ̃〉 (which is not necessarily drawn at

random). The local density of states P(E) of |ψ̃〉, i. e., the
spectral distribution of |ψ̃〉, is then defined as

P(E) � ∑
n
|〈n | ψ̃〉 |2 δ(E − En), (14)

where |n〉 are the eigenvectors of H with corresponding
eigenvalues En. Analogous to Eq. (13), P(E) can be written
as the Fourier transform of the survival probability of |ψ̃〉
[33, 70],

P(E)∝ ∫
+tmax

−tmax

eitE〈ψ̃ | ψ̃(t)〉dt. (15)

Relying on the forward propagation of pure states dis-
cussed in Sec. 3.1, it is thus possible to access Ω(E) and
P(E). Note that Eqs. (13) and (15) only provide the overall
shape (within the resolution ΔE) of Ω(E) and P(E), while
single eigenstates are difficult to resolve [71, 72].

As an example, let us consider the spin-1/2 XXZ chain,

H � J ∑
L

ℓ�1
(Sxℓ Sxℓ+1 + Syℓ S

y
ℓ+1 + ΔSzℓ S

z
ℓ+1), (16)

where Siℓ, i ∈ {x,  y,  z} are the components of the
corresponding spin-1/2 operators at the site ℓ, L is the
number of lattice sites, J � 1 describes the antiferromagnetic
coupling constant, and Δ > 0 is the anisotropy in the
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z-direction. In Figure 1, the density of states Ω(E) is shown
for the XXZ chain (16) with L � 24 and Δ � 1.5, obtained via
Eq. (13) with two independently drawn random states |ψ1〉

and |ψ2〉. As can be seen in Figure 1, Ω(E) has a broad and
Gaussian shape. Moreover, Ω(E) is essentially the same for
the two random states, which confirms the accuracy of the
typicality approach. In addition, we show P(E) for a
nonrandom state |ψ3〉, which is sharply peaked at the
borders of the spectrum [71].

3.3 Time-dependent equilibrium
correlation functions

Let us now turn to quantum many-body dynamics within
the framework of LRT. Within LRT, central quantities of
interest are time-dependent correlation functions CAB(t) of
two operators A and B evaluated in equilibrium,

CAB(t) � 〈A(t)B〉eq � Tr[A(t)Be−βH]
Ƶ

, (17)

where Ƶ is again the canonical partition function as defined
in Eq. (3), and A(t) is the time-evolved operator in the
Heisenberg picture. Analogous to Eq. (4), CAB(t) can be
rewritten according to [27–29],

〈A(t)B〉eq ≈
〈ψβ(t) | A | φβ(t)〉
〈ψβ(0) | ψβ(0)〉

, (18)

where we have introduced two auxiliary pure states,

|φβ(t)〉 � e−iHtBe−βH/2|ψ〉, (19)

|ψβ(t)〉 � e−iHte−βH/2|ψ〉, (20)

and |ψ〉 is a random state drawn from the full Hilbert space,
cf. Eq. (5). Importantly, in contrast to Eq. (17), the time (and

temperature) argument in Eq. (18) is now a property of the
pure states and not of the operators anymore. According to,
e. g., Eq. (8), |φβ(t)〉 and |ψβ(t)〉 can be evolved in real (and
imaginary) time.

In the context of transport, an interesting quantity is
the current autocorrelation functionCjj(t), which is defined
according to Eq. (17) with A � B � j, where j is the current
operator. Note that the Fourier transform of Cjj(t) is related
to the conductivity via the Kubo formula [14, 73].

For concreteness, let us (again) consider the XXZ chain
(16). In this case, the spin current operator j takes on the
form [73],

j � J ∑
L

ℓ�1
(Sxℓ Syℓ+1 − Syℓ S

x
ℓ+1). (21)

In Refs. [29, 74], Cjj(t)was studied by means of DQT for the
XXZ chain with particular focus on infinite temperature
β � 0. This infinite-temperature current autocorrelation
function is exemplarily shown in Figure 2 for Δ � 1 and
L � 33. To demonstrate the smallness of the statistical error
of DQT, we show results obtained from two independently
drawn random states. As can be seen in Figure 2, both
curves agree very well with each other for this choice of β
and L, even in the semi-logarithmic plot used. (For further
numerical data of Cjj(t) see also Figure 8 below.)

In addition to the XXZ chain, DQT has been used to
study Cjj(t) for a variety of other low-dimensional systems,
such as spin chains with next-nearest neighbor in-
teractions [71] and with spin quantum number S > 1/2 [59],
spin ladders [75–77] (also for energy currents), as well as
Fermi-Hubbard chains [78]. The possibility to calculate
Cjj(t) by means of DQT for large systems and long time
scales has proven to be very useful to extract transport

Figure 1: (Color online) Density of states Ω(E) of a spin-1/2 XXZ
chain with Δ � 1.5 and L � 24 sites, obtained from two independently
drawn random states

∣∣∣∣ψ1〉 and
∣∣∣∣ψ2〉. The local density of states P(E)

is shown for a nonrandom state
∣∣∣∣ψ3〉. Data is adapted from [71].

Figure 2: (Color online) Current autocorrelation function Cjj(t) at
β � 0 for the spin-1/2 XXZ chain with Δ � 1, obtained by DQT for
L � 33 sites. The calculation is done for two independently drawn
states (from the symmetry subsector with momentum k � 0). Data is
adapted from Ref. [74].

T. Heitmann et al.: Applications of typicality 425



coefficients, including (the finite-size scaling of) dc con-
ductivities, diffusion constants, and Drude weights, for
integrable andnonintegrablemodels [29, 56, 59, 71, 74–78].

Another interesting quantity in the context of transport
are the spatio-temporal correlation functions Cℓ, ℓ′(t) of,
e. g., spin, which are defined according to Eq. (17) with
A � Szℓ and B � Szℓ′ ,

Cℓ, ℓ′(t) � 〈Szℓ (t)Szℓ′〉eq. (22)

While a calculation of Cℓ, ℓ′(t) can be done according to Eq.
(18), a simplification is possible at infinite temperature
β � 0. Namely, at β � 0, one can introduce the pure state
[77]

|ψ′(0)〉 �
�����
Szℓ′ + c

√
|ψ〉������

〈ψ | ψ〉
√ , (23)

where |ψ〉 is again drawn randomly according to Eq. (5),
and the constant c is chosen such that Szℓ′ + c has non-
negative eigenvalues. Using Eq. (23), one finds

Cℓ, ℓ′(t) ≈ 〈ψ′(t) | Szℓ | ψ′(t)〉. (24)

Thus, it is possible to calculate Cℓ, ℓ′(t) just from one
auxiliary state [59], in contrast to the current autocorrela-
tions Cjj(t), where two states have to be evolved in time, cf.
Eqs. (19) and (20).

As an example, the equal-site spin-spin correlation
functionCL/2, L/2(t) at lattice site ℓ � L/2 is shown inFigure3 for
spin-1/2 XXZ chains with two different lengths L � 14 and
L � 28 [79]. (Note thatdue toperiodicboundaryconditions, the
specific lattice site ℓ is arbitrary.) As a demonstration of the
accuracy of the DQT approach, the calculation is done for two
independently drawn pure states |ψ〉. While the DQT data
closely follows theexact result atL � 14, the residual statistical
fluctuations disappear almost completely for L � 28. Note that
while we have chosen the XXZ chain to demonstrate the ac-
curacy of DQT for Cjj(t) [Figure 2] and for CL/2, L/2(t) [Figure 3],
similar curves can be obtained for other models and observ-
ables as well. For additional comparisons between DQT data
and exact ensemble averages, see, e. g., Refs. [29, 60].

As another example, the full time-space profileCℓ, L/2(t)
is shown in Figure 4 for a spin-1/2 XXZ chain with next-
nearest neighbor interactions and L � 36 sites [71]. While at
β � 0 different lattice sites are uncorrelated at t � 0, corre-
lations start to build up for t > 0.

A very similar example is shown in Figure 5, where the
spatio-temporal correlations for spin and energy densities

are depicted at fixed times. Yet, the model is a spin-1/2
Heisenberg ladder,

H � J∥ ∑
L

l�1
∑
2

k�1
Sl, k ⋅ Sl+1, k + J⊥ ∑

L

l�1
Sl, 1 ⋅ Sl, 2, (25)

where J∥(J⊥) denotes the coupling on the legs (rungs). The
data in Figure 5 are obtained for J∥ � J⊥ � 1 and L � 20, i. e.,
40 lattice sites in total [77]. For all times shown in Figure 5,
one finds that the profiles Cℓ, L/2(t) are convincingly

Figure 3: (Color online) Equal-site spin-spin correlation function
CL/2, L/2(t) for spin-1/2 XXZ chains (Δ � 1) with (a) L � 14 sites and (b)
L � 28 sites. For L � 14, ED is compared to DQT for two different
random pure states. While ED is unfeasible for L � 28, the statistical
fluctuations of the typicality approximation become negligible for
this system size. Data is adapted from Ref. [79].

Figure 4: (Color online) Time-space plot of the infinite-temperature
spin-spin correlation function Cℓ, L/2(t) � 〈Sz

ℓ (t)Sz
L/2〉eq for a spin-1/2

XXZ chain of length L � 36, nearest neighbor (Δ � 1.5) and next-
nearest neighbor (Δ′ � 1.5) coupling. Data is adapted from Ref. [71].
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described by Gaussians, which illustrates once again the
high accuracy of the DQT approach in the semi-logarithmic
plot used. Such a Gaussian spreading has been interpreted
as a clear signature of high-temperature spin and energy
diffusion in this and other models [57, 59, 71, 80, 81].

In addition, DQT has been used to obtain spatio-tem-
poral correlation functions Cℓ, ℓ′(t) in a number of other
models. Remarkably, clean Gaussian profiles have been
found in various parameter regimes, even for integrable
models such as the spin-1/2 XXZ chain [57] or the one-
dimensional Fermi-Hubbard model [80]. Other classes of
models which have been studied in this way include the

spin-1 XXZ chain [59] as well as spinmodels with quenched
disorder [59, 82].

3.4 Applications to far-from-equilibrium
dynamics

Nonequilibrium scenarios in isolated quantum systems
can be induced via explicitly time-dependent Hamilto-
nians or, e. g., by means of quantum quenches [83]. For
instance, the system can be initially in an eigenstate of
some Hamiltonian H1 while the subsequent dynamics are
governed by a different Hamiltonian H2.

Here, we discuss an alternative type of quench, where
the system starts in a Gibbs state with respect to (w.r.t.)
some initial Hamiltonian H1 (see Figure 6),

ρ(0) � e−βH1

Ƶ
. (26)

We then consider a quantum quench, whereH1 is changed
to some other Hamiltonian H2. The system then is in a
nonequilibrium state and evolves unitarily according to the
new Hamiltonian,

ρ(t) � e−iH2tρ(0)eiH2t . (27)

The post-quench Hamiltonian can, for instance, be created
by adding or removing a static (weak or strong) force of
strength ϵ to the initial Hamiltonian, i. e., H2 �H1 ± ϵA,
where the operator A is conjugated to the force [13, 58, 84,
85]. The resulting expectation value dynamics of, e. g., the
operator A is given by

〈A(t)〉 � Tr[ρ(t)A], (28)

and its evaluation in principle requires complete
diagonalization of both H1 and H2. As before, this

Figure 5: (Color online) Spin-spin correlation function Cℓ, L/2(t) at
fixed times, t � 0 (δ peak) and t � 1, 2, 4 (arrow), for a spin-1/2
Heisenberg ladder of length L � 20 (i. e., 40 lattice sites), at high
temperaturesβ � 0. Dashed lines areGaussianfits to the data. Panel
(a) shows spin densities, while panel (b) shows local energies. Data
is adapted from Ref. [77].

Figure 6: (Color online) Sketch of the quench
protocol. The system starts in a Gibbs state
with respect to some initial HamiltonianH1.
For times t > 0, the system evolves unitarily
according to some other HamiltonianH2 as
per ρ(t) � e−iH2t  ρ(0) eiH2t . This protocol
can also be modified by switching back to
the original Hamiltonian H1 (shown in the
upper branch on the right hand side) or by
further changes of the Hamiltonian in time.
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diagonalization can be circumvented by preparing a
typical pure state [13, 43, 58, 84, 85],

|Ψ(0)〉 � e−βH1/2|ψ〉�����������
〈ψ | e−βH1 |ψ〉

√ , (29)

which mimics the density matrix (26), and the reference
state |ψ〉 is again randomly drawn from the full Hilbert
space, cf. Eq. (5). Both the imaginary-time evolution w.r.t.
H1 and the real-time evolution w.r.t. H2 can be done
following Sec. 3.1. In this way, one gets

〈A(t)〉 ≈ 〈Ψ(t)|A|Ψ(t)〉. (30)

It is worth pointing out that the (simple) quench pro-
tocol above can be modified by additional changes of the
Hamiltonian in time. A static force switched on at time t � 0
can, for instance, be removed again at some later time t > 0,
see also Figure 6. Even for such protocols, the additional
efforts of the DQT approach are minor compared to ED,
where the diagonalization of multiple Hamiltonians has to
be carried out.

In Figure 7, the nonequilibrium dynamics 〈j(t)〉 of the
spin current is exemplarily depicted for a XXZ chain which
is initially prepared in a thermal state at the finite tem-
perature β � 1 (see caption of Figure 7 and Ref. [44] for a
more detailed description of the protocol). Here, the ac-
curacy of the DQT approach is demonstrated by comparing
to data obtained by ED.

3.5 DQT and its extensions

In addition to the direct applications discussed above, DQT
also is a useful tool to “boost” other (numerical or analyt-
ical) techniques, which can profit from accurate data for
large system sizes. Two examples of such techniques,
which have recently been combined with DQT, are nu-
merical linked-cluster expansions (NLCE) and projection
operator techniques.

3.5.1 NLCE

The key feature used in NLCE is the fact that the per-site
value of an extensive quantity on an infinite lattice can be
expanded in terms of its respective weights on all linked
(sub-)clusters that can be embedded in the lattice. While
NLCE is described in detail and generality in [86, 87], this
section focuses on practical aspects of NLCE, particularly on
its combination with DQT to calculate, e. g., current-current
correlation functions of one-dimensional systems. The
starting point of a corresponding NLCE is the expression

〈j(t)j〉eq
L

� ∑
c
LcWc(t), (31)

whereWc is theweight of a cluster cwithmultiplicityLc. To
avoid redundant computations, the multiplicity factor
(divided by the total number of lattice sites) accounts for
all clusters, which are symmetrically or topologically
related to one representative cluster and therefore yield
the sameweight. The weight of each cluster is evaluated by
the inclusion-exclusion principle

Wc(t) � 〈 j(t)j〉(c)eq − ∑
s⊂c
Ws(t), (32)

where theweights of all embedded clusters s are subtracted
from 〈j(t)j〉(c)eq evaluated on the cluster c.

Since the maximum treatable cluster size is naturally
limited by the available computational resources, the sum
in Eq. (31) has to be truncated to a maximum size cmax. In
one dimension, this truncated sum reduces to the differ-
ence of the autocorrelation functions of the two largest
open-boundary chains with length cmax and cmax − 1, i. e.,

∑
c�2

cmax

Wc(t) � 〈 j(t)j〉(cmax)
eq − 〈 j(t)j〉(cmax−1)

eq . (33)

As demonstrated in Ref. [88], this rather simple formula
can have a better convergence towards the thermodynamic
limit than a standard finite-size scaling at effectively equal
computational cost.

Figure 7: (Color online) Out-of-equilibrium dynamics of the spin
current j in the spin-1/2 XXZ chain with Δ � 0.5 and L � 16, starting
from a thermal state with β � 1. For times 0 < t < 5, an external force
acts on the system, which gives rise to an additional term∝ j within
the Hamiltonian. Results from the typicality approach are compared
to ED. DQT data are averaged over N � 100 random initial states and
the shaded area indicates the standard deviation. Data is adapted
from Ref. [44].
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As shown in Figure 8, the current autocorrelation
function for the spin-1/2 Heisenberg chain directly ob-
tained by DQT for a large system with L � 36 still exhibits
notable finite-size effects for times t > 20, whereas corre-
sponding DQT + NLCE data is already converged for these
times. Due to the truncation to a maximum cluster size
cmax, however, the expansion eventually breaks down and
only yields reliable results up to a maximum time, which
increases with cmax [88–90]. For the specific example in
Figure 8, this maximum time is tmax ∼ 40 for the maximum
cluster size cmax � 39 calculated.

When studying thermodynamic quantities, for which
the NLCE was originally introduced, using larger cluster
sizes similarly improves the convergence of the expansion
down to lower temperatures [87, 91]. Either way, it is thus
desirable to access cluster sizes as large as possible andDQT
can be used to evaluate the contributions of clusters beyond
the range of ED. Since the difference in Eq. (33) could be
sensitive to small statistical errors, it might be recom-
mended to average the DQT results over multiple random
pure states, in particular in higher dimensions, where the
NLCE expression is not just a single difference.

3.5.2 Projection operator techniques

The DQT approach can also be used in the context of pro-
jection operator techniques, e. g., the so-called time-con-
volutionless (TCL) projection operator method. These
techniques can be applied to situations where a closed
quantum system with Hamiltonian H0 is perturbed by an
operator V with strength λ, such that the total Hamiltonian
takes on the form

H �H0 + λV. (34)

In this setting, one then chooses a suitable projection on
the relevant degrees of freedom to obtain a systematic
perturbation expansion for the reduced dynamics.We refer
to [92–95] for a detailed description of the TCL method and
do not discuss it here in full generality.

Choosing a simple projection onto A only and consid-
ering the specific initial conditions ρ(0) ∼ A yields in sec-
ond order of the perturbation [92, 95]

〈A(t)〉H � 〈A(t)〉H0exp[− λ2 ∫
t

0

dt ′ γ2(t′)], (35)

where the second-order damping rate γ2(t) is given by

γ2(t) � −∫
t

0

Tr{[A,  VI(t′)][A,  V]}
〈A2〉

dt′ (36)

and the index I indicates operators in the interaction
picture.

The calculation of Eq. (36) can be conveniently done
using typical states and becomes especially simple in the
case where the observable of interest is conserved under
the unperturbed Hamiltonian, i. e., [A,  H0] � 0. By

definingK � [A,  V] andKI(t) � eiH0tKe−iH0t, the numerator
of Eq. (36) can be calculated as

Tr[KI(t)K]∝〈ψ(t)|K|φ(t)〉, (37)

with the auxiliary states

Figure 8: (Color online) Current-current correlation function
〈j(t)j〉eq/L in the XXZ chain (Δ � 1) at β � 0. Dashed line indicates
data obtained by DQT for L � 36 and periodic boundary conditions.
Solid lines are obtained by the combination of DQT and NLCE for
expansion orders cmax � 18,  32,  34,  36,  38,  39 (arrow). Data is
adapted from Refs. [88, 92].

Figure 9: (Color online) Current-current correlation function for
spin-1/2 XX ladders (J∥ � 1) with different interchain couplings J⊥
(shifted for better visibility). Symbols denote exact data obtained by
DQT for length L � 14, i. e., 28 spins in total. The solid lines indicate
the prediction from the (second order) TCL projection operator
method, cf. Eq. (35). Data is adapted from Ref. [92].
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|ψ(t)〉 � e−iH0t|ψ〉, (38)

|φ(t)〉 � e−iH0tK|ψ〉. (39)

In [92], the quality of the second-order prediction
(35) was numerically studied for the example of the
current autocorrelation functions 〈j(t)j〉eq in spin-1/2
ladder systems, where the interactions on the rungs
of the ladder are treated as a perturbation to the
otherwise uncoupled legs. As depicted in Figure 9, the
second-order prediction agrees convincingly with exact
data obtained by DQT for different strengths of the
perturbation.

4 Conclusion

To summarize, we have discussed several applications of
DQT and its usefulness as a numerical approach to the real-
time dynamics of quantum many-body systems. The main
idea of this typicality approach is to approximate ensemble
expectation values via single pure states which are
randomly drawn from a high-dimensional Hilbert space. In
particular, time (temperature) dependencies of expectation
values can be obtained by iteratively solving the Schrö-
dinger equation in real (imaginary) time, e. g., by means of
Runge-Kutta schemes or more sophisticated methods.

First, we have described that DQT can be used to study
the (local) density of states as well as equilibrium corre-
lation functions for long time scales and comparatively
large system sizes beyond the range of standard ED.
Especially in the context of transport, the calculation of
current autocorrelations and density-density correlations
by means of DQT is possible. Furthermore, we have out-
lined that DQT is suitable to investigate also the far-from-
equilibrium dynamics resulting from certain quench pro-
tocols. For instance, an initial Gibbs state is properly
imitated by a typical pure state and nonequilibrium con-
ditions are induced by removing or adding an external
force. Eventually, we have discussed that DQT can addi-
tionally be combined with other approaches. As one
example, we have shown that the convergence of NLCE can
be improved by evaluating the contributions of larger
clusters by means of DQT. As another example, we have
discussed that DQT allows to compute memory kernels
which arise in projection operator methods such as the TCL
technique.

While this paper has illustrated the usefulness of DQT
for selected applications in the context of transport and
thermalization, we should stress that there certainly are

other applications of DQT which have not been mentioned
by us. One such application, as done in, e. g., [96], is the
spreading of quantum information measured by so-called
out-of-time-ordered correlators (OTOCs) of the form [97],

C(t) � Tr[A(t)BA (t)B]
d

, (40)

where the operators A and B are, for instance, local
magnetization densities Szℓ at two different lattice sites.
Similar to the correlation functions discussed in Eq. (17),
the OTOC in Eq. (40) can be approximated as the overlap
C(t) ≈ 〈ψ2(t) | ψ1(t)〉 of the two auxiliary states |ψ1(t)〉�
A(t)B|ψ〉 and |ψ2(t)〉 � BA(t)|ψ〉, where |ψ〉 is again a
Haar-random state [96].

In conclusion, the concept of DQT offers a rather sim-
ple yet remarkably useful approach to study the real-time
dynamics of quantum many-body systems. It is our hope
that the examples discussed in this paper motivate its
application in other areas as well.
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