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Abstract: Nonlinear properties of ion-acoustic waves
(IAWs) are studied in electron-ion (EI) degenerate plasma
with the electron exchange-correlation effects by using the
quantum hydrodynamic (QHD) model. To investigate
arbitrary amplitude IAWs, we have reduced the model
equations into a system of ordinary differential equations
using a traveling wave transformation. Computational in-
vestigations have been performed to examine the com-
bined effect of Bohm potential and exchange-correlation
potential significantly modifies the dynamics of IAWs by
employing the concept of dynamical systems. The equi-
librium points of the model are determined and its stability
natures are analyzed. The phase portrait and Poincaré re-
turn map of the dynamical system are displayed numeri-
cally. Quasiperiodic as well as chaotic dynamics of the
system are confirmed through the Poincaré return map
diagrams.

Keywords: degenerate plasma; exchange-correlation ef-
fects; ion-acoustic waves; nonlinear structures.

1 Introduction

Studies in quantumplasmas have become important due to
their potential applications in the context of quantum
nano-diodes, nanophotonics and nanowires, nano-
plasmonics [1], spintronics [2], microplasma systems, and
small semiconductor devices, such as quantum wells [3],
piezomagnetic quantum dots [4] and microelectronics [5],
nonlinear optics [6], astrophysics [7], and solid density
target experiments [8]. The quantum plasmas were first

studied by Pines [9] in regimes where we have a high
density and a low temperature as compared to classical
plasmas. In quantum plasmas, since the de Broglie wave-
length of the charge carriers is larger than the Debye
wavelength and is near to the Fermi wavelength, quantum
effects associatedwith the strong density correlation play a
crucial role in plasma dynamics. The quantum hydrody-
namic (QHD) model is a popular approach to describe the
charged particle systems [10, 11] in quantum regime. The
QHD model consists of a set of equations that include
quantum effects through the so-called Bohm potential [12]
and thus fully deserve the qualification of “QHDs” [3].
Several theoretical attempts have beenmade to investigate
collective processes in the field of various quantum plasma
systems [13–18]. Ali et al. [19] investigated the linear and
nonlinear properties of the ion-acoustic waves (IAWs) us-
ing the QHD equations together with the Poisson equation
in a three-component quantum electron-positron-ion
plasma. Misra et al. [20] studied the nonlinear propaga-
tion of two-dimensional quantum IAWs (QIAWs) in
electron-ion (EI) quantum plasma.

The quantum mechanics play a crucial role in the
nonlinear dynamics of plasmas due to the overlapping of
electron wave functions owing to the Heisenberg uncer-
tainty principle, leading to electron tunneling though the
quantum Bohm potential [12], and electron exchange and
electron correlations [21] because of the electron-one-half
spin effect [22, 23]. Inclusion of these forces in the collective
behavior of the dense quantum plasma plays an important
role, since the physical phenomena appear on the atomic
and nanoscales. Quantum dispersive effects can also be
important for diagnostics of inertial fusion plasmas [24].
The interactions between the electrons can be separated
into a Hartree term due to the electrostatic potential of the
total electron density and an electron exchange-correlation
term [25]. The electron exchange-correlation term for the
first time has been considered in QHD by Crouseilles et al.
[26]. Recently, Shukla and Eliasson [27] discussed that the
influence of the electron-exchange due to the electron −1/2
spin plays an important role in the electric potential and
plasma dielectric function in degenerate quantum
plasmas. Also, it has been shown that the velocity associ-
ated with the electron exchange effect alters the quantum
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recoil effect in degenerate quantum plasmas. Plasmas
where exchange effects can be important occur in e.g.,
laser-plasma interaction experiments on solid targets, such
as in inertial confinement fusion schemes.

Thus, it would be expected that the nonlinear dy-
namics of the plasma waves in dense quantum plasmas
including the electron exchange-correlation effects are
quite different from those in classical plasmas since the
influence of electron exchange-correlation and the Bohm
potential alters the plasma dielectric function in quantum
plasmas. Many authors have studied the influence of
electron exchange-correlation term and Bohm force on the
propagation characteristics of several waves [28–35] in
plasmas and showed the relevance of exchange-
correlation potential in context with solid-state plasmas,
inertial confinement fusion plasmas and in an astrophys-
ical region such as white dwarf stars.

The influence of electron-exchange and quantum
screening on the collisional entanglement fidelity for the
elastic EI collision is investigated by Hong and Jung [36].
Khan et al. [37] studied a theory for the long range oscil-
latory wake potential with exchange-correlation due to the
motion of a test charge in strongly magnetized quantum
plasmas. However, since both laboratory and space
plasmas have finite ion temperatures, it is necessary to
investigate the existence of nonlinear plasma waves for
finite ion and electron temperatures. Chatterjee et al. [38]
studied the effect of ion temperature on the arbitrary
amplitude IA solitary waves in quantum EI plasma.
Recently, a number of works on nonlinear waves in
plasmas have been reported to study the quasiperiodic and
chaotic behavior of the plasma system [39–42]. Purpose of
this paper is to present an investigation of the nonlinear
dynamics of QIAWs in quantum plasmas including quan-
tum recoil effects, e.g., tunneling of degenerate plasma
species through the Bohm potential, as well as interaction
of exchange and correlation effects via number density.
Dynamical system governing the plasma system has been
formulated. Equilibrium points and their local stability
natures are determined. Numerical simulation results are
presented to show wide variety of qualitatively different
dynamics in the model.

2 Theoretical model

We consider homogeneous, unmagnetized, quantum
plasmas consisting of degenerate electrons, and nonde-
generate ions with the effects of exchange-correlation po-
tential to study the nonlinear propagation of ion acoustic
waves. The basic equations describing the nonlinear

dynamics of the low phase speed (kVFi≪ω≪kVFe) QIAWs in
one-dimensional quantum plasma are governed by [28, 43]
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Here, ne(ni) is the electrons (ions) number density,
ue(ui) the fluid velocity of the electrons (ions), me(mi) the
mass of electrons (ions), pe the pressure of electrons, e the
magnitude of the electron charge, ϕ the electrostatic po-
tential, ℏ the Planck constant divided by 2π. The second
term in the right-hand side of Eq. (3) is known as the
quantum statistical effect due to the Fermionic behavior of
the plasma particles and the third term represents the
Bohm potential effect due to the influence of the quantum-
diffraction [10]. This potential arises directly from the Schr
ö dinger equation, and it is responsible for quantum-like
behavior involving tunneling and wave-packet spreading
and comes from the nonlinear coupling between the scalar
potential associated with the space charge electric field
and the electron/ion wave function [10, 11]. The last term in
the right-hand side of Equation (3) represents the addi-
tional potential due to the influence of the electron-
exchange caused by the electron-spin. Such an exchange-
correlation potential for the electrons is given by [21]
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a*B � ϵℏ2/mee2, ϵ is the effective dielectric permeability of

the material. Because 18.37a*Bn
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e ≪ 1, for the sake of

simplicity we can take Vxc � −1.6 e2
ϵn
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e n1/3e + 5.65 ℏ2

me
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The pressure for electrons are given by

pe � mev2Fe
3n20

n3e (6)

where n0 is the equilibrium density for both electrons and
ions, and vFe is the electron Fermi velocity. It is connected
to the Fermi temperature by mev2Fe/2 � kBTFe, kB is the
Boltzmann’s constant.
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Now, to avoid inaccuracy in defining the Mach num-
ber, before the normalization procedure, let us follow the
investigation by Dubinov [44]. The linear dispersion rela-
tion can be obtained from linearized form of Eqs. (1)–(5) by
considering the perturbations of all dynamical variables of
the form ei(kx−ωt), where ω and k are the wave frequency and
wave number of perturbations. Thus, we obtain the
dispersion relation as

1 − ω2
pe

ω2 − v2Fek
2 − ℏ2k4

4m2
e
+ Γek

2
− ω2

pi

ω2
� 0, (7)

where ωpj � (4πn0e2
mj

)1/2

is the plasma frequency for the jth

particle and Γe � 0.53e2n1/30
meϵ

− 3.77ℏ2n2/30
m2

e
is the term corresponding

to electron exchange-correlation. Carrying out some simple
algebra, one can obtain the dispersion relation which
contains two branches:
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2. The plus and minus sign
before the square root in Equation (8), respectively,
correspond to the plasmon branch, for which the electron
and ion oscillations in wave are anti-phase and the
acoustic branch, for which the electron and ion oscillations
are in phase. Thus, the IAW can have two-tones, which
propagate with identical phase velocities [45, 46]. There-
fore, it may be concluded that periodic IAWs in the quan-
tum plasma system show two-tones, i.e. they are
synchronous superpositions of ion-plasma oscillations
and free quantum ion oscillations. Equation (8) shows that
the dispersion curves get significantly modified by the ef-
fects of the exchange-correlation coefficient. Now, the
expression for velocity of sound for the acoustic branch can
be determined by:
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where λFe = vFe/ωpe.
Now we introduce the following normalization.
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The parameter H measures the effects of quantum
diffraction. Physically, H is essentially the ratio between
the electron plasmon energy and the electron Fermi en-
ergy. The parameters λ and γ are two parameters, due to the
exchange-correlation potential.

Neglecting me/mi(≪1) and using the boundary condi-
tion ne = 1 and ϕ = 0 at infinity, we have the normalized
equations
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To study the arbitrary amplitude IAWs, we suppose
that all the quantities depend on ξ = x−Mt, where M is the
normalized nonlinear wave velocity. It should be
mentioned that M is not the Mach number [44], since we
have normalized it with a speed different from (9).

Now, under the appropriate boundary conditions, viz.
ui → 0, ni → 1, ϕ → 0 as ξ → ±∞, integration of equations
(13) and (14) yield the following
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Defining ne = A2 and using (15), (16) and (17), we obtain
the system of second order differential equations:
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3 Nonlinear analysis

The system (18) cannot be solved analytically to get solu-
tions in closed form. If we write A = X1 , dA/dξ = X2 ,ϕ = X3 ,
dϕ/dξ = X4, then system (18) takes the following form,
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The equilibrium point will be of non-hyperbolic if
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Then eigen values will be two pairs of imaginary
number and therefore possibility of bifurcation is observed
when
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The condition for purely oscillatory solutions near the
equilibrium point is given by both equation (24) and (25) ,
not only one. From equation (24) we get

1

M2 �
4(3 + 2λ − γ)

3H2 . (26)

Therefore, a necessary condition for bifurcation in
model (19) is given by condition (26), but it is not sufficient
condition for bifurcation. This condition gives critical
values of Mach number M depending on the value of H.

4 Numerical simulation results

In this section, we have investigated numerically the
qualitative dynamics of the system (18) to get insight of the
complexity of the wave profile with the help of numerical
simulation results in MATLAB R2018a, in the traveling
wave frame ξ. For illustration, we consider the values of
electron number-densities relevant to dense astrophysical
plasmas and metallic nanostructures [32], [47, 49]
n0∼1029m−3. In Figure 1(a), we have plottedϕ against ξ of the
system (18) for n0 = 2.35×1029m−3(H = 0.65, γ = 6.43), and
M= 3.25. Figure 1(b), (c) showphase diagrams dA/dξ versus
ϕ and ϕ versus dϕ/dξ, respectively, for the same data set.
Figure 1(d) shows Poincaré return map of the system (18).
The chaotic nature of the nonlinear system (18) is observed
from the Figure 1(d). The irregular set of points in thewhole
Poincaré plane guarantees the existence of chaos. Chaos is
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aperiodic long-term behavior of a system which has sen-
sitive dependence on initial conditions. In presence of
chaos, a small change in initial conditions causes unpre-
dictable variation of oscillation pattern of the state vari-
ables. Therefore state variables have unpredictable
bounded oscillation in the phase space for a chaotic
system.

Now, taking n0 = 2.48×1029m−3(H = 0.64, γ = 6.32) and
keepingM fixed asM = 3.25, we have plotted the solution of
the system (18) in Figure 2. The phase diagrams of the
system are displayed in Figure 2(b), (c). The quasiperiodic
nature of the dynamics is observed from the Figure 2(d) as
the points in the return map lie on smooth closed curves.
Quasiperiodicity is the simplest form of dynamics exhib-
iting nontrivial recurrence with low complexity. It is often
termed as a precursor to turbulence. Quasiperiodic
behavior is a pattern of recurrence with a component of
unpredictability that does not lend itself to the precise
measurement. The technique of Poincaré section diagrams
has been very helpful in studying qualitative properties of a

dynamical system, as it allows one to trace the properties of
quasiperiodic orbits of the original higher-dimensional
system, as projected on a lower-dimensional space (Poin-
caré surface). The Poincaré return map plots (Figure 2(d))
confirm the existence of quasiperiodic behavior in the
model for the above choice of physical parametric values.
When the number density n0 is allowed to further increase
(i.e., quantum diffraction H decrease), the system shows
the destabilizing natures and the pseudo recurrence
(quasiperiodic) behavior disappears and the chaotic state
is observed as seen from Figure 3. The route from quasi-
periodic to chaos is studied for the system by varying the
number density n0. Thus we observe that transition from
chaotic → quasiperiodic → chaotic behavior occur as the
value of number density n0 increases. The quasiperiodic
route to chaos is very different from that studied in most
low-dimensional systems such as the Lorenz system and
logistic map, where the period doubling route to chaos is
common. Therefore, it is very difficult to show the Lyapu-
nov exponent diagram clearly. We only show the Poincaré

Figure 1: For n0 = 2.35×1029m−3(H = 0.65, γ =
6.43), M = 3.25, (a) plot ϕ versus ξ of the
nonlinear dynamical system (18) (b) phase
diagram dA/dξ versus ϕ (c) phase diagram
ϕ versus dϕ/dξ (d) Poincare return map of
the system (18).

Figure 2: For n0 = 2.48 × 1029m−3(H = 0.64, γ =
6.32), M = 3.25, (a) plot ϕ versus ξ of the
nonlinear dynamical system (18) (b) phase
diagram dA/dξ versus ϕ (c) phase diagram
ϕ versus dϕ/dξ (d) Poincare return map of
the system (18).

P. Shome et al.: Exchange-correlation effects 681



return map diagram. It should be mentioned that Poincaré
return map plot is sufficient to show quasiperiodic
behavior and chaos. It is a well-established method to
show quasiperiodicity and chaos [50, 51]. To see the effect
of M on the dynamical properties of wave profile, phase
portraits and Poincare return map are explored in

Figures 4–6 for different values of M. From Figure 4, the
quasiperiodic nature of the dynamics has been observed.
The phase diagrams of the system are depicted in
Figure 4(b), (c). Existence of quasiperiodic behavior is
obvious from the Poincaré return map diagram presented
in Figure 4(d). Figure 5 represents the qualitative behaviors

Figure 3: For n0=2.80 × 1029m−3(H = 0.63, γ =
6.06), M = 3.25, (a) plot ϕ versus ξ of the
nonlinear dynamical system (18) (b) phase
portrait dA/dξ versus ϕ (c) phase portrait ϕ
versus dϕ/dξ (d) Poincare return map of the
system (18).

Figure 4: For n0 = 2.75 × 1029m−3(H = 0.63, γ =
6.10), M = 3.55, (a) plot ϕ versus ξ of the
nonlinear dynamical system (18) (b) phase
portrait dA/dξ versus ϕ (c) phase portrait ϕ
versus dϕ/dξ (d) Poincare return map of the
system (18).

Figure 5: For n0 = 2.75 × 1029m−3(H = 0.63, γ =
6.10), M = 2.05, (a) plot ϕ versus ξ of the
nonlinear dynamical system (18) (b) phase
diagram dA/dξ versus ϕ (c) phase diagram
ϕ versus dϕ/dξ (d) Poincare return map of
the system (18).
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of the system (18) for smaller value of M than the value
considered in Figure 4. The chaotic nature of the solution is
observed from the Figure 5(d). If we further decrease the
value of M, we again observe the quasiperiodic nature of
the dynamics as the points lie on smooth closed
curves (Figure 6(d)). Thus, for different values of M tran-
sition from quasiperiodic oscillations → chaotic na-
ture → quasiperiodic oscillations is observed. Therefore,
depending on the values of Mach number M, quantum
diffraction H or exchange-correlation parameter γ bi-
furcations are observed numerically through quasiperiodic
to chaotic solution and chaotic to quasiperiodic solution.
In this study, the theoretical analyses in support of the
numerically observed bifurcations are not provided.
Hence, we can summarize that the plasma system exhibits
either quasiperiodic or chaotic oscillations depending on
the values of the physical parameters and the transition
from quasiperiodic to chaotic oscillation or chaotic to
quasiperiodic oscillations is possible in the present plasma
model.

5 Conclusions

We have addressed the dynamical behavior of IAWs in
quantum plasmas with exchange-correlation effects by
using the QHD model. After deriving a set of coupled
equations for arbitrary amplitude IAWs, we have analyzed
the stability of equilibrium points employing the theory of
dynamical systems. We have also obtained the bifurcation
condition for the transition from quasiperiodic to chaotic
oscillation or chaotic to quasiperiodic oscillations.
Numerically it is shown that quasiperiodic as well as
chaotic behavior exist in the system depending on the
values of Mach number M and quantum diffraction H or

exchange-correlation parameter γ. Therefore, quantum
diffraction or electron exchange-correlation along with the
Mach number plays an significant role in the dynamics of
the model. Existence of these types of nonlinear structures
is confirmed by the plots of Poincare map. Transition from
quasiperiodic oscillation to chaotic motion or chaotic to
quasiperiodic nature is possible in such model with the
variation of values of the relevant parameters. The results
of the present investigation may have relevance to under-
stand the salient features of dense astrophysical as well as
laboratory plasmas.
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