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Abstract: We investigate nonequilibrium steady states in
an isolated system of few ultracold cesium atoms (Cs).
Numerically and experimentally, we study the dynam-
ics and fluctuations of the extracted position distribu-
tions and find the formation of nonthermal steady states
for absent interactions. Atomic collisions in the s-wave
regime, however, ensue thermalization of the few-particle
system. We present numerical simulations of the micro-
scopic equations of motion with a simple representation
of the s-wave scattering events. Based on these simula-
tions, a parameter range is identified, where the interac-
tion between few atoms is sufficiently strong to thermalize
the nonequilibrium steady state on experimentally acces-
sible time scales, which can be traced by monitoring the
atomic positiondistribution. Furthermore, the total energy
distribution, which is also accessible experimentally, is
found to be a powerful tool to observe the emergence of
a thermal state. Our work provides a pathway for future
experiments investigating the effect interactions in few-
particle systems and underlines the role of fluctuations in
investigating few-particle systems.

Keywords: Few-Particle System; Nonequilibrium; Ther-
malization; Ultracold Atoms.

1 Introduction
The description and investigation of nonequilibrium sys-
tems offer a vast field of open questions for both the-
ory and experiment [1, 2]. Specifically, the thermalization
of few-particle systems out of equilibrium and the prop-
erties of the steady state that is approached are studied
intensely [3, 4]. Experimentally, when employing large
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atom numbers, atomic interaction typically drives the
thermalization of the sample. A paradigmatic application
of this thermalization is the widely used technique of
evaporative cooling [5]. For few-particle samples, by con-
trast, interaction between the particles is usually negligi-
ble because the extremely low particle number results in
a low density of the sample and, hence, negligible scatter-
ing cross sections. Nevertheless, they provide an exciting
area of research because, for such few-particle systems,
the thermodynamic limit eventually breaks down, thus,
opening a way to investigate fundamental questions like
the definition of entropy [6]. A great advantage of ultra-
cold atom systems is that, even in the few-particle limit,
interaction between the particles can be tuned to a signif-
icant level by, e.g. employing a strong confinement of the
sample [7].

Here, we investigate an isolated system of few ultra-
cold cesium (Cs) atoms, forming a nonthermal steady
state. Based on experimental data, we devise a numerical
model indicating a parameter regime, where thermaliza-
tiondynamics of a few-particle systemcanbe resolved.Key
ingredients are, first, the large s-wave scattering length for
Cs–Cs collisions and, second, low temperatures created by
sympathetic cooling of the Cs sample with an ultracold
cloud of Rb atoms.

2 Microscopic Model
The interaction between ultracold atoms is characterized
by the scattering cross-section σ for atomic collisions. In
the effective-range approximation, this scattering cross
section reads

σ =
8πa2

a2k2 + ( 12areffk2 − 1)2
, (1)

for bosons [8, 9]. There, a is the Cs–Cs s-wave-scattering
length, which, for Cs, takes relatively large values in the
range of 103 a0 with a0 ≈ 0.5 Å being Bohr’s radius, k
is the collision wave-vector, and reff is the effective range
characterizing the scattering potential. The effective range
is accessible by the approximation [10]

reff ≈
Γ(1/4)4

6π2 āc

[︃
1 − 2

(︂
āc
a0

)︂
+ 2

(︂
āc
a0

)︂2
]︃
, (2)
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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where Γ is the Gamma function and

āc =
2π

Γ(1/4)2

(︂
2µC6
ℏ2

)︂1/4
(3)

is the asymptotic mean scattering length, which is a prop-
erty of the scattering potential [11]. Here, µ is the reduced
mass of the colliding atoms, and C6 = 6890.48 a.u. is the
van der Waals constant of the scattering potential [10].
These values yield an asymptotic mean scattering length
of āc = 97 a0 and an effective range of reff = 300 a0. The
dependence of the scattering cross section on the collision
energy Ec = ℏ2k2/2µ, which results from (1) is shown in
Figure 1. The dependence features two limiting cases: For
small energies and, hence, small wave vectors k, the cross
section approaches σ(Ec = 0) = 8πa2. For large energies
Ec ≫ 0, the cross section asymptotically approaches σ =
8π/(k2 + r2effk

4/4) from below, even for very large scat-
tering lengths a. As a result, in order to harness a large
s-wave-scattering length, sufficiently low collision ener-
gies and hence temperatures need to be realized experi-
mentally. This provides a pathway towards large scattering
cross sections and, thereby, significant interaction even in
the few-particle regime.

For a thermal sample at temperature T, themean colli-
sion energymay be estimated by ⟨Ec⟩ = µv̄2/2 = 4kBT/π,
with the mean relative velocity v̄ = (16kBT/πmCs)1/2 of
the gas [12]. In the following, we assume Cs atoms to be
prepared initially at a temperature of T = 200 nK and
subjected to a quench of the dipole-trap potential, which
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Figure 1: The Cs–Cs scattering cross-section σ (blue line) depends
strongly on the collision energy Ec in the relevant energy range. The
dashed green line indicates the scattering cross-section σ given by
the scattering length a(B = 0) = −3068 a0 for Ec → 0. For Ec > 0,
an upper bound arises from the wave-vector (solid green line). The
vertical red lines indicate the relevant energy scales for the simu-
lation with mean collision energy at temperature T = 0.2 µk and
T = 1.6 µk.

increases the total energy of the sample corresponding to
an effective temperature ofT = 1.6 µK. Themean collision
energies for these situations are indicated in Figure 1 by
vertical lines.

The above considerations apply for Cs atoms at small
magnetic fields, which are in the order of the earth’s
magnetic field of a few hundred Milligauss. However, by
employing magnetic Feshbach resonances, the s-wave-
scattering length a can be tuned within a broad range
around the background scattering length abg = 1875a0
[13]. At every Feshbach resonance i, which is characterized
by its resonance field B*0,i, the scattering length features a
pole and, therefore, allows tuning of the scattering length
in the vicinity of the resonance. The analytical formula
describing the dependence of the scattering length on the
magnetic field reads [13]

a(B) = abg
N∏︁
i=1

B − B*i
B − B*0,i

, (4)

where B*i is the corresponding zero crossing fields
that quantify the width of every resonance. The Cs–Cs
Feshbach resonances in the magnetic field range up to
100 Gwere investigated experimentally in [13]. We use the
values for B*i and B*0,i, which were found there for the
three dominant resonances to reconstruct the Cs–Cs scat-
tering length a(B), which is shown in Figure 2. This repro-
duction of data also yields the scattering length for small
magnetic fields a(0) = −3068 a0. This is a large abso-
lute value compared to other scattering lengths, which are
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Figure 2: Dependence of the Cs–Cs s-wave-scattering length (blue
line) on the magnetic background field B, reproduced using the
values given in [13]. The Feshbach resonances are indicated by
red vertical lines at their corresponding resonance field B*

0,i. The
dashed blue line indicates the background scattering length abg.
The shaded gray area corresponds to a hypothetical negative
magnetic field strength, which is not accessible.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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where Γ is the Gamma function and

āc =
2π

Γ(1/4)2

(︂
2µC6
ℏ2

)︂1/4
(3)

is the asymptotic mean scattering length, which is a prop-
erty of the scattering potential [11]. Here, µ is the reduced
mass of the colliding atoms, and C6 = 6890.48 a.u. is the
van der Waals constant of the scattering potential [10].
These values yield an asymptotic mean scattering length
of āc = 97 a0 and an effective range of reff = 300 a0. The
dependence of the scattering cross section on the collision
energy Ec = ℏ2k2/2µ, which results from (1) is shown in
Figure 1. The dependence features two limiting cases: For
small energies and, hence, small wave vectors k, the cross
section approaches σ(Ec = 0) = 8πa2. For large energies
Ec ≫ 0, the cross section asymptotically approaches σ =
8π/(k2 + r2effk

4/4) from below, even for very large scat-
tering lengths a. As a result, in order to harness a large
s-wave-scattering length, sufficiently low collision ener-
gies and hence temperatures need to be realized experi-
mentally. This provides a pathway towards large scattering
cross sections and, thereby, significant interaction even in
the few-particle regime.

For a thermal sample at temperature T, themean colli-
sion energymay be estimated by ⟨Ec⟩ = µv̄2/2 = 4kBT/π,
with the mean relative velocity v̄ = (16kBT/πmCs)1/2 of
the gas [12]. In the following, we assume Cs atoms to be
prepared initially at a temperature of T = 200 nK and
subjected to a quench of the dipole-trap potential, which

0.0 0.5 1.0 1.5 2.0

Collision energy Ec/kB (µK)

0

2

4

6

8

C
ro

ss
-s

ec
ti

o
n
 σ

 (
1
0

−
9
cm

2
)

Figure 1: The Cs–Cs scattering cross-section σ (blue line) depends
strongly on the collision energy Ec in the relevant energy range. The
dashed green line indicates the scattering cross-section σ given by
the scattering length a(B = 0) = −3068 a0 for Ec → 0. For Ec > 0,
an upper bound arises from the wave-vector (solid green line). The
vertical red lines indicate the relevant energy scales for the simu-
lation with mean collision energy at temperature T = 0.2 µk and
T = 1.6 µk.

increases the total energy of the sample corresponding to
an effective temperature ofT = 1.6 µK. Themean collision
energies for these situations are indicated in Figure 1 by
vertical lines.

The above considerations apply for Cs atoms at small
magnetic fields, which are in the order of the earth’s
magnetic field of a few hundred Milligauss. However, by
employing magnetic Feshbach resonances, the s-wave-
scattering length a can be tuned within a broad range
around the background scattering length abg = 1875a0
[13]. At every Feshbach resonance i, which is characterized
by its resonance field B*0,i, the scattering length features a
pole and, therefore, allows tuning of the scattering length
in the vicinity of the resonance. The analytical formula
describing the dependence of the scattering length on the
magnetic field reads [13]

a(B) = abg
N∏︁
i=1

B − B*i
B − B*0,i

, (4)

where B*i is the corresponding zero crossing fields
that quantify the width of every resonance. The Cs–Cs
Feshbach resonances in the magnetic field range up to
100 Gwere investigated experimentally in [13]. We use the
values for B*i and B*0,i, which were found there for the
three dominant resonances to reconstruct the Cs–Cs scat-
tering length a(B), which is shown in Figure 2. This repro-
duction of data also yields the scattering length for small
magnetic fields a(0) = −3068 a0. This is a large abso-
lute value compared to other scattering lengths, which are
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Figure 2: Dependence of the Cs–Cs s-wave-scattering length (blue
line) on the magnetic background field B, reproduced using the
values given in [13]. The Feshbach resonances are indicated by
red vertical lines at their corresponding resonance field B*

0,i. The
dashed blue line indicates the background scattering length abg.
The shaded gray area corresponds to a hypothetical negative
magnetic field strength, which is not accessible.
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relevant for, e.g. two-species Rb–Csmixtures with aRbCs =
645 a0 and aRbRb = 101 a0 [14, 15] and illustrates the
comparably strong Cs–Cs interaction in the experiment.
The large negative value stems from a broad Feshbach res-
onance at a resonance field of −11.1 G [13]. While this
negative magnetic field strength cannot be realized physi-
cally, the influence of this resonance dominates the char-
acteristics of the scattering length in the field range from
zero to 100 G. This includes a zero-crossing around B =
18 G. Overall, the broad Feshbach resonance offers the
opportunity to experimentally tune the Cs–Cs interaction
from large negative to positive values and also facilitates
the suppression of interaction by setting the magnetic
field to the zero crossing field. Thereby, the interaction
within few-particle samples of Cs atoms can be tightly
controlled.

In order to simulate the long-time evolution based
on microscopic dynamics, we solve the microscopic
equations of motion for every Cs atom numerically by a
third-order Runge–Kutta method [16]. The effect of s-wave
scattering is included in the simulation by a simple hard-
sphere model: The relative distance rij = |⃗ri − r⃗j| between
all pairs of particles i, j = 0 . . . N is evaluated after every
simulation time step. A scattering event is triggered,
when the inter-atomic distance is smaller than the scatter-
ing cross-section rij < (σij/π)1/2. There, the cross-section
σij(kij) is calculated from (1) for every atomic pair, tak-
ing into account the scattering wave-vector kij = µvij/ℏ,
which is determined by the relative velocity vij = |⃗vi − v⃗j|
of the particles. When a scattering event is triggered, the
relative velocity in the center-of-mass frame of the parti-
cles is redistributed to a randomly drawn angle. This sim-
ulates the momentum exchange and takes into account
the isotropic nature of the s-wave scattering. This micro-
scopic treatment of the scattering processes implies a
quadratically growing complexity of the problem O(N2)
with the particle number of the sample N. While this ren-
ders the method in its present implementation unfeasi-
ble for typical many-particle systems, the computational
effort for few-particle systems is small: For a typical atom
number of N = 10, the computation time used for the
implementation of the scattering events is smaller than
the time that is needed for finding the solutions to the
equations of motion. Typical simulations of several thou-
sand trajectories require computation times around 1 day
on a standard office desktop computer. Therefore, the
simple numerical implementation of s-wave scattering
presented here is a well-performing approach to model
the microscopic dynamics of interacting few-particle
systems.

3 Steady-States Versus
Thermalization Dynamics

For the few-particle dynamics considered here, the opti-
cal dipole trapping setup is a crucial component, as it
provides the conservative potential, which confines the
particles in vacuum [5] and allows to tune the effective
scattering rate independently from the scattering length.
A schematic view of the most important constituents of
the setup considered here is shown in Figure 3a. The hor-
izontal and vertical dipole-trap laser beams are generated
by the same laser source at a wavelength of 1064 nm and
induce an attractive potential for Cs atoms. The main con-
finement is createdby thehorizontal beamwith a total trap
depth of kB × 365 µK at a power of 1 W and a Gaussian
beam waist of 21 µm. The crossed horizontal beam with
a beam waist of 165 µm and power of 1 W adds a contri-
bution of kB × 15 µK, as indicated in Figure 3b. The pur-
pose of this beam is to create a small anharmonicity,which
facilitates the dephasing of atomic trajectories, which will
be discussed later. This induced anharmonicity is illus-
trated by the dashed and dotted lines in Figure 3b, which
represent the harmonic approximation at the trap center,
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Figure 3: (a) Illustration of the dipole trapping beams, which cre-
ate the confinement of the atoms (yellow) and the optical lattice
that can be employed for axial localization of the atoms (blue).
(b) Potential cut along the z-axis. The solid line indicates the com-
bined potential from horizontal and vertical beam. The dashed line
is the corresponding harmonic approximation, and the dotted line
is the harmonic approximation of only the horizontal dipole-trap
laser beam. The green shaded distribution indicates the initial Cs
distribution in the simulation.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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as well as the harmonic approximation for the potential
created exclusively by the horizontal beam, respectively.
While the former is relevant for the dynamics at the trap
center, the latter characterizes the trapping potential out-
side of the center. An additional optical lattice potential
is created by two counter-propagating laser beams along
the horizontal (z-) direction at a wavelength of 790 nm,
which creates a repulsive potential for Cs atoms. It, hence,
tightly confines Cs atoms axially in the horizontal dipole-
trap beam. By applying a relative detuning between the
two counter-propagating beams, the interference pattern
can be set intomotion, and thereby, precise transportation
of Cs atoms along the z-axis can be achieved, realizing an
atomic conveyor belt [17, 18].

We first numerically investigate a thermal distribution
of Cs atoms at a temperature of 200 nK. This temperature
can be achieved, for example, by employing sympathetic
cooling within a cold cloud of Rb atoms, which can be
prepared experimentally at this temperature. We already
demonstrated the successful immersion of Cs atoms into
cold clouds of Rb atoms in [19, 20], and [21]. By remov-
ing the cold Rb bath from the dipole trap by means of a
resonant pulse of laser light, a pure Cs sample at such
low temperatures can be prepared. Subsequently, all Cs

atoms are transported out of the trap center by means
of the conveyor-belt optical lattice, preparing them at a
distance of 100 µm from the potential minimum. Dynam-
ics is initiated by releasing these Cs atoms, which creates
a nonequilibrium state featuring an oscillatory behavior.
The Cs mean atom number can be controlled experimen-
tally by varying the Cs MOT loading time, allowing for
typical mean atom numbers between 1 and 10 atoms.

Using the numerical simulations described previ-
ously, we compute in total 5× 103 trajectories. We extract
the dynamics of the axial position distribution f (z), which
is shown in Figure 4 for two different settings: a non-
interacting case is realized by setting the Cs atom num-
ber per sample to N = 1, which nullifies the occurrence of
scattering events (see Fig. 4a,b). For the interacting case,
a sample size of N = 10 atoms is considered, allowing for
atomic collisions (see Fig. 4c,d). This range of atom num-
bers corresponds to values that are routinely accessible in
the experiment.

During the first oscillation periods, the evolution of
the non-interacting and interacting samples is almost
identical, exhibiting the expected oscillation at an ampli-
tude of 100 µm. In the non-interacting case, these oscil-
lations dephase more and more because different parts of
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Figure 4: Numerically simulated dynamics of the axial position distribution f (z) for an initially displaced thermal Cs sample having (a) N = 1
and (c) N = 10 atoms. The atomic density is represented by the colormap and plotted versus the time and the position z in the trap. The
regions indicated by the vertical red, orange, and blue lines starting at 0.0 s, 0.5 s, and 2.0 s, respectively, are used to compute the aver-
aged axial density distributions, which are shown in (b) and (d). The insets illustrate the axial phase space distribution at the start of every
region. The horizontal axis of the phase space illustration displays the z-axis in the range of ±200 µm, while the vertical axis corresponds
to the velocity vz in the range of ±50 mm/s. (b, d) The mean value is shown as solid lines, while the area between the 10th and 90th per-
centile is indicated by colored shading illustrating the time-averaged fluctuations around the mean. Red, orange, and blue indicates the
corresponding starting times of 0.0 s, 0.5 s, and 2.0 s, respectively. In both cases, the solid black line indicates the distribution of a
thermal state in harmonic approximation with a temperature of T = 1.6 µk, corresponding to the total energy in the system.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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as well as the harmonic approximation for the potential
created exclusively by the horizontal beam, respectively.
While the former is relevant for the dynamics at the trap
center, the latter characterizes the trapping potential out-
side of the center. An additional optical lattice potential
is created by two counter-propagating laser beams along
the horizontal (z-) direction at a wavelength of 790 nm,
which creates a repulsive potential for Cs atoms. It, hence,
tightly confines Cs atoms axially in the horizontal dipole-
trap beam. By applying a relative detuning between the
two counter-propagating beams, the interference pattern
can be set intomotion, and thereby, precise transportation
of Cs atoms along the z-axis can be achieved, realizing an
atomic conveyor belt [17, 18].

We first numerically investigate a thermal distribution
of Cs atoms at a temperature of 200 nK. This temperature
can be achieved, for example, by employing sympathetic
cooling within a cold cloud of Rb atoms, which can be
prepared experimentally at this temperature. We already
demonstrated the successful immersion of Cs atoms into
cold clouds of Rb atoms in [19, 20], and [21]. By remov-
ing the cold Rb bath from the dipole trap by means of a
resonant pulse of laser light, a pure Cs sample at such
low temperatures can be prepared. Subsequently, all Cs

atoms are transported out of the trap center by means
of the conveyor-belt optical lattice, preparing them at a
distance of 100 µm from the potential minimum. Dynam-
ics is initiated by releasing these Cs atoms, which creates
a nonequilibrium state featuring an oscillatory behavior.
The Cs mean atom number can be controlled experimen-
tally by varying the Cs MOT loading time, allowing for
typical mean atom numbers between 1 and 10 atoms.

Using the numerical simulations described previ-
ously, we compute in total 5× 103 trajectories. We extract
the dynamics of the axial position distribution f (z), which
is shown in Figure 4 for two different settings: a non-
interacting case is realized by setting the Cs atom num-
ber per sample to N = 1, which nullifies the occurrence of
scattering events (see Fig. 4a,b). For the interacting case,
a sample size of N = 10 atoms is considered, allowing for
atomic collisions (see Fig. 4c,d). This range of atom num-
bers corresponds to values that are routinely accessible in
the experiment.

During the first oscillation periods, the evolution of
the non-interacting and interacting samples is almost
identical, exhibiting the expected oscillation at an ampli-
tude of 100 µm. In the non-interacting case, these oscil-
lations dephase more and more because different parts of
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Figure 4: Numerically simulated dynamics of the axial position distribution f (z) for an initially displaced thermal Cs sample having (a) N = 1
and (c) N = 10 atoms. The atomic density is represented by the colormap and plotted versus the time and the position z in the trap. The
regions indicated by the vertical red, orange, and blue lines starting at 0.0 s, 0.5 s, and 2.0 s, respectively, are used to compute the aver-
aged axial density distributions, which are shown in (b) and (d). The insets illustrate the axial phase space distribution at the start of every
region. The horizontal axis of the phase space illustration displays the z-axis in the range of ±200 µm, while the vertical axis corresponds
to the velocity vz in the range of ±50 mm/s. (b, d) The mean value is shown as solid lines, while the area between the 10th and 90th per-
centile is indicated by colored shading illustrating the time-averaged fluctuations around the mean. Red, orange, and blue indicates the
corresponding starting times of 0.0 s, 0.5 s, and 2.0 s, respectively. In both cases, the solid black line indicates the distribution of a
thermal state in harmonic approximation with a temperature of T = 1.6 µk, corresponding to the total energy in the system.
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the atomic cloud oscillate at different frequencies due to
the anharmonicity of the trapping potential. This effect
can be observed nicely in the full atomic phase space
ρ(z, vz) along the z-axis. The phase-space representation
reveals the creation of a spiral-like feature, which is wind-
ing up more and more as the evolution time increases
(see insets of Fig. 4a). After 2 s of evolution, the system
approximately reaches a steady state, where the struc-
ture of the wound-up spiral is blurred, and the steady-
state phase-space distribution features a donutlike shape.
The approach of this steady state can be quantified by
analyzing the evolution of the position distribution dur-
ing a full oscillation period as illustrated by the colored
vertical lines in Figure 4. Extracting the mean as well
as the 10th and the 90th percentiles from the simulation
data characterizes the distribution and its fluctuations.
We clearly observe a reduction in fluctuations over time
and, thereby, the approach to a double-peak position dis-
tribution. The mean of the distribution, however, does not
change significantly during the evolution. The approached
steady state is nonthermal, illustrated by the difference
to the black, thermal distribution at the corresponding
total energy of the system in Figure 4b. For the interact-
ing case, however, the steady state, which is approached,
changes drastically: While also, here, the effect of dephas-
ing and the corresponding reduction of fluctuations are
visible, additionally, the scattering events between the
atoms lead to a redistribution of the phase-space den-
sity and particularly populate the center of phase space
(see Fig. 4c). This redistribution creates a steady-state
phase-space distribution with Gaussian shape. Quanti-
tatively, the scattering events manifest themselves in a
dynamic of the mean position distribution, which is
absent in the non-interacting case. As seen in Figure 4d,
the mean position distribution approaches the thermal
distribution

f (z) =

√︃
mω2

z
2πkBT

exp
(︂

−mω2
z z2

2kBT

)︂
(5)

for a temperature T and a harmonic trap with ωz = 2π ×
39 Hz, which correspond to the values of the harmonic
approximation at the trap centre. The temperature T =
⟨Etot⟩/3kB = 1.6 µK is derived from themean total energy
⟨Etot⟩ of the nonequilibrium state. The numerical consid-
erations, hence, demonstrate how an initially nonthermal
sample of few Cs atoms relaxes to a thermal state in the
presence of interaction. The proposed interaction time of
2 s is experimentally achievable because typical lifetimes
for Cs atoms trapped in the optical dipole trap exceed 10 s
in our experiment.

3.1 Accessing the Atomic Total Energy
Distribution

Besides the atomic density distribution along the z-axis,
which is measured directly in the experiment, also the
total energy distribution of the atoms is potentially acces-
sible. Employing the method of adiabatic lowering, the
cumulated total energy distribution can be measured by
means of counting the remaining atoms in the trap after
the potential was adiabatically lowered to various values
[17, 22]. From the numerical data, the total energy dis-
tribution can be analyzed quantitatively, similar to the
approach employed for thepositiondistributionpresented
previously. The corresponding distributions for the non-
interacting and interacting cases are shown in Figure 5.
When atomic interaction is absent, the total energy of
every particle is a constant of motion in the conservative
potential. As a result, the fluctuations of each distribu-
tion vanish, and furthermore, the distributions at the three
evolution times of t=0 s, 0.5 s, and 2 s are identical. The
presence of interaction, however, allows for redistribu-
tion of energy among the atoms and causes nonvanishing
fluctuations reflecting the effect of the scattering events.
Under the influence of interaction, the atomic total energy
distribution converges to the distribution

f (Etot) =
1
2

E2tot
(kBT)3

exp
(︂

− Etot
kBT

)︂
, (6)

with the temperature T = 1.6 µk, which is expected for a
thermal state. In contrast to the position distribution, the
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Figure 5: Quantitative analysis of the total energy distribution for
slices around t = 0 s, 0.5 s, and 2 s, displayed in red, yellow, and
blue, respectively. Evaluation is analogous to Figure 4b and d. (a)
Non-interacting setting. The total energy distribution shows no
time dependence, and all three curves are identical. The yellow and
blue curves were shifted upwards by 0.01 each in order to make the
curves distinguishable. (b) Interacting setting with N = 10 atoms
per experiment. The total energy distribution relaxes towards the
distribution expected for a thermal state at temperature T = 1.6 µk
(black line).
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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total energy distribution is not influenced by the initially
excited oscillation along the z-axis, as the total energy
is conserved for this oscillation. The fluctuations, which
are observed for the interacting case in Figure 5, rather
directly reflect the influence of the scattering events on
the energy distribution. The convergence of the energy
distribution towards a thermal distribution is similar to
the convergence of the position distribution presented in
Figure 4. Already after t = 0.5 s, a significant convergence
is observed, and at t = 2 s, the system has almost com-
pletely approached the thermal state. Themeasurement of
the atomic total energydistribution, hence,maybeused as
a complementary method to observe the thermalization of
the sample.

4 Comparison to Experimental
Results

Atomic position distributions are measured experimen-
tally by means of fluorescence imaging as illustrated in
Figure 6. To this end, the atoms are trapped in the horizon-
tal dipole trap with the overlapped optical lattice, which
provides axial confinement and, thereby, resolution of the
atomic position along the z-axis. The atomic fluorescence
is excited by applying an optical molasses, consisting of
cooling light at a detuning of ∆cool = −12MHz to the Cs
F = 4 ⇒ F′ = 5 transition of the D2 line and repump-
ing light, which drives resonantly the F = 3 ⇒ F′ = 4
transition. The total intensities of cooling and repump-
ing light are Icool = 4.7 mW/cm2 ≈ 1.7 Isat and Irep =
1.1 mW/cm2 ≈ 0.4 Isat. The fluorescence of the atoms is
collected with a microscope objective and imaged onto
an EMCCD camera with a resolution of 2.2 µm. Single Cs
atoms appear on the fluorescence image as bright peaks
and, therefore, allow to extract the position of every single
atom from the images. For many repetitions of the experi-
ment, the acquired atomic positions are binned into a his-
togram, thereby yielding the atomic density distribution
along the z-axis as shown in Figure 6b.

Figure 7 shows the dynamics of such density dis-
tributions for Cs atoms with a temperature of approx-
imately 10 µk caused by the magneto-optical trap that
is employed to produce the atomic sample. In order to
account for this relatively large temperature, a horizontal
dipole trap power of 3 W is used instead of the simulated
value of 1 W. While at these temperatures, no significant
effect of atomic collisions is expected due to the rela-
tion of collision energy and scattering cross section shown
in Figure 1, the measurements illustrate the dephasing
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Figure 6: Experimental analysis. (a) Experimental setup and imag-
ing data. The Cs atoms (blue circles) are illuminated in the dipole
trapping potential (orange) by an optical molasses (red). The axial
position of the atoms is pinned by an additional optical lattice
dipole trap potential (blue). The fluorescence light of the atoms is
collected by a microscope objective and magnified onto an EMCCD
camera chip. This yields the atomic in situ fluorescence (colormap),
which is employed to extract the atomic positions; data shown are
a randomly selected data set. Moving the atomic distribution by
means of the optical conveyor-belt lattice, subsequent images (1–4)
are used to extend the field of view. This facilitates the analysis of
broad Cs distributions. (b) The atomic positions from the stitched
images are binned in a histogram for many experimental repetitions
to yield the in-trap density distribution (red bars). The experimental
data shown here corresponds to the starting point of the dynam-
ics presented in Figure 7, which is a peaked distribution, displaced
from the trap center.

of the position distribution in the non-interacting case
as well as the reduction in fluctuations as the steady
state is approached. Here, the Cs atoms are prepared at
a distance of roughly 300 µm from the trap center, and
the oscillations are observed experimentally by recording
the atomic position distribution for three different times
with 4 ms delay between subsequent distributions. These
delays capture slightly less than half a trap period and are
illustrated in the insets of Figure 7. These three distribu-
tions are taken at starting times of 0, 50, 100, and 200ms.
By evaluating the mean as well as the minimum and max-
imum for every set of distributions, experimental results
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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total energy distribution is not influenced by the initially
excited oscillation along the z-axis, as the total energy
is conserved for this oscillation. The fluctuations, which
are observed for the interacting case in Figure 5, rather
directly reflect the influence of the scattering events on
the energy distribution. The convergence of the energy
distribution towards a thermal distribution is similar to
the convergence of the position distribution presented in
Figure 4. Already after t = 0.5 s, a significant convergence
is observed, and at t = 2 s, the system has almost com-
pletely approached the thermal state. Themeasurement of
the atomic total energydistribution, hence,maybeused as
a complementary method to observe the thermalization of
the sample.

4 Comparison to Experimental
Results

Atomic position distributions are measured experimen-
tally by means of fluorescence imaging as illustrated in
Figure 6. To this end, the atoms are trapped in the horizon-
tal dipole trap with the overlapped optical lattice, which
provides axial confinement and, thereby, resolution of the
atomic position along the z-axis. The atomic fluorescence
is excited by applying an optical molasses, consisting of
cooling light at a detuning of ∆cool = −12MHz to the Cs
F = 4 ⇒ F′ = 5 transition of the D2 line and repump-
ing light, which drives resonantly the F = 3 ⇒ F′ = 4
transition. The total intensities of cooling and repump-
ing light are Icool = 4.7 mW/cm2 ≈ 1.7 Isat and Irep =
1.1 mW/cm2 ≈ 0.4 Isat. The fluorescence of the atoms is
collected with a microscope objective and imaged onto
an EMCCD camera with a resolution of 2.2 µm. Single Cs
atoms appear on the fluorescence image as bright peaks
and, therefore, allow to extract the position of every single
atom from the images. For many repetitions of the experi-
ment, the acquired atomic positions are binned into a his-
togram, thereby yielding the atomic density distribution
along the z-axis as shown in Figure 6b.

Figure 7 shows the dynamics of such density dis-
tributions for Cs atoms with a temperature of approx-
imately 10 µk caused by the magneto-optical trap that
is employed to produce the atomic sample. In order to
account for this relatively large temperature, a horizontal
dipole trap power of 3 W is used instead of the simulated
value of 1 W. While at these temperatures, no significant
effect of atomic collisions is expected due to the rela-
tion of collision energy and scattering cross section shown
in Figure 1, the measurements illustrate the dephasing
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Figure 6: Experimental analysis. (a) Experimental setup and imag-
ing data. The Cs atoms (blue circles) are illuminated in the dipole
trapping potential (orange) by an optical molasses (red). The axial
position of the atoms is pinned by an additional optical lattice
dipole trap potential (blue). The fluorescence light of the atoms is
collected by a microscope objective and magnified onto an EMCCD
camera chip. This yields the atomic in situ fluorescence (colormap),
which is employed to extract the atomic positions; data shown are
a randomly selected data set. Moving the atomic distribution by
means of the optical conveyor-belt lattice, subsequent images (1–4)
are used to extend the field of view. This facilitates the analysis of
broad Cs distributions. (b) The atomic positions from the stitched
images are binned in a histogram for many experimental repetitions
to yield the in-trap density distribution (red bars). The experimental
data shown here corresponds to the starting point of the dynam-
ics presented in Figure 7, which is a peaked distribution, displaced
from the trap center.

of the position distribution in the non-interacting case
as well as the reduction in fluctuations as the steady
state is approached. Here, the Cs atoms are prepared at
a distance of roughly 300 µm from the trap center, and
the oscillations are observed experimentally by recording
the atomic position distribution for three different times
with 4 ms delay between subsequent distributions. These
delays capture slightly less than half a trap period and are
illustrated in the insets of Figure 7. These three distribu-
tions are taken at starting times of 0, 50, 100, and 200ms.
By evaluating the mean as well as the minimum and max-
imum for every set of distributions, experimental results
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Figure 7: Dynamic of a few Cs atom sample. (a) Timeline and measured Cs distributions resolving the in-trap dynamics within one oscillation
period for starting times of 0, 50, 100, and 200 ms. (b–e) The mean (solid line) as well as the minimum and maximum (shaded area) over
the three distributions around 0, 50, 100, and 200 ms, respectively, analogous to the analysis of the slices presented in Figure 4b and d.
The dephasing of the initial distribution is nicely visible, and after 200 ms, the residual dynamics on the timescale of the axial trapping
period is in the order of the experimental uncertainty. This indicates the approach of the nonequilibrium steady state. This interpretation is
supported by strongly reduced fluctuations for dephased Cs distributions.

are extracted, which qualitatively match the predictions
of the simulations presented in Figure 4. The reduction
in fluctuations due to the dephasing of the atomic distri-
bution is clearly visible as well as the emergence of the
characteristic double-peak structure, which is a hallmark
of the nonequilibrium steady state that is approached in
the non-interacting case.

5 Conclusion
In conclusion, we investigated the dynamics of a few-
particle system in the non-interacting and interacting
cases in order to study the thermalization of nonequilib-
rium systems far below the thermodynamic limit. The pos-
sibility to experimentally tune the atom number allows us
to observe the transition from the single-particle regime to
the onset of a many-body system. We showed the experi-
mental feasibility of the method by measurement results,
which confirm the emergence of a nonthermal steady
state for a non-interacting atomic ensemble. While for
the simulations presented here classical trajectories of
the particles were considered, the cold atom system fea-
tures an intrinsic quantum nature of the particles that
could be exploited to investigate the thermalization of
quantum systems [1, 2]. Recent experimental progress on
investigating these nonequilibrium systemswith ultracold

gas experiments includes, for example, the observation
of universal dynamics during the thermalization process
[4] or the possibility to experimentally resolve the impact
of single s-wave-scattering events on the dynamic after
a quench [23]. By taking advantage of the excellent con-
trol in our cold gas experiment, also the realization of
driven systems is within reach [24, 25]. The proposed sys-
tem, hence, offers the opportunity to study open questions
ranging from classical thermodynamics to driven quan-
tum systems in a versatile and well-controlled experimen-
tal setting.
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We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
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that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
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w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):
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� �
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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