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Abstract: We perform a detailed study of the integrability
of the Hořava-Lifshitz scalar field cosmology in a Fried-
mann-Lemaître-Robertson-Walker background space-time.
The approachwe follow to determine the integrability is that
of singularity analysis. More specifically, we test whether
the gravitational field equations possess the Painlevé
property. For the exponential potential of the scalar field,
we are able to perform an analytic explicit integration of
the field equations and write the solution in terms of a
Laurent expansion and more specifically write the solu-
tion in terms of right Painlevé series.

Keywords: cosmology; Hořava-Lifshitz; integrability;
Painlevé analysis; scalar field.

1 Introduction

Modified theories of gravity have been a subject of special
interest over recent years because they provide a geometric
approach to the description of observable phenomena. In
modified theories of gravity, new geometric quantities are
introduced into the Einstein-Hilbert action of general rela-
tivity (GR). The new terms in the gravitational action provide
new components of geometric origin in the field equations
which change thedynamics suchas the solutionsof the latter
to describe the phenomena observed. In this work, we are
interested specifically in the Hořava-Lifshitz (HL) gravity [1].
HL gravity is a power-counting renormalization theory with
consistent ultraviolet behaviour exhibiting an anisotropic

Lifshitz scaling between time and space at the ultraviolet
limit. HL theory can provide Einstein's GR as a critical point.

The Einstein-Aether theory [2–4] is related with HL
theory in the classical limit [5]. In Einstein-Aether the-
ory, the kinematic quantities of a time-like vector field
(the Aether) are introduced into the gravitational action
integral. The theory preserves locality and covariance
while it contains GR. Now when the Aether field is hy-
persurface-orthogonal, then the classical limit of HL is
recovered. Hence, every hypersurface-orthogonal Ein-
stein-Aether solution is a solution of HL gravity [6].

Lorentz violation theories have been applied in various
models of gravitational physics [7–9]. Applications of HL
theory cover a wide range of subjects, from compact stars to
cosmological studies [10–13]. In the studies by Calgani [14]
andKiritsis andKofinas [15], itwas found that HL cosmology
provides an alternative to inflation and that the universe can
be singularity free. For reviews of HL cosmology, we refer
the reader to the studies by Mukohyama [16] and Saridakis
[17]. Very few closed-form solutions exist in HL cosmology
with or without any matter source [18–22]. However, as per
our knowledge, there are no known analytical solutions in
HL cosmology when a minimally coupled scalar field con-
tributes to the total evolution of the universe.

Recently, a detailed study on the dynamics of the
HL scalar field cosmology was performed by Leon and
Paliathanasis [23]. More specifically, the phase space of HL
cosmology was examined for a wide range of scalar field
potentials by means of the powerful method of f-devisors.
Applications were presented for the exponential, power
law and other potentials. Singular power-law solutions or
de Sitter solutions were found to be described at the critical
points. However, these are peculiar solutions as they donot
exist for any initial conditions and they describe only an
approximation of the generic solution for arbitrary initial
conditions.

Recently, a detailed study on the dynamics of the HL
scalar field cosmology was performed by Leon and
Paliathanasis [24]. More specifically, the phase space of HL
cosmology was examined for a wide range of scalar field
potentials by means of the powerful method of f-devisors.
Applications were presented for the exponential, power law
andotherpotentials. Singularpower-lawsolutionsordeSitter
solutions were found to be described at the critical points.
However, these are peculiar solutions as they do not exist for
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any initial conditions and they describe only an approxima-
tion of the generic solution for arbitrary initial conditions.

In general, physical theories provide a large number of
free parameters or boundary conditions to be involved so
that numerical solutions, even if practicable, give no real
idea for the properties of the differential equations, which
are defined by the theory. This means that analytic tech-
niques are essential for the study of real-world problems.
Hence, the knowledge for the existence and the determi-
nation of analytical or exact solutions for a given dynamical
system is important for the detailed study and understand-
ing of the dynamical system. More specifically, when a
dynamical system is integrable, then know that trajectories
of (numerical) solutions correspond to ‘real’ solutions for the
given dynamical system, or when it is feasible, we can write
the analytic solution by using closed-form functions. There
are many methods to study the integrability of a dynamical
system. In terms of Hamiltonian system usually in physics,
we refer to theLiouville integrability,where theHamiltonian
system admits sufficient number of conservation laws in
order to be solved by quadratures [24]. There is a plethora of
cosmological models which are Liouville integrable, for
instance, see [25–30] and references therein. The importance
of the Liouville-integrable cosmological models, apart from
the fact that the analytical solution can be determined, is
that conservation laws can be applied to perform a canon-
ical quantization which is a specific approach of quantum
cosmology [31–34].

Although, there are dynamical systems that are not
Liouville integrable, there is an analytical way to perform
an explicit integration of the dynamical system. One of the
alternative methods is the singularity analysis which is
the main mathematical tool that we apply in this work.
The modern treatment of singularity analysis is summa-
rized in the Ablowitz, Ramani and Segur (ARS) algorithm
[35–37] which provide us with the information if a given
differential equation passes the Painlevé test and conse-
quently if the solution of the differential equation can be
written as a Laurent expansion around a movable singu-
larity. Singularity analysis is a powerful method which
has led to the determination of analytic solutions of
various cosmological models in GR [38–44] or in modified
theories of gravity [45–51]. The plan of the article is as
follows.

In Section 2, the formal theory of HL cosmology under
the detailed balance condition is presented, while the field
equations of HL scalar field cosmology are given.
Moreover, we derive the equivalent field equations in the
dimensionless variables by using the H-normalization
approach [23, 52]. By using the H-normalization approach,
we present the dynamical systems of our consideration

which we study in terms of integrability. In Section 3, we
briefly discuss the ARS algorithm. The main results of our
analysis and the new analytic solutions in HL cosmology
are presented in Section 4. In Section 5, we discuss our
results and draw our

2 Hořava-Lifshitz scalar field
cosmology

The gravitational action integral in Hořava-Lifshitz gravity
under the detailed balance condition is given by the
following expression [15]:

Sg = ∫dtd3x
��
g

√
N{ 2

κ2
(KijK

ij − λK2)
+ κ2

2w4
CijC

ij − κ2μ
2w2

εijk��
g

√ Ril∇jR
l
k +

κ2μ2

8
RijR

ij

− κ2μ2

8(3λ − 1)[1 − 4λ
4

R2 + ΛR − 3Λ2]}
(1)

where the underlying geometry is written as

ds2 = −N2dt2 + gij(dxi + Nidt)(dxj + Njdt), (2)

inwhich the lapse and shift functions are, respectively,
N and Ni. The spatial metric is given by gij, and roman

letters indicate spatial indices. Tensor Kijis the extrinsic
curvature defined as

Kij = (ġij − ∇iNj − ∇jNi)/2N (3)

and Cij denotes the Cotton tensor

Cij = εijk∇k(Rj
i − Rδ j

i/4)/ ��
g

√
. (4)

The covariant derivatives are defined with respect to

the spatial metric gij. Finally, ϵijk is the totally antisym-

metric unit tensor, λ is a dimensionless constant and the
quantities w and μ are constants. For simplicity, we select

to work with units where κ2 = 8πG = 1.
In accordance with the cosmological principle, the

universe in large scales is homogeneous and isotropic,
consequently the line element (2) reduces to the Fried-
mann-Lemaître-Robertson-Walker (FLRW) space-time

where Ni = 0 and gij = a2(t)γij where now γij denotes the

maximally symmetric space of constant curvature k, i. e.,

γijdx
idxj =

dr2

1 − kr2
+ r2dΩ2

2, (5)

524 A. Paliathanasis and G. Leon: Solutions in Hořava-Lifshitz cosmology



where k = −1,0,+1 and dΩ2 is the two sphere.
In addition, we assume the contribution of a scalar

field in the universe with action integral

Sϕ = ∫dtd3x
��
g

√
N[3λ − 1

4
ϕ̇

2

N2 − V(ϕ)], (6)

where for the scalar field, it has been considered that ϕ
inherits the symmetries of the FLRW space-time.

Variation with respect to the metric in the action in-
tegrals provides the second-order differential equations

3H2 =
1

2(3λ − 1)[3λ − 1
4

ϕ̇
2 + V(ϕ)]

+ 3

16(3λ − 1)2 [ − μ2k2

a4
− μ2Λ2 + 2μ2Λk

a2
] (7)

2Ḣ + 3H2 = − 1
2(3λ − 1)[3λ − 1

4
ϕ̇

2 − V(ϕ)]
− 1

16(3λ − 1)2 [ − μ2k2

a4
+ 3μ2Λ2 − 2μ2Λk

a2
], (8)

where H = ȧ
a.

On the other hand, variation with respect to the scalar
field provides the Klein-Gordon equation

ϕ̈ + 3Hϕ̇ + 2V ′(ϕ)
3λ − 1

= 0. (9)

The latter field equations can be written equivalently
as follows

3H2 = ρϕ + ρHL, (10)

−2Ḣ − 3H2 = pϕ + pHL, (11)

and

ρ̇ϕ + 3H(ρϕ + pϕ) = 0, (12)

where we have defined

ρϕ =
1

2(3λ − 1)[3λ − 1
4

ϕ̇
2 + V(ϕ)],

pϕ =
1

2(3λ − 1)[3λ − 1
4

ϕ̇
2 − V(ϕ)], (13)

and

ρHL =
3

16(3λ − 1)2 [ − μ2k2

a4
− μ2Λ2 + 2μ2Λk

a2
], (14)

pHL =
1

16(3λ − 1)2 [ − μ2k2

a4
+ 3μ2Λ2 − 2μ2Λk

a2
]. (15)

In this work, we focus on the integrability of the
dynamical system (7)–(8). However, to follow a similar
singularity analysis as the one performed for the Einstein-
Aether theory in the study by Latta et al [53], we prefer to
work with H-normalized variables.

H-normalized variables defined as x, y, z, u in (16) were
used in the study by Leon and Saridakis [52] to analyse the
dynamics of HL cosmology in the presence of a scalar field
with exponential potential. That analysis can be extended
with the variable s, and the function f(s) to analyse po-
tentials beyond the exponential potential like in the study
byLeon andPaliathanasis [23] by introducing thequantities
s and f defined in (16). Hence, the dimensionless dynamical
system [23] is defined by the new variables {x, y, z, u, s}

x =
ϕ̇

2
��
6

√
H
, y =

�����
V(ϕ)√��

6
√

H
�����
3λ − 1

√ ,

z =
μ

4(3λ − 1)a2H
 , u =

Λμ
4(3λ − 1)H,

s = −V
′(ϕ)

V(ϕ) , f(s) ≡ V″(ϕ)
V(ϕ) − V ′2(ϕ)

V(ϕ)2 ,
(16)

where function f(s) is defined by the specific form of the
potential V(ϕ). As a new independent variable, it is

assumed the number of e-fold τ = ln( a
a0
) allows to recast

the cosmological equations for arbitrary potentials in a
closed form. We remark that for the exponential potential

V(ϕ) = V0eσϕ, function f(s) vanishes and s = σ, while for

the power-law potential V(ϕ) = V0ϕ2n, function f(s) is

defined as f(s) = −s2
2n.

At this point, it is important to mention that while the
analysis of critical points in the study by Shababi and
Pedram [23] for the HL scalar field cosmology is for arbi-
trary potential, to study the integrability of the field
equations by applying the ARS algorithm, the potential
function has to be specified. The exponential and power-
law potentials are two well-known and well-studied po-
tentials in GR, and they can approximate the functional
behaviour of other nonlinear potentials in their limits; for

instance, the hyperbolic potential V(ϕ) = V0sinh(σϕ)2n is
approximated for small values of ϕ by the power-law
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potential V(ϕ) ≃ ϕ2n, and for large values of ϕ, the hy-
perbolic potential has an exponential behaviour.

3 Singularity analysis

The integration of a differential equation is performed by
the global knowledge of the general solution indepen-
dently from the local solutions provided by Cauchy's ex-
istence theorem. A differential equation that passes the
Painlevé test can be said to be integrable. However,
because not all the integrable differential equations have
the Painlevé property, when the latter property exists, it is
better to be referred as the uniformizability of the general
equation for the given differential equation [54].

To study if a given differential equation admits the Pain-
levé property, we apply the ARS algorithm which is summa-
rized in three main steps: (a) determine the leading-order term
which describes a movable singularity; (b) determine the res-
onances which give the position of the integration constants
and (c) write a Painlevé series with exponent and step as given
in steps (a) and (b) and test if it solves the differential equation;
the latter is called the consistency test.

There are various criteria and conditions that should
be satisfied in the ARS algorithm in order for a differ-
ential equation to have the Painlevé property; for
instance, the number of the resonances should be equal
to the number of the degrees of freedom of the differ-
ential equation, while one of the resonances should be
r = −1, otherwise the singularity determined at step (a) is
not movable. Moreover, if the resonances are positive,
the Painlevé series is written by a right Laurent expan-
sion, and when the resonances are negative, the Pain-
levé series is given by a left Laurent expansion;
otherwise, the Painlevé series is given by a mixed Lau-
rent expansion. For more details on the criteria of the
ARS algorithm and the interpretation of the algorithm in
the complex plane, we refer the reader to the studies by
Conte [54] and Ramani et al [55].

4 Explicit integration in Hořava-
Lifshitz cosmology

In this section, we study if the field equations of HL scalar
field cosmology (7)–(9) possess the Painlevé property;
when the latter is true, we perform an explicit integration
around the movable singularity and we present the
generic solution in terms of Laurent expansion. We divide
our analysis into four different cases as studied by Leon

and Paliyathanasis [23] for arbitrary potentials, and pre-
viously by Leon and Saridakis [52] for exponential po-
tential.

In case A, we assume that the underlying geometry is
spatially flat (k = 0) and there is no cosmological constant
term (Λ = 0), case B is with k ≠ 0 and Λ = 0. Cases C and D
arewithΛ ≠ 0,while for the spatial curvature, it holds k = 0
and k ≠ 0, respectively. Last but not least, for the scalar
field potential, we consider the exponential potential

where f(s) ≡ 0and the power-law potential with f(s) = −s2
2n.

4.1 Case A: k = 0,Λ = 0

For the first case of our analysis where the spatial curvature
of the FLRW space-time vanishes and there is no cosmo-
logical constant term, the gravitational field equations in
the dimensionless variables (16) form the following three-
dimensional first-order differential equations [24]:

dx
dτ

= (3x − ��
6

√
s)(x2 − 1), (17)

dz
dτ

= (3x2 − 2)z, (18)

ds
dτ

= −2 ��
6

√
xf(s), (19)

defined on the phase space {(x, z, s) ∈ R3 : −1 ≤ x ≤ 1}.
We continue our analysis by presenting the applica-

tion of the ARS algorithm for the dynamical system.

4.1.1 Exponential potential

For the exponential potential, because the RHS of equation
(19) is identically zero, the dynamical system is reduced to
a two-dimensional first-order differential equations, where
s(τ) = const.

We observe that the dynamical system (17), (18) for
s = const can be easily integrated by quadratures. Indeed,
from equation (17), it follows that

ln((x(τ) + 1) 1
6+2

�
6

√
s(x(τ) + 1) 1

6−2 �6√
s)+

3
9 − 6s2

ln( ��
6

√
s − 3x(τ)) = τ − τ0 , s ≠ ±

��
6

√
2

,

(20)

or
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1
12

ln(x + 1
x − 1

) − 1
6(x + 1) = τ − τ0 , s = −

��
6

√
2
, (21)

or

1
12

ln(x − 1
x + 1

) + 1
6(x + 1) = τ − τ0 , s = −

��
6

√
2
, (22)

while equation (18) gives

ln z(τ) = 3 ∫ x(t)2dτ − 2(τ − τ1). (23)

Note that this system was already integrated at [52], in
a rather different way:

z(x) = z0( 3x − ��
6

√
s

3x0 −
��
6

√
s
)2(s2−1)

2s2−3 (x2 − 1
x20 − 1

) 1
6−4s2

⋅

⋅exp{ ��
6

√
s[ tanh−1(x) − tanh−1(x0)]

6s2 − 9
},

(24)

τ − τ0 = ln⎛⎝ ��
6

√ − 3x0��
6

√ − 3x

�����
1 − x2

1 − x20

√ ⎞⎠
−

�
2
3

√ (tanh−1(x) − tanh−1(x0)).
(25)

for x0 − ��
6

√
s ≠ 0,  x20 ≠ 1,  s ≠ ±

�
6

√
2 .

Let us now apply the ARS algorithm in the system (17),
(18). For the first step of the algorithm, we

x(τ) = x0τp , z(τ) = z0τq (26)

and we find

px0τ−1+p − 3x30τ
3p + 3x0τp +

��
6

√
sx20τ

2p − ��
6

√
s = 0, (27)

(qτ−1+q + 2tq − 3x0τ2p+q)z0 = 0. (28)

To find the leading-order term, we should balance at
least two of the exponents of powers of τ. Note that if a
singularity is to occur, parameters p, q should be negative1,
while in general, τ→ τ − τ0 where τ0 denotes the position

of the singularity, and without loss of generality, we
consider τ0 = 0.

Hence, from (28), it follows that −1 + q = 2p + q or

q = 2p + q. The second case p = 0 provides p = − 1
2 which we

reject, while from the other case, we derive τ − 3
2 where the

leading-order terms have exponents which are cancelled

when x20 =
�
q
3

√
. Moreover, from expression (27), we find that

the leading-order terms are those with power τ −3
2 and co-

efficient −x0
2 (1 + 6x20) where by demanding the latter to be

zero, we find that q = 0 or q = − 1
2. We conclude that the

leading-order behaviour is

x(τ) = ± i��
6

√ τ−
1
2 , z(τ) = z0τ−

1
2. (29)

To find the resonance r, we substitute

x(τ) = ± i��
6

√ τ−
1
2 +mτ−

1
2+r  , z(τ) = z0τ−

1
2 + ντ−

1
2+r (30)

in (17), (18) from where we get

0 = −x0
2
(1 + 6x20)τ− 3

2 +
��
6

√
sx20τ

−1 + 3x0τ−
1
2 − ��

6
√

s+

+(1
2
(2r − 1 − 18x20)t−32+r + 2

��
6

√
sx0τ−1+r + 3τ−

1
2+r)m

+O(m2),
(31)

0 = ( − 1 + 6x20
2

τ−
3
2 + 2t−

1
2) + ( − 6x0τ−

3
2+r)m+

+((r − 1
2
− 3x20)τ−32+r + 2τ−

1
2+r)n

+O(m2, n2,mn),
(32)

where x0 = ± i�
6

√ .
From the latter system, we define the two-dimensional

matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
2
(2r − 1 − 18x20) 0

( − 6x0τ−
3
2+r) (r − 1

2
− 3x20)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, detA = 0 (33)

whose requirement says that parameters m and n are
arbitrary. We find detA = r(r + 1) from where we calculate
the two resonances to be

1 This is not absolute: in the modern treatment, the exponent p of the
leading-order term can also be a positive fractional number.
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r = −1   and   r = 0. (34)

The existence of r = −1 indicates that the singularity is
movable while r = 0 indicates that the second integration
constant is the coefficient parameter z0 in (29). Since the
two integration constants have been determined, we can
say that the systems (17), (18) possess the Painlevé prop-
erty. The algebraic solution is expressed by the Laurent
expansions

x(τ) = ± i��
6

√ τ−
1
2 + ∑

j=1
xjτ−

1
2+j,

z(τ) = z0τ−
1
2 + ∑

j=1
zjτ−

1
2+j,

(35)

where the first coefficient terms for the x0 = + i�
6

√ coefficient
are determined to be

x1 =
1
3

�
2
3

√
s ,  x2 = − i

6
��
6

√ (9 + 2s2),  … (36)

z1 =
4
3
sz0i ,  z2 = −z0

6
(3 + 2s2),  … (37)

Therefore, the Laurent expansions (35) pass the third
step of the ARS algorithm and we conclude that the two-
dimensional dynamical systems (17), (18) possess the
Painlevé property. In the following section, we avoid the
presentation of the calculations and we give directly the
main results from our analysis.

4.1.2 Power-law potential

We continue with the study of the three-dimensional

dynamical system (17)–(19) where f(s) = −s2
2n. The leading-

order terms are found to be

x(τ)=0τ−
1
2,  z(τ) = z0τ−

1+n
2 ,  s(τ) = s0τ−

1
2 (38)

in which

x20 = −1 + n
6

 , s0 = − n
2

��
6

√
x0

  and   z0 = arbitrary. (39)

where n ≠ 0, −1, −3. The resonances are the zeros of the
polynomial equation (1 + 2r)(r + 1)r = 0 which are

r = −1 , r = 0 and r = −1
2
.  (40)

At this case, the generic solution is given by the
following mixed Laurent expansions

x(τ) = ∑
j=1
x̄jτ−

1
2−j + x0τ−

1
2 + ∑

j=1
xjτ−

1
2+j (41)

z(τ) = ∑
j=1
z̄jτ−

1+n
2 −j + z0τ−

1+n
2 + ∑

j=1
zjτ−

1+n
2 +j (42)

s(τ) = ∑
j=1
s̄jτ−

1
2−j + s0τ−

1
2 + ∑

j=1
sjτ−

1
2+j (43)

where x0, z0 and s0 given in (41).
To perform the consistency test, we select n = 1, and

for x0 = i�
3

√ , we find that xj = 0 , sj = 0 for every value of j

and the third integration constant is parameter s̄1; recall
that the other two integration constants are the position
of the movable singularity τ0 and the coefficient z0. For
negative values of n, the consistency test fails. Hence,
the system possesses the Painlevé property only for
n > 0.

We proceed with the second case of our analysis.

4.2 Case B: k ≠ 0, Λ = 0

In the presence of curvature, the dimensionless field equations
form the following three-dimensional dynamical system [23]

dx
dτ

= x(3x2 − 2z2 − 3) + ��
6

√
s(1 − x2 + z2), (44)

dz
dτ

= z[3x2 − 2(z2 + 1)], (45)

ds
dτ

= −2 ��
6

√
xf(s), (46)

which is defined on the phase space
{(x, z, s) ∈ R3 : x2 − z2 ≤ 1}.

4.2.1 Exponential potential

For the exponential potential and for the two-dimensional
system (44), (45), the leading-order behaviour is found to be
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x(τ) = ±
������
4z0 − 1

6

√
τ−

1
2,  z(τ) = z0τ−

1
2 (47)

in which z0 is an arbitrary constant. The resonances are
determined to be again r = −1 and r = 0 as in the spatially flat
case. The solution is expressed in the right Laurent expansions

x(τ) = ±
������
4z0 − 1

√ ��
6

√ τ−
1
2 + ∑

j=1
xjτ−

1
2+j,

z(τ) = z0τ−
1
2 + ∑

j=1
zjτ−

1
2+j,

(48)

where now the first coefficients are defined as

x1 =
1
3

�
2
3

√
s(1 + 2z20)(1 + 8z20),

z1 =
4
3
sz0(1 + 2z20) ������

4z20 − 1
√

 ,…

(49)

We continue with the three-dimensional system
defined by the power-law potential.

4.2.2 Power-law potential

For the power-law potential, the first step of the ARS al-
gorithm for the dynamical system (44)–(46) provides the
leading-order behaviour
`

x(τ) = ±

������
4z20 − 1

6

√
τ−

1
2 ,  z(τ) = z0τ−

1
2,

s(τ) = −(n + 1)p��
6

√
x0

τ−
1
2 ,  z0 = ± i�

2
√ ,

(50)

for n ≠ 0, −1.
As far as the resonances are concerned, they are

derived from

r = −1 , r = − ��
6

√
 , r =

1
2
+

��
6

√
n

(51)

where we conclude that the given dynamical system does
not possess the Painlevé property.

4.3 Case C: k = 0,Λ ≠ 0

For the spatially flat background space and in the
presence of the cosmological constant Λ, the field
equations reduce to the following dimensionless sys-
tem [23]

dx
dτ

=
��
6

√
s(u2 − x2 + 1) + 3x(x2 − 1), (52)

du
dτ

= 3ux2, (53)

ds
dτ

= −2 ��
6

√
xf(s). (54)

defined on the phase space {(x, u, s) ∈ R3 : x2 − u2 ≤ 1}.

4.3.1 Exponential potential

The two-dimensional dynamical system (52), (53) with
s = const. passes the Painlevé test. The solution is given by
the right Laurent expansions

x(τ) = ± i��
6

√ τ−
1
2 + ∑

j=1
xjτ−

1
2+j ,

u(τ) = u0τ−
1
2 + ∑

j=1
ujτ−

1
2+j

(55)

where the constants of integrations are u0 and the position
of the movable singularity is τ0.

By replacing (55) in the dynamical system, the first

coefficients are calculated (for x0 = i�
6

√ )

x1 =

��
6

√
s(1 + 6u20)

9
 ,

x2 =
i

6
��
6

√ (s2(360u40 + 48u2
0 − 2) − 9),  … (56)

u1 = i
4
3
su0(1 + 6u2

0),
u2 = −u0

6
(s2(504u4

0 + 96u2
0 + 2) − 9) ,… (57)

4.3.2 Power-law potential

In the case of the power-law potential and for the three-
dynamical system (52)–(54) with n ≠ −1,0, from the first
step of the ARS algorithm, we determine the leading-order
behaviour

x(τ) = ± i��
6

√ τ−
1
2,  u(τ) = ± i��

6
√ τ−

1
2,  s(τ) = i

2
τ−

1
2. (58)

The resonances are found to be the solutions of the
polynomial equation (r + 1)(2r + 1)(r − n) = 0, which
gives
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r = −1 , r = −1
2
 , r = n.

To write the Laurent expansions and perform the
consistency test, the power n should be defined. We have
studied various values of n, positives and negatives, in-
tegers and fractional, and we found that in the possible
cases, the Laurent expansions fail at the consistency test.
Hence, we conclude that the dynamical system (52)–(54)
does not pass the Painlevé test.

4.4 Case D: k ≠ 0,Λ ≠ 0

The dimensionless dynamical system that describe the
field equations in the last case of our consideration consists
of the following four first-order differential equations [23]

dx
dτ

=
��
6

√
s[ − x2 + (u − z)2 + 1] + x[3x2 + 2(u − z)z − 3],

(59)

dz
dτ

= z[3x2 + 2(u − z)z − 2], (60)

du
dτ

= u[3x2 + 2(u − z)z], (61)

ds
dτ

= −2 ��
6

√
xf(s), (62)

defined on the phase space {(x, z, u, s) ∈ R3 : x2

−(u − kz)2 ≤ 1}.

4.4.1 Exponential potential

For the three-dimensional dynamical system (59)–(61)
where parameter s is constant, we find the leading-order
behaviour

x(τ) = x0τ−
1
2 ,  z(τ) = z0τ− 

1
2 ,  u(τ) = u0τ−

1
2, (63)

where x0, z0 are arbitrary constants and u0 =
4z20−1−6x20

4z0
, with

4z20 − 1 − 6x20 ≠ 0. Because there are already three arbitrary
constants, including the position of the singularities,
someone will expect to find two resonances with value
zero.

Indeed, by replacing

x(τ) = x0τ−
1
2 +mτ−

1
2+r  , z(τ) = z0τ−

1
2 + ντ−

1
2+r  ,

u(τ) = u0τ−
1
2 + κτ−

1
2+r ,

(64)

in the dynamical system (59)–(61), we derive that the
resonances are the zeros of the polynomial equation
r2(r + 1). We conclude that the dynamical systems (59)–(61)
with s constant  possess the Painlevé property. The algebraic
solution is given by the following Laurent expansions

x(τ) = x0τ−
1
2 + ∑

j=1
xjτ−

1
2+j,

z(τ) = z0τ−
1
2 + ∑

j=1
zjτ−

1
2+j,

(65)

u(τ) = 4z20 − 1 − 6x20
4z0

τ−
1
2 + ∑

j=1
ujτ−

1
2+j. (66)

4.4.2 Power-law potential

For the power-lawpotential, the leading-order behaviour is
found to be

x(τ) = x0τ−
1
2,  z(τ) = z0τ−

1
2 ,

u(τ) = u0τ−
1
2,  s(τ) = s0τ−

1
2,

(67)

with

z0 = −6x
2
0 + 1
4x0

 ,  u0 = −2x
2
0 + 1
4x0

 ,  s0 = − n
2

��
6

√
x0
,

and x0 arbitrary. The second step of the ARS algorithm
provides the four resonances

r = −1 ,  r = 0,  r = −1
2
  and   r = n. (68)

In a similar way, with case C, we have to define power
index n to perform the consistency test.We have performed
the consistency test for various rational numbers of n, and
we can conclude that the four-dimensional dynamical
system (59)–(62) does not possess the Painlevé property.

5 Conclusion

In this work, we studied the integrability of the HL scalar
field cosmology in an FLRW background space-time for
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the exponential and power-law potentials. We performed
our study for the dimensionless dynamical system under
H-normalization which is usually applied in the fixed-
point analysis of gravitational dynamical systems. We
categorized our study into cases of study based on the
existence of the cosmological constant term Λ and
whether the spatially curvature kvanishes or not. More
specifically, the four cases of study are as follows: case A:
k = 0,Λ = 0, case B: k ≠ 0,Λ = 0, case C: k = 0,Λ ≠ 0, and
case D: k ≠ 0,Λ ≠ 0.

The main mathematical tool that we applied for the
study of the integrability of the dimensionless field equa-
tions for the aforementioned cases of study is that of the
singularity analysis. In particular, we examined if the given
gravitational dynamical system possesses the Painlevé
property which tell us that an explicit analytic integration
can be performed where the solution is expressed in Lau-
rent expansion.

As far as the power-law potential is concerned, we
found that only case A provides an integrable system,
which is in contrary to the exponential potential where the
field equations always possess the Painlevé property. Our
results are summarized in the following proposition: “The
gravitational field equations for the HL scalar field cosmol-
ogy in a FLRW background (7)–(9) expressed in the
dimensionless variables in the H −normalization (16) pass

always the Painlevé test when V(ϕ) = V0e−σϕ, and the
equations can be explicitly integrated by Laurent expan-
sions, where in all cases the resonances are r = −1 and r = 0,
where the rank of r = 0 is greater of equal to one”. At this
point, we want to mention that by applying the same
analysis for the field equations beyond the detailed bal-
ance condition [23], we found that the field equations do
not possess the Painlevé property.

The results of this analysis complement the dynam-
ical study of HL scalar field equations [23] and the anal-
ysis in the study by Leon and Saridakis [52]. Last but not
the least, this work contributes to the subject of integra-
bility of gravitational field equations in cosmological
studies.
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