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Abstract: Echo protocols provide a means to investigate

the arrow of time in macroscopic processes. Starting from

a nonequilibrium state, the many-body quantum system

under study is evolved for a certain period of time τ. There-
after, an (effective) time reversal is performed that would –

if implemented perfectly – take the system back to the

initial state after another time period τ. Typical examples

are nuclear magnetic resonance imaging and polarisation

echo experiments. The presence of small, uncontrolled

inaccuracies during the backward propagation results in

deviations of the “echo signal” from the original evolution

and canbe exploited to quantify the instability of nonequi-

librium states and the irreversibility of the dynamics. We

derive an analytic prediction for the typical dependence of

this echo signal for macroscopic observables on the mag-

nitude of the inaccuracies and on the duration τ of the

process, and verify it in numerical examples.

Keywords: Echo Dynamics; Many-Body Systems; Time

Inversion.

1 Introduction
Explaining the irreversibility of processes in macroscopic

systems based on the time-reversible laws governing

their microscopic constituents is a major task of statis-

tical mechanics, dating all the way back to Boltzmann’s

H-theorem [1] and Loschmidt’s paradox [2]. Besides its

ontological dimension, this question is also intimately

related to the special role of nonequilibrium states and

their apparent instability in many-body systems, which

generically tend toward equilibrium as time progresses.

Characterising this instability within the realm of quan-

tum mechanics is one goal of the present work. Whereas
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a direct investigation of the pertinent states (i.e. Hilbert

space vectors or density operators) can, in principle, have

academic value, similarly to an analysis of phase-space

points in classical systems, we focus here on observable

quantities that can be extracted from macroscopic mea-

surements.

Recently, so-called out-of-time-order correlators

have gained considerable attention as a suggestion to

generalise concepts from classical chaos theory, notably

Lyapunov exponents, to quantum systems [3, 4], but

the analogy is far from complete [5, 6]. With this in

mind, we follow an even simpler route here and consider

so-called echo dynamics [7], where a quantum many-

body system with Hamiltonian H starts from a (pure

or mixed) “target state” ρ
T
and is evolved forward in

time for a certain period τ to reach the “return state”

ρ
R
. At this point, one switches to the inverted Hamil-

tonian −H, so that the direction of time is effectively

reversed, and the system evolves back toward the tar-

get state after another time period τ. By introducing

inaccuracies (experimentally unavoidable imprecisions)

during this backward evolution via a Hamiltonian of

the form H′ := −H + ϵV, the system will not reach the

original initial state ρ
T
again, but instead approach a per-

turbed state ρ′
T

that deviates from it to some extent. In

summary,

ρ
T

τ−−−−→
H

ρ
R

τ−−−−−→
−H+ϵV

ρ′
T

. (1)

The deviations between the initial and final states and

their dependence on the time span τ and on the amplitude

ϵ of the considered imperfections then quantify the insta-

bility of the nonequilibrium state and the irreversibility of

the dynamics.

In case of a pure state, a seemingly direct probe is the

Loschmidt echo, that is, the overlap between the original

state ρ
T
and the distorted echo state ρ′

T

[8, 9]. (In case

of a mixed state, the corresponding probe is the quan-

tum fidelity.) However, this quantity is practically inacces-

sible in a many-body system, and as emphasized above,

we will instead concentrate on echoes of macroscopic

observables in the following and compare their expecta-

tion values at the beginning and at the end of the proposed

protocol [9–12]. As macroscopic observables cannot dis-

tinguish between equivalent microstates, one inevitably
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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has to operate in the nonequilibrium regime to be able to

characterise the sensitivity of a many-body system toward

imperfections.

Taken literally, the suggested protocol (1) can only

have the status of a gedankenexperiment as we can-

not practically revert the direction of time in a concrete

dynamical setup, and also an exchange of the Hamilto-

nian H for −H is still unphysical in many situations. For

example, for a gas of particles in a box, it would require

negative particle masses. Nevertheless, it is well known

that an effective sign change of the Hamiltonian can be

achieved in spin systems, which provides the mechanism

underlying spin echo and nuclear magnetic resonance

(NMR) experiments [7]. In fact, the presence of imperfec-

tions, i.e. “nonreversed components” of the Hamiltonian,

forms the basis of magnetic resonance imaging (MRI) by

exploiting that different imperfections in different tissues

lead to distinct imperfect echo signals [13]. By means of

so-called magic- or polarisation-echo techniques, these

ideas have also been extended to interacting spin sys-

tems [14–21], employing suitably adapted radiofrequency

external fields during the “backward” phase of the evolu-

tion.More generally, pulse sequences and time-dependent

forces have been used to scan quite notable parameter

ranges of (effective) spin Hamiltonians in a variety of

experimental setups [22–25]. Yet another experimental

approach toward an effective time reversal consists in tun-

ing a cold atomic gas across a Feshbach resonance [26–28].

Given the neglected unreversed corrections as well as the

sophisticated experimental setups necessary, some sort

of imperfections of the form considered here are clearly

unavoidable and sometimes, like in MRI, even desired.

Furthermore, an alternative view on the suggested

protocol may be as follows: For a many-body system with

Hamiltonian
˜H (= −H in the language from above), sup-

pose that we are given an initial state ρ
R
(previously the

return state), for which it is known that the state obtained

after time τ, ρ
T

= e

−i
˜Hτρ

R
e

i
˜Hτ

(ℏ = 1), is out of equilib-

rium. Comparing the time evolution from ρ
R
under the

Hamiltonian
˜H with the dynamics obtained from a per-

turbed Hamiltonian
˜H′ = ˜H + ϵV, we achieve the same

effect as in the above echo gedankenexperiment (1). How-

ever, there is no need for a “backward Hamiltonian” or

some other sort of (experimentally difficult) reversal pro-

cedure. From a physical point of view, it is thus irrel-

evant whether the return state ρ
R
was obtained by an

explicit unitary time evolution or some other preparation

method. Its only relevant property is that it reaches aman-

ifestly out-of-equilibrium state within an accessible time

scale τ in order for the effects of imperfections to become

macroscopically visible. This setting is silently included in

the following, even thoughwewill employ the language of

the echo protocol (1) in the remainder of this work.

In Section 2, we set the stage and introduce the sug-

gested echo protocol (1) and the considered imperfections

V in detail. Our main result, an analytical prediction char-

acterising the decay of echo signals under generic time-

reversal inaccuracies, is derived in Section 3. Thereafter,

we verify this result numerically in an explicit spin chain

model in Section 4. In Section 5, we conclude by sum-

marising the ideas and relating them to numerical and

experimental results from the literature.

2 Setup
To begin with, we represent the Hamiltonian H appearing

in (1) in terms of its eigenvalues and eigenvectors as

H =
∑︁
n

En |n⟩⟨n| . (2)

Given some initial state ρ(0) at time t = 0, the state at

any later time t > 0 follows as ρ(t) := e

−iHtρ(0)eiHt. Being
interested in some macroscopic observable (see Section 1)

in the form of a self-adjoined operator A, and denoting its
expectationvalue in anarbitrary state ρ by ⟨A⟩ρ := Tr[ρA],
the actual time evolution can thus be written as

⟨A⟩ρ(t) =
∑︁
m,n

e

i(En−Em)t ⟨m|ρ(0)|n⟩ ⟨n|A|m⟩ . (3)

Despite the quasiperiodic nature of the right-hand

side, a many-body system will usually equilibrate [29–31]

and spendmost of the time close to the time-averaged state

ρ
eq
with

⟨m|ρ
eq

|n⟩ := δmn⟨n|ρ(0)|n⟩ , (4)

which we refer to as the equilibrium state in the following.

In order to study the effect of imperfections in terms

of expectation values of the observable A, the consider-

ations from Section 1 imply that the system must spend

some time away from equilibrium; i.e. there must be a rea-

sonable time interval duringwhich ⟨A⟩ρ(t) differs distinctly
from ⟨A⟩ρ

eq

. Therefore, we focus on these deviations from

equilibrium, denoted by the symbol

𝒜𝒜(t) := ⟨A⟩ρ(t) − ⟨A⟩ρ
eq

. (5)

Provided that the system is out of equilibrium at

time t = 0, we then ask how special this situation is by

investigating how hard it is to return to this state by an

effective, but possibly imperfect reversal of time after the
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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has to operate in the nonequilibrium regime to be able to

characterise the sensitivity of a many-body system toward

imperfections.

Taken literally, the suggested protocol (1) can only

have the status of a gedankenexperiment as we can-

not practically revert the direction of time in a concrete

dynamical setup, and also an exchange of the Hamilto-

nian H for −H is still unphysical in many situations. For

example, for a gas of particles in a box, it would require

negative particle masses. Nevertheless, it is well known

that an effective sign change of the Hamiltonian can be

achieved in spin systems, which provides the mechanism

underlying spin echo and nuclear magnetic resonance

(NMR) experiments [7]. In fact, the presence of imperfec-

tions, i.e. “nonreversed components” of the Hamiltonian,

forms the basis of magnetic resonance imaging (MRI) by

exploiting that different imperfections in different tissues

lead to distinct imperfect echo signals [13]. By means of

so-called magic- or polarisation-echo techniques, these

ideas have also been extended to interacting spin sys-

tems [14–21], employing suitably adapted radiofrequency

external fields during the “backward” phase of the evolu-

tion.More generally, pulse sequences and time-dependent

forces have been used to scan quite notable parameter

ranges of (effective) spin Hamiltonians in a variety of

experimental setups [22–25]. Yet another experimental

approach toward an effective time reversal consists in tun-

ing a cold atomic gas across a Feshbach resonance [26–28].

Given the neglected unreversed corrections as well as the

sophisticated experimental setups necessary, some sort

of imperfections of the form considered here are clearly

unavoidable and sometimes, like in MRI, even desired.

Furthermore, an alternative view on the suggested

protocol may be as follows: For a many-body system with

Hamiltonian
˜H (= −H in the language from above), sup-

pose that we are given an initial state ρ
R
(previously the

return state), for which it is known that the state obtained

after time τ, ρ
T

= e

−i
˜Hτρ

R
e

i
˜Hτ

(ℏ = 1), is out of equilib-

rium. Comparing the time evolution from ρ
R
under the

Hamiltonian
˜H with the dynamics obtained from a per-

turbed Hamiltonian
˜H′ = ˜H + ϵV, we achieve the same

effect as in the above echo gedankenexperiment (1). How-

ever, there is no need for a “backward Hamiltonian” or

some other sort of (experimentally difficult) reversal pro-

cedure. From a physical point of view, it is thus irrel-

evant whether the return state ρ
R
was obtained by an

explicit unitary time evolution or some other preparation

method. Its only relevant property is that it reaches aman-

ifestly out-of-equilibrium state within an accessible time

scale τ in order for the effects of imperfections to become

macroscopically visible. This setting is silently included in

the following, even thoughwewill employ the language of

the echo protocol (1) in the remainder of this work.

In Section 2, we set the stage and introduce the sug-

gested echo protocol (1) and the considered imperfections

V in detail. Our main result, an analytical prediction char-

acterising the decay of echo signals under generic time-

reversal inaccuracies, is derived in Section 3. Thereafter,

we verify this result numerically in an explicit spin chain

model in Section 4. In Section 5, we conclude by sum-

marising the ideas and relating them to numerical and

experimental results from the literature.

2 Setup
To begin with, we represent the Hamiltonian H appearing

in (1) in terms of its eigenvalues and eigenvectors as

H =
∑︁
n

En |n⟩⟨n| . (2)

Given some initial state ρ(0) at time t = 0, the state at

any later time t > 0 follows as ρ(t) := e

−iHtρ(0)eiHt. Being
interested in some macroscopic observable (see Section 1)

in the form of a self-adjoined operator A, and denoting its
expectationvalue in anarbitrary state ρ by ⟨A⟩ρ := Tr[ρA],
the actual time evolution can thus be written as

⟨A⟩ρ(t) =
∑︁
m,n

e

i(En−Em)t ⟨m|ρ(0)|n⟩ ⟨n|A|m⟩ . (3)

Despite the quasiperiodic nature of the right-hand

side, a many-body system will usually equilibrate [29–31]

and spendmost of the time close to the time-averaged state

ρ
eq
with

⟨m|ρ
eq

|n⟩ := δmn⟨n|ρ(0)|n⟩ , (4)

which we refer to as the equilibrium state in the following.

In order to study the effect of imperfections in terms

of expectation values of the observable A, the consider-

ations from Section 1 imply that the system must spend

some time away from equilibrium; i.e. there must be a rea-

sonable time interval duringwhich ⟨A⟩ρ(t) differs distinctly
from ⟨A⟩ρ

eq

. Therefore, we focus on these deviations from

equilibrium, denoted by the symbol

𝒜𝒜(t) := ⟨A⟩ρ(t) − ⟨A⟩ρ
eq

. (5)

Provided that the system is out of equilibrium at

time t = 0, we then ask how special this situation is by

investigating how hard it is to return to this state by an

effective, but possibly imperfect reversal of time after the
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system has relaxed for a certain period τ as detailed in the
protocol (1).

In the absence of any imperfections (ϵ = 0), the sys-

tem traces out the same trajectory in the forward and

backward stages, such that

𝒜𝒜(τ + t) = 𝒜𝒜(τ − t) (6)

for t ∈ [0, τ], which constitutes our reference dynamics. It

is reasonable to expect that uncontrolled inaccuracies in

the time-reversed dynamics will generically push the sys-

temcloser to equilibriumbecause they spoil the fine-tuned

correlations between state and observable needed for

nonequilibrium conditions. Hence, the backward dynam-

ics will usually lie closer to the equilibrium state than the

forward one,

|𝒜𝒜(τ + t)| ≲ |𝒜𝒜(τ − t)| (0 ≤ t ≤ τ) . (7)

The sensitivity of the deviations between the perfect

and perturbed dynamics with respect to the magnitude ϵ
of the inaccuracies is thus an indicator for the chaoticity

and irreversibility of the many-body dynamics. The faster

𝒜𝒜(τ+t) decayswith ϵ compared to𝒜𝒜(τ−t), the harder it is
to design a reversible process and the more extraordinary

or special are thenonequilibriumstates. Consequently, the

relative echo signal 𝒜𝒜(τ + t)/𝒜𝒜(τ − t) for times t ∈ [0, τ]
will be our principal object of study in this work, most

importantly in the region around the revival or echo peak

at t ≈ τ, where deviations from equilibrium will be most

pronounced.

We denote the time-dependent state of the system in

the forward and backward phases by

ρ
f
(t) := e

−iHt ρ
T
e

iHt
, (8a)

ρ
b
(t) := e

i(H−ϵV)t ρ
R
e

−i(H−ϵV)t
, (8b)

respectively. We also write ρ(t) to refer to the state during
the entire process, that is, ρ(t) := ρ

f
(t) for t ∈ [0, τ] and

ρ(t) := ρ
b
(t − τ) for t ∈ [τ, 2τ].

An implicit assumption in all that follows is that the

consideredmany-body system is finite and exhibits a well-

definedmacroscopic energyE. Consequently, the state ρ(t)
at any time can only significantly populate energy levels

within a macroscopically small energy window

IE := [E − ∆E, E] (9)

and the imperfections are assumed to be sufficiently small

so that they do not modify this window. In addition, it

is taken for granted that the density of states (DOS) of

H is approximately constant throughout this energy win-

dow,D
0
≈ const and that the sameholds for the (negative)

imperfect backward Hamiltonian H−ϵV with eigenvalues

E′ν and eigenstates |ν⟩′.
Focusing on the dynamics during the backward phase

from (8b), we can use the transformation matrix Uµk :=
′⟨µ|k⟩ between the eigenbases of the forward and back-

ward Hamiltonians to write the time-dependent expecta-

tion values of the observable A – similarly as in (3) – as

⟨A⟩ρ
b
(t) =

∑︁
µ,ν

′⟨µ|ρ
b
(t)|ν⟩′ ′⟨ν|A|µ⟩′ (10)

=
∑︁
µ,ν

∑︁
k,l,m,n

e

−i(E′ν−E′µ)t
e

i(El−Ek)τ

× ⟨k|ρ
T
|l⟩ ⟨m|A|n⟩Uµk U*

νl Uνm U*
µn . (11)

Employing the assumed constant DOS for H and

H − ϵV, we can approximately identify energy differences

E′ν − E′µ ≃ Eν − Eµ of the two Hamiltonians within in the

relevant time scales [32, 33], so that

⟨A⟩ρ
b
(t) =

∑︁
µ,ν

∑︁
k,l,m,n

e

−i(Eν−Eµ)t
e

i(El−Ek)τ

× ⟨k|ρ
T
|l⟩ ⟨m|A|n⟩Uµk U*

νl Uνm U*
µn . (12)

We recall that the Hamiltonian H corresponds to a

given many-body quantum system, whereas the pertur-

bation V describes uncontrolled and/or unknown inac-

curacies in the time-reversal procedure. In this spirit, we

thus model our ignorance about these imperfections by

an ensemble of random operators V, such that the matrix

elements ⟨m|V|n⟩ of V in the eigenbasis of H become ran-

dom variables. The actually considered V ensembles are

inspired by the structure of typical perturbations, featur-

ing possible sparsity as well as an interaction strength

depending on the energy difference between the cou-

pled states (“bandedness”) [34–38]. Requiring hermiticity,

⟨m|V|n⟩ = ⟨n|V|m⟩*
, and assuming independence of the

⟨m|V|n⟩ for m ≤ n, this suggests the general form

dPmn(v) := dµ|Em−En|(v) (13)

for the probability measures of the ⟨m|V|n⟩’s with m < n.
Here, {dµ

∆
}
∆>0

denotes a family of probability measures

on R or C with mean zero and variance σ2v (∆), so that the
smooth function σ2v (∆) captures the announced banded-

ness of the interaction matrix. Likewise, for m = n, the
probabilitymeasure dPnn(v) := dµ

0
(v) of the (real-valued)

diagonal elements ⟨n|V|n⟩ is assumed to have vanish-

ing mean (otherwise, the perturbation would induce an

energy shift) and finite variance.

L. Dabelow and P. Reimann: Predicting Imperfect Echo Dynamics in Many-Body Quantum Systems     405

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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To obtain a useful prediction regarding the behaviour

of an actual system, we first compute the average effect of

such a perturbation. In a second step,we establish that the

resulting prediction satisfies a concentration of measure

property, meaning that in a sufficiently high-dimensional

Hilbert space a particular realisation of the ensemble

becomes practically indistinguishable from the average

behaviour. More precisely, deviations from the average

will turn out to be suppressed in the number Nv of eigen-

states of H that get mixed up by the perturbation ϵV,
to be defined explicitly in (19) below. Because of the

extremely high-level density in generic many-body sys-

tems, this numberNv is typically exponentially large in the

system’s degrees of freedom f if the perturbation has any

appreciable effect at all [39],

Nv = 10

𝒪𝒪(f ) ≫ 1 . (14)

3 Results
According to (12), averaging the echo signal over all possi-

ble realisations of theV ensemble requires an average over

four transformationmatrices Uµk, the overlap of the eigen-

vectors |k⟩ of H and |µ⟩′ of H − ϵV. These overlaps inherit
their distribution from the distribution (13) of the V matrix

elements. Writing E[ · · · ] for the average over all V’s, one
finds

E[Uµ
1
k
1

Uµ
2
k
2

U*
µ
1
l
1

U*
µ
2
l
2

] = δk
1
l
1

δk
2
l
2

dµ1µ2k
1
k
2

+ δk
1
l
2

δk
2
l
1

(︁
δµ

1
µ
2

dµ1µ2k
1
k
2

+ f µ1µ2k
1
k
2

)︁
(15)

in the limit of sufficiently weak ϵ [39]. Here

dµν

kl := u(αϵ2, Eµ − Ek) u(αϵ2, Eν − El) , (16)

f µν

kl := −
(︁
αϵ2/2πD

0

)︁
u(αϵ2, Eµ − Ek) u(αϵ2, Eν − El)

× 4α2ϵ4 + (Ek − El)
2 + (Eµ − Eν)

2 − (Ek + El − Eµ − Eν)
2

[︁
(Eµ − El)

2 + α2ϵ4
]︁[︁
(Eν − Ek)

2 + α2ϵ4
]︁ ,

(17)

and α := πσ̄2vD0
, where σ̄2v denotes the mean value of

σ2v (∆), introduced below (13), for small argument. Further-

more, the function u(αϵ2, Eµ−Ek) := E[|Uµk|2] represents
the second moment of the transformation matrices Uµk
and is given by the Breit–Wigner distribution

u(γ, E) =
γ

πD
0
(γ2 + E2) . (18)

Hence, we can identify

Nv := 2αD
0
ϵ2 = 2πσ̄2vD2

0
ϵ2 (19)

as the full width at half maximum of the average over-

lap E
[︀
|Uµk|2

]︀
between eigenvectors of H and H − ϵV,

quantifying thenumber of energy eigenstatesmixedby the

perturbation as introduced above (14).

Exploiting (15) in the average of (12), we obtain

E
[︁
⟨A⟩ρ

b
(t)

]︁
=

∑︁
µ

dµµkl ⟨k|ρ
T
|k⟩⟨l|A|l⟩ +

∑︁
µ,ν

e

−i(Eν−Eµ)t ×

×
∑︁
k,l

[︁
e

i(El−Ek)τdµν

kl ⟨k|ρT|l⟩⟨l|A|k⟩

+ f µν

kl ⟨k|ρ
T
|k⟩⟨l|A|l⟩

]︁
(20)

If we make use of the constant DOS once again (see

below (9)), which allows us to shift summation indices, we

find that

∑︁
µ

dµµkl = u(2αϵ2, ωkl) , (21)

∑︁
µ,ν

e

−i(Eν−Eµ)tdµν

kl = e

iωkl t
e

−2α|t|ϵ2
, (22)

∑︁
µ,ν

e

−i(Eν−Eµ)t f µν

kl = −u(2αϵ2, ωkl)e
−2α|t|ϵ2

×
[︁
cos(ωklt) + 2αϵ2

ωkl
sin(ωkl|t|)

]︁
(23)

with ωkl := Ek − El. Substituting into (20) yields

E
[︁
⟨A⟩ρ

b
(t)

]︁
− ⟨A⟩ρ̃ = e

−2α|t|ϵ2
[︁
⟨A⟩ρ

f
(τ−t) − ⟨A⟩ρ̃

]︁

+ R(|t|) (24)

with the locally averaged equilibrium state ρ̃ given by

⟨m|ρ̃|n⟩ := δmn
∑︀

k u(2αϵ
2

, En − Ek)⟨k|ρT|k⟩ and

R(t) := e

−2αtϵ2 ∑︁
k,l

⟨k|ρ
T
|k⟩⟨l|A|l⟩ u(2αϵ2, ωkl)

×
{︁
1 − cos(ωklt) − 2αϵ2

ωkl
sin(ωklt)

}︁
. (25)

Note that ρ̃ is the state approached for large times

and can thus be identified with the equilibrium state ρ
eq

from (5). It usually corresponds to the pertinent thermal

state [40–43]. We also observe that R(t) vanishes at t = 0

and for t → ∞. Furthermore, as shown in the Appendix its
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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To obtain a useful prediction regarding the behaviour

of an actual system, we first compute the average effect of

such a perturbation. In a second step,we establish that the

resulting prediction satisfies a concentration of measure

property, meaning that in a sufficiently high-dimensional

Hilbert space a particular realisation of the ensemble

becomes practically indistinguishable from the average

behaviour. More precisely, deviations from the average

will turn out to be suppressed in the number Nv of eigen-

states of H that get mixed up by the perturbation ϵV,
to be defined explicitly in (19) below. Because of the

extremely high-level density in generic many-body sys-

tems, this numberNv is typically exponentially large in the

system’s degrees of freedom f if the perturbation has any

appreciable effect at all [39],

Nv = 10

𝒪𝒪(f ) ≫ 1 . (14)

3 Results
According to (12), averaging the echo signal over all possi-

ble realisations of theV ensemble requires an average over

four transformationmatricesUµk, the overlap of the eigen-

vectors |k⟩ of H and |µ⟩′ of H − ϵV. These overlaps inherit
their distribution from the distribution (13) of the V matrix

elements. Writing E[ · · · ] for the average over all V’s, one
finds

E[Uµ
1
k
1

Uµ
2
k
2

U*
µ
1
l
1

U*
µ
2
l
2

] = δk
1
l
1

δk
2
l
2

dµ1µ2k
1
k
2

+ δk
1
l
2

δk
2
l
1

(︁
δµ

1
µ
2

dµ1µ2k
1
k
2

+ f µ1µ2k
1
k
2

)︁
(15)

in the limit of sufficiently weak ϵ [39]. Here

dµν

kl := u(αϵ2, Eµ − Ek) u(αϵ2, Eν − El) , (16)

f µν

kl := −
(︁
αϵ2/2πD

0

)︁
u(αϵ2, Eµ − Ek) u(αϵ2, Eν − El)

× 4α2ϵ4 + (Ek − El)
2 + (Eµ − Eν)

2 − (Ek + El − Eµ − Eν)
2

[︁
(Eµ − El)

2 + α2ϵ4
]︁[︁
(Eν − Ek)

2 + α2ϵ4
]︁ ,

(17)

and α := πσ̄2vD0
, where σ̄2v denotes the mean value of

σ2v (∆), introduced below (13), for small argument. Further-

more, the function u(αϵ2, Eµ−Ek) := E[|Uµk|2] represents
the second moment of the transformation matrices Uµk
and is given by the Breit–Wigner distribution

u(γ, E) =
γ

πD
0
(γ2 + E2) . (18)

Hence, we can identify

Nv := 2αD
0
ϵ2 = 2πσ̄2vD2

0
ϵ2 (19)

as the full width at half maximum of the average over-

lap E
[︀
|Uµk|2

]︀
between eigenvectors of H and H − ϵV,

quantifying thenumber of energy eigenstatesmixedby the

perturbation as introduced above (14).

Exploiting (15) in the average of (12), we obtain

E
[︁
⟨A⟩ρ

b
(t)

]︁
=

∑︁
µ

dµµkl ⟨k|ρ
T
|k⟩⟨l|A|l⟩ +

∑︁
µ,ν

e

−i(Eν−Eµ)t ×

×
∑︁
k,l

[︁
e

i(El−Ek)τdµν

kl ⟨k|ρT|l⟩⟨l|A|k⟩

+ f µν

kl ⟨k|ρ
T
|k⟩⟨l|A|l⟩

]︁
(20)

If we make use of the constant DOS once again (see

below (9)), which allows us to shift summation indices, we

find that

∑︁
µ

dµµkl = u(2αϵ2, ωkl) , (21)

∑︁
µ,ν

e

−i(Eν−Eµ)tdµν

kl = e

iωkl t
e

−2α|t|ϵ2
, (22)

∑︁
µ,ν

e

−i(Eν−Eµ)t f µν

kl = −u(2αϵ2, ωkl)e
−2α|t|ϵ2

×
[︁
cos(ωklt) + 2αϵ2

ωkl
sin(ωkl|t|)

]︁
(23)

with ωkl := Ek − El. Substituting into (20) yields

E
[︁
⟨A⟩ρ

b
(t)

]︁
− ⟨A⟩ρ̃ = e

−2α|t|ϵ2
[︁
⟨A⟩ρ

f
(τ−t) − ⟨A⟩ρ̃

]︁

+ R(|t|) (24)

with the locally averaged equilibrium state ρ̃ given by

⟨m|ρ̃|n⟩ := δmn
∑︀

k u(2αϵ
2

, En − Ek)⟨k|ρT|k⟩ and

R(t) := e

−2αtϵ2 ∑︁
k,l

⟨k|ρ
T
|k⟩⟨l|A|l⟩ u(2αϵ2, ωkl)

×
{︁
1 − cos(ωklt) − 2αϵ2

ωkl
sin(ωklt)

}︁
. (25)

Note that ρ̃ is the state approached for large times

and can thus be identified with the equilibrium state ρ
eq

from (5). It usually corresponds to the pertinent thermal

state [40–43]. We also observe that R(t) vanishes at t = 0

and for t → ∞. Furthermore, as shown in the Appendix its
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magnitude can be bounded from above for arbitrary t ≥ 0

according to

R2(t) ≤ δ2A
50Nv

, (26)

whereNv is thewidth of the eigenvector overlaps from (19),

and

δ2A :=
∑︁

n:En∈IE

(︁
Ann − ⟨A⟩ρ

mc

)︁
2

, (27)

where ρ
mc

denotes the microcanonical density opera-

tor corresponding to the energy window from (9). For

generic (nonintegrable) Hamiltonians H, essentially all

observables A of actual interest are expected to sat-

isfy the so-called eigenstate thermalisation hypothesis

(ETH) [44]. Hence, the right-hand side of (27) can be

roughly estimated as ‖A‖2 (with ‖A‖ denoting the oper-

ator norm of A, i.e. the largest eigenvalue in modu-

lus), and R(t) in (24) can be neglected according to (14)

and (26).

For integrable systems, the relevant observables are

still expected to satisfy the so-called weak ETH [45–47],

and thus the right-hand side of (27) can be roughly esti-

mated as ‖A‖2N/f , where N is the number of energy lev-

els En contained in IE, whereas f counts the degrees of

freedom of the considered system and therefore scales

as ln(N) (see also (14)). Again, one can conclude from

(26) that R(t) in (24) amounts in many cases to a small

correction.

Finally, we point out that the bound (26) is still rather

loose as the oscillating character of the summands in (25)

with respect to both ωkl and t will usually result in very

strong “accidental cancellation” effects,which are entirely

disregarded in our derivation of the “worst case” bound

(26) in the Appendix.

Indeed, we have not been able to identify any specific

example of practical interest where the last term in (24)

plays a significant role. Accordingly, this term is hence-

forth considered as negligible. With (5), (8), and (14), we

thus arrive at the first key result of this section,

E
[︀
𝒜𝒜(τ + t)

]︀
𝒜𝒜(τ − t) = e

−2αtϵ2
(0 ≤ t ≤ τ) , (28)

which quantifies the average effect of imprecisions during

the backward evolution within the considered ensembles

ofV’s and for small enough ϵ. Analogously to [39], one can
then proceed to derive a bound for the variance of𝒜𝒜(τ+ t).
This leads to

E
[︁
𝒜𝒜(τ + t)2

]︁
− E

[︀
𝒜𝒜(τ + t)

]︀
2 ≤ Cv ‖A‖2

Nv
, (29)

where Cv is a constant of order 103 or less. In view of (14),

the variance (29) of 𝒜𝒜(τ + t) with V is thus exponentially

small in the number of degrees of freedom, establishing

a so-called concentration of measure property of the con-

sidered ensembles of V operators. For instance, invoking

Chebyshev’s inequality from probability theory, the esti-

mate (29) implies that the probability for𝒜𝒜(τ + t) to differ
by more than ‖A‖/N1/3

v from the average E[𝒜𝒜(τ + t)] at
a certain instance in time t is less than Cv/N1/3

v . This is

our second key result of this section, promoting (28) from

a mere statement about the ensemble average to a pre-

diction for individual realisations. As deviations from the

average are extremely rare for reasonably largemany-body

systems, we can conclude that

𝒜𝒜(τ + t)
𝒜𝒜(τ − t) = e

−2αtϵ2
(0 ≤ t ≤ τ) (30)

is an excellent approximation for the vast majority of

time-reversal inaccuracies V captured by the considered

ensembles. This relation for the echo dynamics (1) under

an imperfect backward Hamiltonian constitutes our main

result. It asserts that the echo signal is exponentially sup-

pressed in the propagation time t and the intensity ϵ2 of
the imperfections.

4 Example
We consider a spin-

1

2

XXX chain model with Hamiltonian

H = −
L−1∑︁
i=1

σi · σi+1
, (31)

where σi = (σxi , σ
y
i , σ

z
i ) is a vector of Pauli matrices acting

on site i. For the perturbation V, we choose

V =
∑︁
i<j

3∑︁
α,β=1

Jαβij σ
α
i σ

β
j , (32)

where the couplings Jαβij are drawn independently from

a normal distribution (unbiased Gaussian with unit vari-

ance). As the observable, we take the staggered magneti-

sation

A =
L∑︁

i=1

(−1)

i σzi . (33)

Turning to the initial (target) state ρ
T

= |ψ⟩⟨ψ|,
let us first consider a Néel state | ¯ψ⟩ := |↓↑↓↑ · · · ⟩. In
order to account for the requirement that the DOS

should be approximately constant (see below (9)), we

L. Dabelow and P. Reimann: Predicting Imperfect Echo Dynamics in Many-Body Quantum Systems     407

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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rescale the probability amplitudes ⟨n| ¯ψ⟩ according to the
corresponding energy eigenvalues En with a Gaussian

weight of zero mean and standard deviation σψ, resulting
in

|ψ⟩ := C
∑︁
n
e

−E2n/2σ
2

ψ ⟨n| ¯ψ⟩ |n⟩ , (34)

where the normalisation constant C is chosen such that

⟨ψ|ψ⟩ = 1. As discussed around (9), the large isolated sys-

tems we have in mind (e.g. an MRI sample) are expected

to exhibit a macroscopically well-defined energy, so that

σψ should lie below the measurement resolution. In par-

ticular, while it is possible to prepare a clean Néel state in

few-body experiments with cold atoms, such attempts will

most likely result in a filtered or coarse-grained variant as

the degrees of freedom increase.

Quantitatively, for the example in Figure 1, we chose a

chain length of L = 14 and a standard deviation of σψ =
1.3, so that the state (34) is focused around energy E = 0

with approximately 15%of the total2

L = 16,384 levelsEn
within ±σψ. This procedure reduces the staggered mag-

netisation A of |ψ⟩ compared to | ¯ψ⟩, but still gives an

appreciably out-of-equilibriumexpectation value (see also

Fig. 1).

After diagonalising H numerically, we estimated the

DOS D
0
by averaging over all states with energies En ∈

[−2σψ , 2σψ] (receiving approximately 95%of theweight),

resulting in D
0
≈ 962. Furthermore, we extracted σ̄2v [see

below (17)] from the squared matrix elements |⟨m|V|n⟩|2

within the relevant energy window in (9) (determined

again by the 2σψ criterion) by way of averaging around

the diagonal within a band of 1000 states, yielding

σ̄2v ≈ 0.0729. According to the definition below (17), this

yields

α = πσ̄2vD0
≃ 220 . (35)

All parameters entering our analytical prediction (30)

are thus explicitly available; that is, there is no free fit

parameter.

In Figure 1, we compare the numerical results

obtained by exact diagonalisation with our prediction

(30) for different propagation times τ and perturbation

strengths ϵ, showing good agreement. The largest devia-

tions become apparent for small τ and large ϵ. By general-
ising the analysis of [39], we expect that the band profile

σ2v (∆) of the perturbation V becomes important in this

regime. The exponential form (30) for the suppression of

the echo signal is then anticipated to showa transition to a

Bessel-like decay of the form 4J
1
(x)2/x2, where x depends

linearly on the noise strength ϵ, the reversal time τ, and
the square root of the band width. More generally, within

the considered ensemble of inaccuracies, the echo-signal

attenuation is essentially given by the Fourier transform of

u(γ, E) introduced above (18), which can be viewed as the
ensemble-averaged fidelity or survival probability [9, 48]

of an eigenstate |n⟩ of the clean Hamiltonian H under the

imprecise backward Hamiltonian H′. When the influence

of the random inaccuracies inH′ increases, the echo signal
may therefore be expected to approach the knowndecay of
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Figure 1: Time-dependent expectation values of the staggered magnetisation (33) for the spin- 12 XXX chain (31) with L = 14 under the
“imperfect reversal” protocol (1) with various perturbation strengths ϵ and reversal times τ. The initial condition is chosen as a filtered
Néel target state ρT = |ψ⟩⟨ψ| according to (34) with σψ = 1.3. The imperfection Hamiltonian V in (1) is of the “spin-glass” form (32). Solid
lines correspond to the numerical results using exact diagonalisation. Dashed lines show the prediction for the backward (echo) dynam-
ics according to (30) and (35). Time reversal is initiated after time τ = 5 (red-toned curves), τ = 7.5 (blue-toned), or τ = 10 (green-toned).
Inset: Ratio 𝒜𝒜(2τ)/𝒜𝒜(0) of the echo peak height (at time t = 2τ) and the initial value (at t = 0) as a function of the perturbation strength ϵ
for the different reversal times τ. Data points are the numerical solutions; solid lines are the analytical prediction from (30) and (35).
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)

L. Balzer et al.: TMLE for Rare Outcomes 3

Authenticated | muthu@tnq.co.in
Download Date | 9/24/19 7:25 PM



6 | L. Dabelow and P. Reimann: Predicting Imperfect Echo Dynamics in Many-Body Quantum Systems

rescale the probability amplitudes ⟨n| ¯ψ⟩ according to the
corresponding energy eigenvalues En with a Gaussian

weight of zero mean and standard deviation σψ, resulting
in

|ψ⟩ := C
∑︁
n
e

−E2n/2σ
2

ψ ⟨n| ¯ψ⟩ |n⟩ , (34)

where the normalisation constant C is chosen such that

⟨ψ|ψ⟩ = 1. As discussed around (9), the large isolated sys-

tems we have in mind (e.g. an MRI sample) are expected

to exhibit a macroscopically well-defined energy, so that

σψ should lie below the measurement resolution. In par-

ticular, while it is possible to prepare a clean Néel state in

few-body experiments with cold atoms, such attempts will

most likely result in a filtered or coarse-grained variant as

the degrees of freedom increase.

Quantitatively, for the example in Figure 1, we chose a

chain length of L = 14 and a standard deviation of σψ =
1.3, so that the state (34) is focused around energy E = 0

with approximately 15%of the total2

L = 16,384 levelsEn
within ±σψ. This procedure reduces the staggered mag-

netisation A of |ψ⟩ compared to | ¯ψ⟩, but still gives an

appreciably out-of-equilibriumexpectation value (see also

Fig. 1).

After diagonalising H numerically, we estimated the

DOS D
0
by averaging over all states with energies En ∈

[−2σψ , 2σψ] (receiving approximately 95%of theweight),

resulting in D
0
≈ 962. Furthermore, we extracted σ̄2v [see

below (17)] from the squared matrix elements |⟨m|V|n⟩|2

within the relevant energy window in (9) (determined

again by the 2σψ criterion) by way of averaging around

the diagonal within a band of 1000 states, yielding

σ̄2v ≈ 0.0729. According to the definition below (17), this

yields

α = πσ̄2vD0
≃ 220 . (35)

All parameters entering our analytical prediction (30)

are thus explicitly available; that is, there is no free fit

parameter.

In Figure 1, we compare the numerical results

obtained by exact diagonalisation with our prediction

(30) for different propagation times τ and perturbation

strengths ϵ, showing good agreement. The largest devia-

tions become apparent for small τ and large ϵ. By general-
ising the analysis of [39], we expect that the band profile

σ2v (∆) of the perturbation V becomes important in this

regime. The exponential form (30) for the suppression of

the echo signal is then anticipated to showa transition to a

Bessel-like decay of the form 4J
1
(x)2/x2, where x depends

linearly on the noise strength ϵ, the reversal time τ, and
the square root of the band width. More generally, within

the considered ensemble of inaccuracies, the echo-signal

attenuation is essentially given by the Fourier transform of

u(γ, E) introduced above (18), which can be viewed as the
ensemble-averaged fidelity or survival probability [9, 48]

of an eigenstate |n⟩ of the clean Hamiltonian H under the

imprecise backward Hamiltonian H′. When the influence

of the random inaccuracies inH′ increases, the echo signal
may therefore be expected to approach the knowndecay of
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Figure 1: Time-dependent expectation values of the staggered magnetisation (33) for the spin- 12 XXX chain (31) with L = 14 under the
“imperfect reversal” protocol (1) with various perturbation strengths ϵ and reversal times τ. The initial condition is chosen as a filtered
Néel target state ρT = |ψ⟩⟨ψ| according to (34) with σψ = 1.3. The imperfection Hamiltonian V in (1) is of the “spin-glass” form (32). Solid
lines correspond to the numerical results using exact diagonalisation. Dashed lines show the prediction for the backward (echo) dynam-
ics according to (30) and (35). Time reversal is initiated after time τ = 5 (red-toned curves), τ = 7.5 (blue-toned), or τ = 10 (green-toned).
Inset: Ratio 𝒜𝒜(2τ)/𝒜𝒜(0) of the echo peak height (at time t = 2τ) and the initial value (at t = 0) as a function of the perturbation strength ϵ
for the different reversal times τ. Data points are the numerical solutions; solid lines are the analytical prediction from (30) and (35).
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fidelity in pure randommatrixmodels [48]. Unfortunately,

we are not aware of an exact analytic solution of the per-

tinent equations in the intermediate regime between the

exponential and Bessel-type behaviours [39].

5 Conclusions
We investigated the stability of observable echo signals

in many-body quantum systems under the influence of

uncontrolled imperfections in the pertinent effective time

reversal. The considered protocol starts from a nonequi-

librium initial state and lets the system evolve under

the time-independent Hamiltonian H for some time τ, at
which an (effective) time reversal is performed that directs

the system back toward the initial nonequilibrium state.

By introducing small inaccuracies in the time-reversed

Hamiltonian, we obtained a measure for the instability of

nonequilibriumstates and the irreversibility of the dynam-

ics in terms of directly observable quantities.

Our prediction for the relative echo signal under such

a distorted backwardHamiltonian, (30), includes an expo-

nential dependence on both the squared perturbation

strength ϵ2 and the propagation time t. In particular,

the height of the echo peak at t ≈ τ is thus expected to

decay exponentially in τ. Systems with this property were

labelled “irreversible” in [11], as opposed to “reversible”

ones where the decay is (at most) algebraic. In this sense,

one may interpret the present result as a prediction that

many-body quantum systems are typically irreversible.

However, it should be pointed out that the functional

dependence of the echo peak on τ rather appears to

be a property of the inaccuracies V than of the system

itself, even though the structure of V is (in a real system)

of course influenced by the properties of the system. In

any case, this functional dependence could also be con-

firmed for an exemplary spin-

1

2

XXXmodel,whosedynam-

ics shows good agreement with our analytical prediction

without any remaining fit parameter.

The paradigmatic examples of macroscopic echo

experiments are spin echoes and NMR [7], where nuclear

spins precess in a strong magnetic field at different

frequencies due to local inhomogeneities, leading to

dephasing of the initially aligned magnetic moments.

Applying a π pulse at time τ reverses the relative orien-

tation between the spins and the external field and thus

effectively changes the sign of the corresponding term

in the pertinent model Hamiltonian. However, interac-

tions among the spins and with the environment are not

reversed and amount to a “perturbation” that causes devi-

ations of the echo signal at time 2τ, which – in line with

our general echo analysis here – typically decays exponen-

tially with τ. It should be noted that the “imperfections” in

this context are usually vital in applications such as MRI,

precisely because different imperfections lead to slightly

different decay rates and therefore allowone todistinguish

different materials.

Experimental implementations of echo protocols are

also available in a variety of interacting spin systems,

see, for example, [15–17, 20, 21]. In these experiments, an

effective sign flip of the dominant part of the Hamilto-

nian (including dipole–dipole or even quadrupole inter-

actions) is achieved by means of an elaborate application

of radiofrequency magnetic fields. The prevailing inaccu-

racies leading to deviations from the perfectly reversed

signal are again due to nonreversible correction terms in

the Hamiltonian, as well as possible experimental impre-

cisions in carrying out the required protocol. Their major

contribution is thus expected to be of the type studied

here, too.

Specifically, the experimental study [20] indeed

reports an exponential decay of the peak height with the

reversal time τ in a polarisation echo experiment involving

the nuclear spins of a cymantrene polycrystalline sample.

In the same study, data obtained from a ferrocene sample

suggest an approximately Gaussian-shaped dependence;

see also [21]. The authors explain this with the much

larger relative strength of the nonreversible component

in the Hamiltonian, compatible with our prediction that

a crossover from an exponential to a Bessel-like¹ decay is

expected as the relative strength of V increases; see the

discussion at the end of Section 4.

From a conceptual point of view, the approach of

our present work, where the Hamiltonians of the for-

ward and backward phases differ slightly, assesses (via

observable quantities) the stability of many-body trajec-

tories with respect to variations of the dynamical laws.

Therefore, it should be no surprise that deviations grow

with the propagation time τ, and the exponential depen-

dence might have been anticipated from perturbation-

theoretic considerations, even though the applicability of

standard perturbation theory is rather limited for typi-

cal many-body systems with their extremely dense energy

spectra. In that sense, the present derivation by nonper-

turbative methods is reassuring and also indicates how

deviations from the exponential behaviour will manifest

themselves if the influence of imperfections increases. For

1 Within the experimental error bars, the Bessel-like shape

4J
1
(2x)2/(2x)2 is indistinguishable from a Gaussian shape exp(−x2).

Note that the two functions agree to third order in x, and the relative

difference of the fourth-order Taylor coefficients is only 1/6.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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future work, it will be interesting to investigate a comple-

mentary approach that studies the sensitivity toward vari-

ations of the initial conditions in macroscopic quantum

system.
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Appendix A: Derivation of (26)
Exploiting (18), we rewrite R(t) from (25) as

R(t) = ˜R(2αϵ2t) , (36)

˜R(t) :=
∑︁
m,n

⟨m|ρ
T
|m⟩⟨n|A|n⟩ h(m − n, t) , (37)

h(n, t) := e−t

πNv

1 − cos(tn/Nv) − sin(tn/Nv)
n/Nv

1 + (n/Nv)
2

, (38)

where Nv is defined in (19), and where ωkl := Ek − El
(see below (21)) has been approximated by (k − l)/D

0
, as

justified below (9).

According to (14), we can andwill take for granted that

Nv ≫ 1 . (39)

In view of (38), it follows that the sum

∑︀
n h(n, t)

can be very well approximated by the integral

∫︀
dx h(x, t).

Moreover, a straightforward but somewhat tedious calcu-

lation yields

∫︀
dx h(x, t) = 0. Therefore, we can subtract

a constant value from the observable A without changing

the value of
˜R(t) in (37). By means of the definition

˜Ann := ⟨n|A|n⟩ − ⟨A⟩ρ
mc

(40)

we thus can rewrite (37) as

˜R(t) =
∑︁
m

⟨m|ρ
T
|m⟩ ˜Q(m, t) , (41)

˜Q(m, t) :=
∑︁
n

˜Ann h(m − n, t) . (42)

Exploiting the Cauchy–Schwarz inequality yields

˜Q2

(m, t) ≤

[︃∑︁
n
(
˜Ann)

2

]︃[︃∑︁
n

h2(m − n, t)
]︃
. (43)

As the last sum over n is independent of m, it follows
that

|˜Q(m, t)| ≤
√︀
Q(t) , (44)

Q(t) := q(t)
∑︁
n
(
˜Ann)

2

, (45)

q(t) :=
∑︁
n

h2(n, t) . (46)

Accordingly,
˜R(t) from (41) can be upper bounded as

|˜R(t)| ≤
√︀
Q(t)

∑︁
m

⟨m|ρ
T
|m⟩ =

√︀
Q(t) , (47)

where we exploited that ρ
T
is a positive semidefinite oper-

ator of unit trace.

Because of (38) and (39), one can conclude – simi-

larly as below (39) – that the sum on the right-hand side of

(46) is verywell approximated by the integral

∫︀
dy h2(y, t).

After going over from the integration variable y to x :=
y/Nv, one thus obtains in very good approximation

q(t) = N−1

v f (t) , (48)

f (t) := e−2t
∫︁

dx
[︂
1 − cos(xt) − sin(xt)/x

π[1 + x2]

]︂
2

. (49)

An analytical evaluation of f (t) from (49) is possi-

ble but quite arduous, whereas a numerical evaluation is

straightforward; see Figure 2. In either case, one finds that

0 ≤ f (t) ≤ 1/50 =: c (50)

for all t ≥ 0. Taking into account (36), (45), (47), and (48),

we thus arrive at

R2(t) ≤ c
Nv

∑︁
n
(
˜Ann)

2

. (51)
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Figure 2: Numerical evaluation of the function f (t) from (49).
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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future work, it will be interesting to investigate a comple-

mentary approach that studies the sensitivity toward vari-

ations of the initial conditions in macroscopic quantum

system.
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Appendix A: Derivation of (26)
Exploiting (18), we rewrite R(t) from (25) as

R(t) = ˜R(2αϵ2t) , (36)

˜R(t) :=
∑︁
m,n

⟨m|ρ
T
|m⟩⟨n|A|n⟩ h(m − n, t) , (37)

h(n, t) := e−t

πNv

1 − cos(tn/Nv) − sin(tn/Nv)
n/Nv

1 + (n/Nv)
2

, (38)

where Nv is defined in (19), and where ωkl := Ek − El
(see below (21)) has been approximated by (k − l)/D

0
, as

justified below (9).

According to (14), we can andwill take for granted that

Nv ≫ 1 . (39)

In view of (38), it follows that the sum

∑︀
n h(n, t)

can be very well approximated by the integral

∫︀
dx h(x, t).

Moreover, a straightforward but somewhat tedious calcu-

lation yields

∫︀
dx h(x, t) = 0. Therefore, we can subtract

a constant value from the observable A without changing

the value of
˜R(t) in (37). By means of the definition

˜Ann := ⟨n|A|n⟩ − ⟨A⟩ρ
mc

(40)

we thus can rewrite (37) as

˜R(t) =
∑︁
m

⟨m|ρ
T
|m⟩ ˜Q(m, t) , (41)

˜Q(m, t) :=
∑︁
n

˜Ann h(m − n, t) . (42)

Exploiting the Cauchy–Schwarz inequality yields

˜Q2

(m, t) ≤

[︃∑︁
n
(
˜Ann)

2

]︃[︃∑︁
n

h2(m − n, t)
]︃
. (43)

As the last sum over n is independent of m, it follows
that

|˜Q(m, t)| ≤
√︀
Q(t) , (44)

Q(t) := q(t)
∑︁
n
(
˜Ann)

2

, (45)

q(t) :=
∑︁
n

h2(n, t) . (46)

Accordingly,
˜R(t) from (41) can be upper bounded as

|˜R(t)| ≤
√︀
Q(t)

∑︁
m

⟨m|ρ
T
|m⟩ =

√︀
Q(t) , (47)

where we exploited that ρ
T
is a positive semidefinite oper-

ator of unit trace.

Because of (38) and (39), one can conclude – simi-

larly as below (39) – that the sum on the right-hand side of

(46) is verywell approximated by the integral

∫︀
dy h2(y, t).

After going over from the integration variable y to x :=
y/Nv, one thus obtains in very good approximation

q(t) = N−1

v f (t) , (48)

f (t) := e−2t
∫︁

dx
[︂
1 − cos(xt) − sin(xt)/x

π[1 + x2]

]︂
2

. (49)

An analytical evaluation of f (t) from (49) is possi-

ble but quite arduous, whereas a numerical evaluation is

straightforward; see Figure 2. In either case, one finds that

0 ≤ f (t) ≤ 1/50 =: c (50)

for all t ≥ 0. Taking into account (36), (45), (47), and (48),

we thus arrive at

R2(t) ≤ c
Nv

∑︁
n
(
˜Ann)

2

. (51)
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Figure 2: Numerical evaluation of the function f (t) from (49).
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As discussed above (9), the diagonal matrix elements

⟨n|ρ(0)|n⟩ appearing in (3) vanish whenever En ̸∈ IE.
Accordingly, we can arbitrarily modify the corresponding

⟨n|A|n⟩’s without any further consequences in (3). Specifi-
cally, we canmodify them so that all

˜Ann in (40) are zero if

En ̸∈ IE. Therefore, the summation on the right-hand side

of (51) can be restricted to those nwith En ∈ IE. Altogether,
we thus recover (26) and (27) from the main text.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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