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Abstract: The main aim of this paper is, to obtain the
analytical solutionof theRiemannproblem for a quasi-linear
system of equations, which describe the one-dimensional
unsteady flow of an ideal polytropic dusty gas in magneto-
gasdynamics without any restriction on the initial data. By
using the Rankine-Hugoniot (R-H) and Lax conditions, the
explicit expressions of elementary wave solutions (i. e.,
shock waves, simple waves and contact discontinuities) are
derived. In the flow field, the velocity and density distribu-
tions for the compressive and rarefaction waves are dis-
cussed and shown graphically. It is also shown how the
presence of small solid particles andmagneticfield affect the
velocity and density across the elementary waves. It is an
interesting fact about this study that the results obtained for
the Riemann problem are in closed form.

Keywords: contact discontinuity; dusty gas;
magnetogasdynamics; rarefaction wave; Riemann prob-
lem; shock wave.

1 Introduction

In recent years, the solutions of Riemann problem for a
system of conservation laws have grabbed the undivided
attention of the researchers from the theoretical and nu-
merical points of view in real gas flow, gas dynamics,
magnetogasdynamics, shallow water flow, etc. In the case
of the Euler equations, the Riemann problem corresponds
to the so-called shock-tube problem, a fundamental
physical problem in gas dynamics. One can go through the
book [1] for its detailed discussion. The Riemann solution

consists of three waves with single contact discontinuity as
the middle one and the remaining two are shock or rare-
faction waves. All the features of the solution of the Rie-
mann problem such as shockwaves, rarefactionwaves and
contact discontinuity appear in the form of characteristics.
Therefore, it is convenient for the researchers/readers to
understand the conservation form of Euler equations. The
solution of the Riemann problem gives an idea of the wave
structure of a system of non-linear hyperbolic differential
equations. In recent years, the solutions of Riemann
problem in gas dynamics have been obtained extensively
by many researchers [2–4]. Lax [5] obtained the solution of
the Riemann problem for the case when the difference
between the initial states Vr and Vl, ∥Vl − Vr∥ is sufficiently
small, where Vr and Vl are the vectors of conserved vari-
ables to the right and left of x � 0 separated by a disconti-
nuity at x � 0, respectively. Dafermos [6] established the
existence of the solutions of the Riemann problem for a
hyperbolic system of conservation laws by the viscosity
method. Giacomazzo and Rezzolla [7], and Romero et al. [8]
determined the exact solutions of the Riemann problem in
magnetohydrodynamics. Ambika and Radha [9] solved the
Riemann problem in a non-ideal gas. They have deter-
mined the explicit form of solutions of shock and rarefac-
tion waves, and also derived the necessary and sufficient
conditions on the initial data from which existence and
uniqueness of the solution for shocks and rarefaction
waves are determined. Recently, Gupta et al. [10] studied
the Riemann problem in magnetogasdynamics for a non-
ideal polytropic gas and derived the explicit form of solu-
tions of shock waves, simple waves and contact disconti-
nuity. The effects of non-idealness and dusty gas particles
on the compressive and rarefaction waves are discussed by
them. Wang [11] studied the Riemann problem for gener-
alized Chaplygin gas dynamics. The stability of the Rie-
mann solutions with respect to the initial data is also
discussed by him. Bernetti et al. [12] studied the Riemann
problem for the shallow water equations with a piecewise
constant bottom geometry and obtained the self-similar
solution. Uniqueness of the solution is also discussed by
them. Shen [13] solved the Riemann problem for Chaplygin
gas dynamicswith a Coulomb-like friction term. He derived
the generalized R-H conditions for delta shock wave and
shown that in Riemann solutions, the delta shock wave
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appears in certain situations. Zeidan et al. [14] proposed a
new model and a solution method for two-phase two-fluid
compressible flows; the key ingredient of the scheme is the
solution of the Riemann problem. Two-phase flow is seen
in a broad range of applications and encompasses many
different physical processes. As regard to the numerical
and analytical approaches for the simulation of two-phase
flow equations, there are several methods from different
perspectives to simulate two-phase flow problems. There
have been reasonably successful attempts to use approxi-
mate Riemann solvers for two-phase flow equations. For
the details of these methods and Riemann solvers, we refer
the readers to the recent papers [15–20].

Understanding the influence of solid particles on the
propagation phenomena of waves and the resulting flow
field is of great importance for solving many engineering
problems in the field of astrophysics and space science
research. The study of Riemann problem for the fluid flow
containing solid particles is a topic of great interest due to
its many applications in lunar ash flow, nozzle flow,
interstellar masses, volcanic explosions, underground ex-
plosions and in many other fields [21–23]. When a shock
wave is propagated through a gas which contains a
considerable amount of dust, the pressure, the temperature
and the entropy change across the shock, and the other
features of the flow differ greatly from those which arise
when the shock passes through a dust-free gas. The flow
field, that develops when a moving shock wave hits a two-
phase medium of gas and particles, has a close practical
relation to industrial applications (e. g., solid rocket engine
in which aluminum particles are used to reduce the vi-
bration due to instability) as well as industrial accidents
such as explosions in coalmines and grain elevators.
Therefore, a successful prediction of the behavior of shock
waves in a two-phase medium of gas and solid particles is
very crucial and imperative for the successful design and
operation of rocket nozzles and energy conversion sys-
tems. Dusty gas is a mixture of gas and small solid parti-
cles, where solid particles occupy less than 5% of the total
volume. When the speed of fluid is very high, the small
solid particles behave like a pseudo fluid [24]. There are
many research articles related to the study of shock wave
propagation in a dusty gas (see Refs. [25–27]). Chadha and
Jena [28] studied the effects of dust particles on the prop-
agation of waves in a non-ideal gas. They have obtained
the shock trajectory with the effects of Van der Waals
excluded volume and dust particles. Recently, Chauhan
and Arora [29] have determined the solutions of strong
shockwaves for cylindrically symmetric flow in a non-ideal
dusty gas with the inclusion of axial magnetic field. Nath
et al. [30] studied the Riemann problem for an ideal

polytropic gas with dust particles. The study of magneto-
gasdymamics is a topic of great interest from the mathe-
matical and physical points of view as it has many
applications in the field of engineering physics, nuclear
science, astrophysics, etc [31–34]. Shekhar and Sharma [35]
obtained the solution of Riemann problem in an ideal
magnetogasdynamic flow under the simplified assumption.
This study ismainly concernedwith theRiemannproblem in
a polytropic dusty gas for one-dimensional unsteady flow
with the effect of transverse magnetic field. The dusty gas is
a pure perfect gas that is contaminated by small solid par-
ticles and not as a mixture of two perfect gases. The solid
particles are continuously distributed in the perfect gas and,
in their totality are referred to as dust. It is assumed that the
dust particles are highlydispersed in the gas phase such that
the dusty gas can be considered as a continuous medium. It
is also assumed that the equilibrium flow condition is
maintained in the flow field, and that the viscous stress and
heat conduction of the mixture is negligible. Here, we
consider a single fluid model for a dusty gas in magneto-
gasdynamics. This system is more complex than the corre-
sponding Riemann problem for the Euler equations in
ordinary gas dynamics. The main motivation to work on
magnetogasdynamicswith dust particles is its application in
Astrophysics as dusty plasmas are common in astrophysical
environments; examples range from the interstellarmedium
to cometary tails and planetary ring system. The paper aims
to provide an explicit solution to the Riemann problem for
the one-dimensional Euler equations for dusty gas flow. We
have compared/contrasted the nature of the solution in an
ordinary gas dynamics/magnetogasdynamics and the dusty
gas flow case.

The rest of the paper is summarized as follows: In
Section 1, a brief introduction is presented about the Rie-
mann problem in gas dynamics. In Section 2, the governing
equations of motion describing the one-dimensional un-
steady planar flow of an ideal polytropic dusty gas with the
presence of transverse magnetic field are introduced. In
Section 3, the mathematical form of Riemann problem is
presented and the generalized Riemann invariants are
determined. The explicit formulas for the 1-shock curve and
the 3-shock curve are derived by using the jump conditions
in Section 4. Section 6 is about simple waves or rarefaction
waves. The explicit formulas for 1-rarefaction waves and 3-
rarefaction waves are derived in Section 5. Section 6 is
about contact discontinuities. The results of this paper are
discussed in Section 7. The graphical representations of
compressive and rarefaction wave for 1-shock and 3-shock
are also presented. The effects of dusty gas particles and
magnetic field are shown in Section 7. In section 8, a
conclusion is given about the whole study.
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2 Governing equations

The basic equations (PDEs) which govern the continuous
motion of a perfectly conducting fluid, in the absence of
viscosity and thermal conduction, can be written as [35]:

ρt + div (ρu) � 0,

ut + (u.∇)u � −
1
ρ
∇ p + (∇ ×H) × B,

pt + u. ∇ p + ρC2 ∇ .u,

Bt � curl (u × B),
div (B) � 0,

(2.1)

where ρ is the fluid density, p the pressure, C the speed of
sound, u � (u1, u2, u3) the velocity vector and B the mag-
netic induction satisfying the relation B � μH with µ being
the magnetic permeability, assumed to be constant, and
H � (H1,H2,H3) being the magnetic field vector.

Here, we are concerned with a one-dimensional motion
with planar symmetry,which is encountered very frequently in
problems of magnetohydrodynamics. In a planar motion, the
trajectories of the particles form a family of straight lines
perpendicular to some fixed plane. If we choose the x-axis
perpendicular to the plane, then the velocity vector will have
onlyonenon-zero component, that is,u � (u(x, t),0,0),while
p � p(x, t) andρ � ρ(x, t).Wenowconsideraone-dimensional
planar motion of plasma, which is assumed to be an ideal
polytropic dusty gas with infinite electrical conductivity and to
bepermeatedbya transversemagneticfieldH � (0,H(x, t),0)
orthogonal to the trajectories of the gasparticles; the governing
equations for the one-dimensional flow, thus, take the form

ρt + vρx + ρvx � 0, (2.2)

vt + vvx + 1
ρ
(px + BBx

μ
) � 0, (2.3)

pt + vpx + C2ρvx � 0, (2.4)

Bt + vBx + Bvx � 0. (2.5)

The equation of state for a polytropic dusty gas is given
as [30]

p � keS/cv( ρ
1 − Z

)Γ
, (2.6)

where k is a positive constant and S denotes the specific
entropy. Here, Z � Vsp

Vmix
denotes the volume fraction where

Vsp is the volumetric extension of the solid particles and
Vmix is the total volume of themixture, respectively. Γ is the
Gruneisen coefficient and defined as Γ � γ (1+λϕ)

1+λϕγ , with
λ � Kp

(1−Kp), γ � cp/cv, ϕ � csp/cp. Here, Kp � ksp
kmix

denotes the
mass fraction of the solid particles in themixture where Ksp

and kmix are the total mass of the solid particles and the
mixture, respectively, cp is the specific heat of the gas at
constant pressure, csp represents the specific heat of the
solid particles and cv represents the specific heat of the gas
at constant volume. The relation between Z and Kp is given
as Z � θρwith θ � Kp/ρsp, ρsp represents the specific density
of the solid particles. For an ideal polytropic dusty gas

medium, the sound velocity C � ( Γp
ρ(1−θρ))1/2

.

The internal energy per unit mass of the mixture is
denoted by e and given as

e � p(1 − Z)
ρ(Γ − 1). (2.7)

Eqs. (2.2)–(2.5) can be represented in thematrix formas

Vt + AVx � 0, (2.8)

where

V �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ
v
p
B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v ρ 0 0

0 v
1
ρ

B
μρ

0 ρC2 v 0

0 B 0 v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The eigenvalues of the matrix A are obtained as

λ1 � v − s,  λ2 � v,  λ3 � v + s,  λ4 � v, (2.9)

where s � (b2 + C2)1/2 is magneto-acoustic speed, b �
��
B2
μρ

√
is

the Alfvén speed.
The eigenvectors corresponding to the eigenvalues

λj, j � 1, 2, 3, 4 of matrix A are

X1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ/s
1
ρs
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, X2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, X3 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−ρ/s
1

−ρs
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, X4 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
−b2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2.10)

Since the eigenvalues of the matrix A are real, and the
correspondingsetof eigenvectorsare linearly independent.So,
the system (2.8) is hyperbolic. Now, we impose an assumption
B � kρ (see Refs. [35, 36]), where k is a positive constant. With
this assumption Eq. (2.2) is equivalent to Eq. (2.5). Hence, the
system (2.5) reduces to the simpler form as follows:

V∗
t + A∗V∗

x � 0, (2.11)

where

V∗ � ⎡⎢⎢⎢⎢⎢⎣ ρv
p

⎤⎥⎥⎥⎥⎥⎦, A∗ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
v ρ 0

b2

ρ
v

1
ρ

0 ρC2 v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Since the eigenvalues of A∗ are real and distinct for s > 0,
therefore the system (2.11) is strictly hyperbolic. The ei-
genvectors of A∗ are given as

X∗
1 � ⎡⎢⎢⎢⎢⎢⎣−ρ/s1

ρC2/s
⎤⎥⎥⎥⎥⎥⎦, X∗

2 � ⎡⎢⎢⎢⎢⎢⎣ 1
0
−b2

⎤⎥⎥⎥⎥⎥⎦, X∗
3 � ⎡⎢⎢⎢⎢⎢⎣ ρ/s

1
ρC2/s

⎤⎥⎥⎥⎥⎥⎦. (2.12)

3 The Riemann problem and the
generalized Riemann invariants

The conservative form of (2.11) can be written as

∂V∗

∂t
+ ∂F(V∗)

∂x
� 0, (3.1)

where V∗ � (ρ, ρv, (E + B2/μρ))tr,F(V∗) � (ρv, p + ρv2 + (B2/

2μ), v(E + p + B2/2μ))tr with E � ρe + ρv2
2 .

The Riemann problem for the system (3.1) is an initial
value problem with the following initial data

V∗
r,0 � V∗

0(r) � {V∗
l , x < 0,

V∗
r , x > 0,

(3.2)

where V∗
l and V∗

r are left and right constant states,
respectivelywhich are separated by a jumpdiscontinuity at
the point x � 0. The solution of the Riemann problem (3.1)
and (3.2) has three waves associated with distinct eigen-
values. Since, all the characteristic fields of the system
(2.11) are either linearly degenerate for ∇λjXj � 0 or genu-
inely non-linear according for ∇λjXj ≠ 0. Hence, first and
third characteristic fields are genuinely non-linear while
second characteristic field is linearly degenerate. So, the
first and third characteristic fields will always be either a
shock or rarefaction wave, and the second characteristic
field will be contact discontinuity.

Now, we consider the matrix M3×3 whose columns are
eigenvectors X∗

j , j � 1, 2, 3 as

⎡⎢⎢⎢⎢⎢⎣ −ρ/s 1 ρ/s
1 0 1

−ρC2/s −b2 ρC2/s
⎤⎥⎥⎥⎥⎥⎦.

The inverse of the above matrix is given as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
χ2

0
−1
C2χ2

−C(χ2 − 1)
2ρχ

1
2

−1
2Cρχ

C(χ2 − 1)
2ρχ

1
2

1
2Cρχ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, χ � (1 + b2/C2)1/2 denotes Alfvèn number. Now,
we try to integrate

1
χ2
dρ −

1
C2χ2

dp,   (1
χ
− χ)C

ρ
dρ + du −

1
Cρχ

dp,   

(χ − 1
χ
)C
ρ
dρ + du + 1

Cρχ
dp. (3.3)

The first differential of (3.3) can be written as

1
χ2
dρ −

1
C2χ2

dp � (1 − θρ)
χ2

d((ρ/(1 − θρ))Γ
p

),
which implies that the entropy S � p

(ρ/(1−θρ))Γ is constant
along the particle path through smooth solutions. From the
entropy condition and the remaining two differentials in
(3.3), we obtain the following relations:

R± � v ± 2χC
(Γ − 1)(1 − θρ)1/2. (3.4)

Therefore, the Riemann invariants (Π i
1,  Π

i
2)

corresponding to the ith-characteristic field are given as

i � 1,   Π1
1 � S,   Π1

2 � v + 2χC
(Γ − 1)(1 − θρ)1/2, (3.5)

i � 2,   Π2
1 � u,   Π2

2 � p + B2

2μ
, (3.6)

i � 3,   Π1
1 � S,   Π1

2 � v −
2χC

(Γ − 1)(1 − θρ)1/2. (3.7)

4 Shock waves

Shock waves are the piecewise discontinuous solutions,
which satisfy the Lax entropy condition. Let us suppose
that the shock propagates at a velocity σ, dependent on the
left and right constant states. The conserved variablesmust
satisfy the R-H relations [37]. Let V∗

1 and V∗
2 represent the

left and right constant states, respectively separated by
either a shock or simple wave or contact discontinuity i. e.,

F(V∗
2 ) − F(V∗

1 ) � σ(V∗
2 − V∗

1 ). (4.1)

Thus, we have the following jump relations of the
system (3.1)

σ[ρ] � [ρv], (4.2)

σ[ρv] � [p + ρv2 + (B2/2μ)], (4.3)

σ[e + (B2/2μ)] � [v(e + p + (B2/2μ))]. (4.4)

The Lax entropy condition is as follows [38]:
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λi−1(V∗
1 ) < σ < λi(V∗

1 ),   λi(V∗
2 ) < σ < λi+1(V∗

2 ),  i � 1, 3. (4.5)

By introducing the variables u � v − σ, m � ρu in the
above jump conditions, we have

[m] � 0, (4.6)

[p +mu + (B2/2μ)] � 0, (4.7)

m[u2 + 2
Γ(Γ − 1)C

2(1 − θρ)(Γ − θρ) + b2] � 0. (4.8)

Using Eq. (4.5) for 1-shockwaves, we obtain σ < v1 − s1,
which implies s1 < u1 and v2 − s2 < σ < v2, which imply
0 < u2 < s2 < u2 + σ. Therefore, in case of 1-shock wave, we
have u1 > s1 and 0 < u2 < s2, which imply that v1 > σ and
v2 > σ. Thus, the gas velocity is greater than the shock ve-
locity on both sides of the shockwave, so that for a 1-shock,
particles move from left to right across the shock. For 3-
shock wave, we have v1 < σ < v1 + s1 and v2 + s2 < σ, which
imply that −s1 < u1 < 0 and u2 < −s1 < 0. Therefore, for 3-
shock wave, we obtain σ > v1 and σ > v2, which imply that
the shock velocity is greater than the velocity of gas on both
sides of the shockwave. So, the particlesmove across the 3-
shock from right to left.

It can be noticed that u1 and u2 are non-zero for 1-shock
wave and 3-shockwave. Therefore,m � ρ1u1 � ρ2u2 ≠ 0. Thus,

for both the shock waves, we have u21 > s21 and u22 < s22. Since
m ≠ 0, so from the Eq. (4.7), we obtain the following relation

u2
1 +

2
Γ(Γ − 1)C

2
1(1 − Z1)(Γ − Z1) + b2

1 � u2
2

+ 2
Γ(Γ − 1)C

2
2(1 − Z2)(Γ − Z2) + b2

2, (4.9)

where Z1 � θρ1 and Z2 � θρ2.
Now, using the fact that u21 > s21 and u22 < s22 in Eq. (4.9),

we obtain

s21 +
2

Γ(Γ − 1)C
2
1(1 − Z1)(Γ − Z1) + b2

1 < s22

+ 2
Γ(Γ − 1)C

2
2(1 − Z2)(Γ − Z2) + b2

2. (4.10)

Substituting s2 � (b2 + C2) in the above equation, we

get C2
1 < C2

2 and b22 < b22 which implies that s21 < s22 thus

u21 > u22. This gives s2 > s1 and |u1| > |u2|. Therefore, from Eq.
(4.6), we obtain ρ1 < ρ2, so p1 < p2 and B1 < B2 for 1-shock
wave. In a similarmanner, we can prove that ρ2 < ρ1, p2 < p1
and B2 < B1 for 3-shock wave. Hence, both the shock fam-
ilies are compressive waves.

Now, we explicitly compute the one-parameter family
of shocks. We start with 1-shock wave and define the
following constants:

π � p2

p1
,   α � ρ2

ρ1
,   τ � (Γ + 1)

(Γ − 1),   β �
(Γ − 1)
2Γ

. (4.11)

The above relations shows that π > 1 and α > 1.

Using the relation C2 � Γp
ρ(1−Z), we get

(C2

C1
)2

� π
α
(1 − Z1)
(1 − Z2). (4.12)

With the help of ρ1u1 � ρ2u2, we get

u2

u1
� ρ1
ρ2

� 1
α
. (4.13)

Using Eqs. (4.12) and (4.13) in Eq. (4.9), we obtain

(u1

C1
)2

�[2(1 − Z1)π(1 − Z2) − α(Γ − Z1)
Γ(Γ − 1)

+ π(1 − Z1)(χ22 − 1)
(1 − Z2) − α(χ21 − 1)]] α

α2 − 1
.

(4.14)

Here, χ1 � (1 + b2
1/C

2
1 )1/2 and χ2 � (1 + b2

2/C
2
2)1/2

Also, from Eq. (4.7), we have

p1 +m1u1 + (B2
1/2μ) � p2 +m2u2 + (B2

2/2μ). (4.15)

Since p � ρC2(1 − Z)/Γ, m � ρu and B2/μρ � b2, there-
fore Eq. (4.15) yields

(u1
C1
)2

�[(1 − Z1)(π − 1)
Γ

+ 1
2
{π(1 − Z1)(χ22 − 1)

(1 − Z2)
− (χ21 − 1)}] α

α − 1
. (4.16)

Comparing Eqs. (4.14) and (4.16), we obtain

α �
1
Γ (1 + πτ − 2πZ2

Γ−1 ) + K
1
Γ (π + τ − 2Z1

Γ−1) + K
, (4.17)

where K � 1
2[π(χ22−1)1−Z2

+ (χ21−1)
(1−Z1)].

Above equation implies α < τ and since 1 < α, we find
the bounds for the density ρ2 in terms of ρ1 i. e., ρ1 < ρ2 < τρ1.

Substituting the value of α from Eq. (4.17) in Eq. (4.16),
we obtain

(u1

C1
)2

�[(1 − Z1)(π − 1)
Γ

+ 1
2
{π(1 − Z1)(χ22 − 1)

(1 − Z2)

− (χ21 − 1)}] 1
Γ (1 + πτ − 2πZ2

Γ−1 ) + K
1
Γ {(π − 1)(1 − τ) − 2(πZ2−Z1)

Γ−1 } + K
.

(4.18)

Let η � 2Z1
Γ−1, ξ � 2Z2

Γ−1 and using u � v − σ in Eq. (4.18), we

obtain

v2 − v1
C1

� ±[(2 − η(Γ − 1))
2

{1 − π
Γ

−
π(χ22 − 1)

2 − ξ(Γ − 1) −
(χ21 − 1)

2 − η(Γ − 1)}
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((1 − π)(τ − 1) − η + πξ)(1 + π(τ − ξ)) ]1/2
. (4.19)

Eq. (4.19) shows the change in velocity across a shock
transition. Here, + sign denoted for 1-shock and −
sign for 3-shock.

The expressions p2
p1
� π and ρ2

ρ1 � α together with Eqs.

(4.17) and (4.19) give the formulas for the shock curves. To
make these somewhat more explicit, we introduce a new
parameter δ as follows [39]:

δ � −log π. (4.20)

From the above equation, we have e−δ � π � p2/p1 > 1,
therefore δ ≤ 0. By using this parameterization, we obtain
the following formulas for 1-shock curve

p2

p1
� e−δ, (4.21)

ρ2
ρ1

�
(χ21−1)

2 + e−δ(1−Z1)(χ22−1)
2(1−Z2) + (1−Z1)(1+e−δ(τ−ξ))

Γ

(χ21−1)
2 + e−δ(1−Z1)(χ22−1)

2(1−Z2) + (1−Z1)(τ−η+e−δ)
Γ

, (4.22)

v2 − v1
C1

�[(2 − η(Γ − 1))
2

{1 − e−δ

Γ
−
e−δ(χ22 − 1)
2 − ξ(Γ − 1) −

(χ21 − 1)
2 − η(Γ − 1)}((1 − e−δ)(τ − 1) − η + πξ)(1 + e−δ(τ − ξ)) ]1/2

. (4.23)

Similarly, for 3-shock curve, we have

p1

p2
� eδ, (4.24)

ρ1
ρ2

�
(χ21−1)

2 + eδ(1−Z1)(χ22−1)
2(1−Z2) + (1−Z1)(1+eδ(τ−ξ))

Γ

(χ21−1)
2 + eδ(1−Z1)(χ22−1)

2(1−Z2) + (1−Z1)(τ−η+eδ)
Γ

, (4.25)

v1 − v2
C2

� [(2 − η(Γ − 1))
2

{eδ − 1
Γ

−
eδ(χ22 − 1)
2 − ξ(Γ − 1) −

(χ21 − 1)
2 − η(Γ − 1)}((eδ − 1)(τ − 1) − η + πξ)(1 + eδ(τ − ξ)) ]1/2

. (4.26)

5 Simple waves

In 1-dimensional space, for a system of hyperbolic PDEs, a
simple wave is called a centered rarefaction wave in which
the dependent variables are constant along the
characteristics which are straight lines. For a rarefaction
wave, the left and right constant states i. e., V∗

1 and V∗
2 are

connected through a smooth transition in ith genuinely non-
linear characteristic field and agrees with the following
conditions:

– “The Riemann invariants are constant across the wave
[40].”

– “The left and right characteristics of the wave diverge
i. e., λi(V∗

1 ) < λi(V∗
2 ),  i � 1, 3.”

Now, we consider the simple wave curves. We obtain
only 1-simple waves, the procedure for 3-simple waves are
similar. Using the above conditions, we obtain

S2 � S1, (5.1)

and

v1 + 2
(Γ − 1)χ1C1(1 − Z1)1/2 � v2 + 2

(Γ − 1)χ2C2(1 − Z2)1/2. (5.2)

From Eqs. (2.6) and (5.1), we obtain

p2

p1
� [C2(1 − Z2)

C1(1 − Z1)]
2Γ
Γ−1

� [ρ2(1 − Z1)
ρ1(1 − Z2)]

Γ

. (5.3)

Therefore, from Eq. (5.2), we obtain

v2 − v1
C1

� 2χ1
Γ − 1

[(1 − Z1)1/2 − C2

C1

χ2
χ1
(1 − Z2)1/2]. (5.4)

But in 1-rarefaction wave, λ1 � v − s must increase.

Hence, λ(2)1 ≥ λ(1)1 which implies v2 − v1 ≥ χ2C2 − χ1C1.
Therefore, Eq. (5.4) gives

χ2C2 − χ1C1

C1
≤

2χ1
Γ − 1

[(1 − Z1)1/2 − C2

C1

χ2
χ1
(1 − Z2)1/2]. (5.5)

Using the above expression in Eq. (5.3), we obtain

0 <
p2

p1
≤ 1. (5.6)

From Eq. (4.20), we have

δ � −logπ. (5.7)

Note that e−δ � π � p2
p1
< 1, which implies that δ ≥ 0.

Therefore, using Eqs. (5.2) and (5.3), the more explicit
formulation for 1-simple wave can be written as follows:

p2

p1
� e−δ, (5.8)

ρ2
ρ1

� e−δ/Γ(1 − Z2

1 − Z1
), (5.9)

v2 − v1
C1

� 2χ1
Γ − 1

(1 − Z1)1/2[1 − e−δβ
χ2
χ1

(1 − Z1)1/2
(1 − Z2)1/2

]. (5.10)

Similarly, for 3-simple wave, we have

p1

p2
� eδ, (5.11)
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ρ1
ρ2

� eδ/Γ(1 − Z1

1 − Z2
), (5.12)

v1 − v2
C2

� 2χ1
Γ − 1

(1 − Z1)1/2[1 − χ2
χ1
eδβ

(1 − Z1)1/2
(1 − Z2)1/2

]. (5.13)

6 Contact discontinuities

The contact surfaces that separate two zones of different
temperature and density are called contact discontinuities.
Contact discontinuity comes due to the linear degeneracy
of the second characteristics field. In this field, there are no
shocks or simple waves. For this type of discontinuity, the
constant states V∗

1 and V∗
2 are joined through a single jump

discontinuitywith the speed σ2 and satisfying the following
conditions:
– “The Rankine-Hugoniot (R-H) conditions i. e.,

F(V∗
2 ) − F(V∗

1 ) � σ2(V∗
2 − V∗

1 ).”
– “The parallel characteristic conditions λ2(V∗

2 ) � λ1
(V∗

1 ) � σ2.”

Thus, for the 1-parameter familyof contactdiscontinuities,

p2

p1
� 1, (6.1)

ρ2
ρ1

� eδ,   −∞ < δ <∞, (6.2)

v2 − v1 � 0. (6.3)

7 Results and discussion

The analytical solutions of the Riemann problem (shock
waves, simple waves and contact discontinuities) for Euler
equations in magnetogasdynamics of an ideal polytropic
dusty gas are determined. The case when kp � 0, corre-
sponds to the ideal polytropic gas in magnetogasdynamics
without the presence of dust particles. The obtained results
for this case are in close agreement with the earlier results
reported in [41] for an ideal gas with added magnetic field
effect. The case for which χ1 � 1.0, χ2 � 1.0, kp ≠ 0 in the
expressions of 1-shock and 3-shock for compressive and
rarefaction waves corresponds to the case of ideal poly-
tropic dusty gas without magnetic field effects and the
obtained solutions for this case perfectly match with the
existing results reported in [30]. Further, in the absence of
magnetic field and dust particles i. e., χ1 � 1.0, χ2 � 1.0,

kp � 0, the obtained results are in close agreement with the
results reported by Smoller [2] for ideal gas dynamics. The
velocity and density profiles for 1-shock and 3-shock of
compressive and rarefaction waves are plotted in Figures
1–8 for different values of parameters of mass fraction kp
and the magnetic field strength. The density and velocity
profiles for compressive and rarefaction waves for 1-shock
and 3-shock versus δ are presented for different values of
parameters of dusty gas and magnetic field strength in
Figures 1–8. Computed values of the density for compres-
sive waves of 1-shock and 3-shock which are obtained in
Eqs. (4.22) and (4.25), respectively are presented in Figures
1 and 2, respectively. Similarly, the computed values of the
velocity for compressive waves of 1-shock and 3-shock
obtained in (4.23) and (4.26), respectively are presented in
Figures 3 and 4, respectively. The density profiles of rare-
faction waves for 1-shock and 3-shock which are obtained
in (5.9) and (5.12), respectively are plotted in Figures 5 and
6, respectively. Similarly, the velocity profiles of rarefac-
tion waves for 1-shock and 3-shock obtained in (5.10) and
(5.13), respectively are plotted in Figures 7 and 8, respec-
tively. For obtaining the profiles of compressive and rare-
faction waves for 1-shock, the initial data is taken as
p1 � 1.0, u1 � 0.0, ρ1 � 1.0, and for the velocity and density
profiles of compressive and rarefaction waves for 3-shock,
the initial data is taken as p2 � 0.1, u2 � 0.0, ρ2 � 0.125 [35].
All the computations are performed using the software
package MATHEMATICA.

For computational work, the following values of the
constants are taken

Z1 � 0.03,  Z2 � 0.04,  γ � 1.4,  ϕ � 0.0,  0.5,  0.8,  1.0,  kp

� 0.0,  0.2,  0.3,  0.4

The values ϕ � 1 and γ � 1.4 correspond to the mixture
of air and glass particles [31]. The effect of the magnetic
field enters through the parameters χ1 and χ2 into the so-
lution. Figures 1–8 represent the density and velocity
profiles of compressive and rarefaction waves for 1-shock
and 3-shock for different values of the parameters of
magnetic field strength and mass fraction. While Figures
9–16 represent the density and velocity profiles of
compressive and rarefactionwaves for 1-shock and 3-shock
for different values of ϕ. From Figures 1, 2, 5, and 6 it is
observed that the density profiles for both the compressive
and rarefaction wave (i. e., 1-shock and 3-shock) are
concave upward in nature. Figures 3 and 4 show that ve-
locity profiles of compressive wave are concave upward for
1-shock and concave downward for 3-shock, respectively.
For a 1-shock of compressive wave, we observe that an
increase in the value of magnetic field strength causes a
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decrease in density (Figure 1). In contrast for a 3-shock of
compressive wave, the density increases with an increase
in the value ofmagnetic field strength (Figure 2). This result
closely agreeswith the result obtained in [10] for the case of
a non-ideal gas. An increase in the parameters χ1 and χ2
gives rise in the velocity for both the compressive waves as
well as rarefaction waves (1-shock and 3-shock). Further,
an increment in the value of the parameter kp gives a rise in
the velocity and density for 1-shock of compressive wave
and the same effect of kp causes a decrement in the velocity
and density profiles for 3-shock of compressive wave. It
may be noted here that an increase in the value of the
parameter kp causes a decrement in the density of rare-
faction waves for 1-shock while for 3-shock of rarefaction
waves, the velocity increases with an increment in the
value of kp (see Figures 5 and 6). From Figure 7, it is
observed that as the value of kp increases, the velocity for 1-
shock of rarefaction wave increases. On the other hand, as

the value of kp increases in the absence of magnetic field,
the velocity increases while the velocity decreases as the
value of kp increases (Figure 8) in the presence of magnetic
field. From Figures 9 and 10, it is observed that as we in-
crease the value ofparameterϕ, the density increases for a 1-
shock of compressive wave, while for a 3-shock, the density
decreases. An increment in the value of ϕ gives rise in the
velocity of a compressive wave for 3-shock (Figure 12). For
rarefaction waves, the density decreases for 1-shock and
increases for 3-shock with an increment in the value of ϕ
(Figures 13 and 14). Therefore, the effect of dusty gas is to
magnify the effect ofmagnetic field strength further. Thus, it
may be concluded from the Figures 1–16 that the presence of
the magnetic field and the dust particles affect significantly
the solution of the Riemann problem. On the basis of all the
results shown in Figures 1–8, it may be concluded that our
results are in good agreement when compared with the re-
sults reported in [2, 10, 30].

Figure 1: Profiles of density for compressive waves: 1-shock for
ϕ � 0.8.

Figure 2: Profiles of density for compressive waves: 3-shock for
ϕ � 0.8.

Figure 3: Profiles of velocity for compressive waves: 1-shock for
ϕ � 0.8.

Figure 4: Profiles of velocity for compressive waves: 3-shock for
ϕ � 0.8.
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8 Conclusion

In this article, the analytical solution of the Riemann
problem is presented for the system of quasi-linear hy-
perbolic differential equations for an ideal polytropic dusty
gas in magnetogasdynamics. It is observed that for a dusty
gas, the solution expressions are more complex in

comparison with the corresponding non-magnetic and
ideal gas case. In the limit of a vanishing magnetic field,
the solutions thus obtained perfectly match with the
existing solutions of the Riemann problem for the Euler
equations of gas dynamics. Also, it is observed that the
obtained results are in good agreement with the earlier

Figure 5: Profiles of density for rarefactionwaves: 1-shock forϕ � 0.8.

Figure 6: Profiles of density for rarefactionwaves: 3-shock forϕ � 0.8.

Figure 7: Profiles of velocity for rarefactionwaves: 1-shock forϕ � 0.8.

Figure 8: Profilesof velocity for rarefactionwaves: 3-shock forϕ � 0.8.

Figure 10: Profiles of density for compressive waves: 3-shock for
kp � 0.3, χ1 � 1.4 and χ2 � 1.4.

Figure 9: Profiles of density for compressive waves: 1-shock for
kp � 0.3, χ1 � 1.4 and χ2 � 1.4.
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results reported in the literature for the Euler equations of
magnetogasdynamics in an ideal gas without dust parti-
cles. The profiles of density and velocity are depicted

graphically for compressive and rarefaction waves for 1-
shock and 3-shock. Magnetic field strength has a
decreasing effect of the density for 1-shock and has an

Figure 11: Profiles of velocity for compressive waves: 1-shock for
kp � 0.3, χ1 � 1.4 and χ2 � 1.4.

Figure 12: Profiles of velocity for compressive waves: 3-shock for
kp � 0.3, χ1 � 1.4 and χ2 � 1.4.

Figure 13: Profiles of density for rarefaction waves: 1-shock for
kp � 0.3, χ1 � 1.4 and χ2 � 1.4.

Figure 14: Profiles of density for rarefaction waves: 3-shock for
kp � 0.3, χ1 � 1.4 and χ2 � 1.4.

Figure 15: Profiles of velocity for rarefaction waves: 1-shock for
kp � 0.3, χ1 � 1.4 and χ2 � 1.4.

Figure 16: Profiles of velocity for rarefaction waves: 3-shock for
kp � 0.3, χ1 � 1.4 and χ2 � 1.4.
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opposite effect for 3-shock of compressive wave. For
compressive waves, the presence of dust particles is to
decrease the density for 1-shock and velocity for both shocks
i. e., for 1-shock and 3-shock while it has a decreasing effect
on the density for 3-shock. For rarefaction waves, the pres-
enceofdust particles has anopposite effect on thedensity as
compared to the case of compressive waves.

Funding: The work of the author Astha Chauhan is sup-
ported by the “Univ Grant Commission”, New Delhi under
the senior research fellowship award with grant number
“2121440656, Ref. No; 21/12/2014(ii)EU-V.”
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