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Abstract: In this paper, we have studied spinless fermions
in four specific quasi one-dimensional systems that are
known to host flat bands in the noninteracting limit: the
triangle lattice, the stub lattice, the diamond lattice, and
the diamond lattice with transverse hopping. The influ-
ence of the nearest neighbour interaction on the flat bands
was investigated. We used exact diagonalization of finite
size lattices employing the Lanczos technique and deter-
mine the single particle spectral functions of the inter-
acting system. Our results are compared with mean field
calculations. In the cases of the triangle lattice and the
stub lattice we found that the flat bands become disper-
sive in the presence of a finite interaction. For the diamond
lattice and the diamond lattice with transverse hopping,
we demonstrated that the flat bands are robust under the
influence of the interaction in certain parameter ranges.
Such systems could be realised experimentally with cold
atoms in optical lattices.

Keywords: Exact Diagonalization; Flat Band Systems;
Many Particle Systems; Quasi One-Dimensional Systems;
Spectral Functions.

1 Introduction
Recently there has been an increased interest in flat
band lattice systems. Such systems are characterised by
the presence of completely dispersionless energy bands,
which are accompanied by a macroscopic degeneracy,
zero group velocity, and infinite effective mass. They also
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possess a macroscopic number of degenerate localised
energy eigenstates. Flat bands appear in a variety of con-
densed matter systems [1], like the Landau levels of
an electron gas, frustrated magnets [2], edge states of
graphene [3], topological insulators [4], Weyl semimetals
[5], unconventional superconductors [6], or optical lattices
[7]. They can also emerge in strongly correlated electron
systems [8]. Flat bands have been realised experimentally
with photonic waveguide arrays [9, 10], exciton-polariton
condensates [11, 12], cold atoms [13, 14], and on an appro-
priately doped Cu surface [15].

In a flat band system the influence of perturbations
to the system like disorder or interactions can lead to
interesting new phenomena. For example, interactions
can lead to ferromagnetism [16, 17], topological magnons
[18, 19], a fractional quantum Hall state [20–22], spin liq-
uid states [23], or surface superconductivity with high
critical temperature [24]. Disorder in flat band systems
can give rise to an inverse Anderson transition (delo-
calization transition) [25], multifractal behaviour [26], or
mobility edges with algebraic singularities [27]. However,
most of these perturbations lift the degeneracy of the flat
band.

In the present work we have studied several quasi
one-dimensional flat band systems and ask whether the
flat bands remain robust in the presence of an interac-
tion between the particles. We show that in specific cases
the flat band stays flat even in the presence of interac-
tion. Such systems can be useful for information storage
and also they might show many body localisation [28–
30], because they possess stationary localised states in the
presence of interaction. We restricted ourselves to spin-
less fermions on the quasi one-dimensional lattices shown
in Figure 1. These lattices were shown to host flat bands
previously [31]. We considered a nearest neighbour repul-
sive interaction between the particles. To determine the
behaviour of these systems in the presence of interac-
tion we performed numerical exact diagonalization of the
many body Hamiltonian using the Lanczos technique. We
compared these calculationswithmean field calculations,
which agree very well, when the interaction strength is
weak.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 1: Quasi one-dimensional lattices considered in this work: (a) triangle lattice, (b) stub lattice, (c) diamond lattice, and (d) diamond
lattice with transverse hopping. The nearest neighbour hopping parameter t is denoted by solid lines in the lattices. The dashed lines cor-
respond to a next nearest neighbour hopping parameter t′. The triangle lattice (a) possesses a flat band, when t′ = t/

√
2. The diamond

lattice in (d) possesses two dispersive and a flat band independent of the value of t′. The energy position of the flat band relative to the dis-
persive bands can be tuned by the parameter t′. A nearest neighbour repulsion of same strength V is considered on both solid and dashed
bonds.

2 Models and Calculations
We investigated a tight-binding model having one
fermionic state per lattice site. Hopping up to the next
nearest neighbour is included, as shown in Figure 1. In
addition, a nearest neighbour interaction acts between
the particles. The Hamiltonian is given by

H = −
∑︁

⟨iα,jβ⟩
tiα,jβc†jβciα +

V
2

∑︁
⟨iα,jβ⟩

n̂jβ n̂iα , (1)

where c†iα (ciα) creates (annihilates) a particle in unit cell
i at lattice site α ∈ {a, b, c}. We consider lattices with
N unit cells and periodic boundary conditions. V is the
strength of the (next) nearest neighbour interaction and
n̂iα = c†iαciα. Here, ⟨iα, jβ⟩ denotes a summation over all
lattice sites (i, α) and (j, β) that are nearest or next near-
est neighbours on the lattice, i.e. connected by solid and
dashed bonds in Figure 1. tiα,jβ is the hopping parameter.
For the lattices in Figure 1 it can only assume two values:
tiα,jβ = t, if (i, α) and (j, β) are nearest neighbours, and
tiα,jβ = t′, if (i, α) and (j, β) are next nearest neighbours.
Note that due to the Pauli exclusion principle there is no
on-site interaction between the particles.

In Figure 2 we show the bare band structures corre-
sponding to the lattices in Figure 1. All energies are given
in units of the nearest neighbour hopping t. The triangle
lattice in Figure 2a has two bands. The higher energy band

becomes flat, when t′ = t/
√
2. This flat band is located

at energy E =
√
2t. Both bands are separated from each

other by a gap. The stub lattice in Figure 2b has three
bands, two dispersive ones and one flat band. The flat
band is located at E = 0 in between the two dispersive
bands and is separated from them by gaps. The diamond
lattice in Figure 2c has two dispersive bands and one flat
band at E = 0, too. However, in this case all bands merge
at the Brillouin zone boundary. Both the noninteracting
stub lattice and diamond lattice possess a particle-hole
symmetry, which is broken by the interaction, however. In
the diamond lattice with transverse hopping in Figure 2d
the position of the flat band can be moved up or down rel-
ative to the two dispersive bands by variation of the next
nearest neighbour hopping parameter t′. The flat band is
located at E = t′. Also, a gap appears between the two
dispersive bands, when t′ becomes nonzero.

2.1 Mean Field Calculations

As a comparison with exact calculations a mean field
approximation to the Hamiltonian (1) is useful. As we will
see below, themean-field approximation is a good approx-
imation only for weak interaction strengths. However, it
is simpler to calculate and serves as a reference. We look
for homogeneous solutions, such that the ground state
expectation value of the particle number operator nβ =
⟨n̂iβ⟩ becomes independent of unit cell index i and only
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 1: Quasi one-dimensional lattices considered in this work: (a) triangle lattice, (b) stub lattice, (c) diamond lattice, and (d) diamond
lattice with transverse hopping. The nearest neighbour hopping parameter t is denoted by solid lines in the lattices. The dashed lines cor-
respond to a next nearest neighbour hopping parameter t′. The triangle lattice (a) possesses a flat band, when t′ = t/

√
2. The diamond

lattice in (d) possesses two dispersive and a flat band independent of the value of t′. The energy position of the flat band relative to the dis-
persive bands can be tuned by the parameter t′. A nearest neighbour repulsion of same strength V is considered on both solid and dashed
bonds.

2 Models and Calculations
We investigated a tight-binding model having one
fermionic state per lattice site. Hopping up to the next
nearest neighbour is included, as shown in Figure 1. In
addition, a nearest neighbour interaction acts between
the particles. The Hamiltonian is given by

H = −
∑︁

⟨iα,jβ⟩
tiα,jβc†jβciα +

V
2

∑︁
⟨iα,jβ⟩

n̂jβ n̂iα , (1)

where c†iα (ciα) creates (annihilates) a particle in unit cell
i at lattice site α ∈ {a, b, c}. We consider lattices with
N unit cells and periodic boundary conditions. V is the
strength of the (next) nearest neighbour interaction and
n̂iα = c†iαciα. Here, ⟨iα, jβ⟩ denotes a summation over all
lattice sites (i, α) and (j, β) that are nearest or next near-
est neighbours on the lattice, i.e. connected by solid and
dashed bonds in Figure 1. tiα,jβ is the hopping parameter.
For the lattices in Figure 1 it can only assume two values:
tiα,jβ = t, if (i, α) and (j, β) are nearest neighbours, and
tiα,jβ = t′, if (i, α) and (j, β) are next nearest neighbours.
Note that due to the Pauli exclusion principle there is no
on-site interaction between the particles.

In Figure 2 we show the bare band structures corre-
sponding to the lattices in Figure 1. All energies are given
in units of the nearest neighbour hopping t. The triangle
lattice in Figure 2a has two bands. The higher energy band

becomes flat, when t′ = t/
√
2. This flat band is located

at energy E =
√
2t. Both bands are separated from each

other by a gap. The stub lattice in Figure 2b has three
bands, two dispersive ones and one flat band. The flat
band is located at E = 0 in between the two dispersive
bands and is separated from them by gaps. The diamond
lattice in Figure 2c has two dispersive bands and one flat
band at E = 0, too. However, in this case all bands merge
at the Brillouin zone boundary. Both the noninteracting
stub lattice and diamond lattice possess a particle-hole
symmetry, which is broken by the interaction, however. In
the diamond lattice with transverse hopping in Figure 2d
the position of the flat band can be moved up or down rel-
ative to the two dispersive bands by variation of the next
nearest neighbour hopping parameter t′. The flat band is
located at E = t′. Also, a gap appears between the two
dispersive bands, when t′ becomes nonzero.

2.1 Mean Field Calculations

As a comparison with exact calculations a mean field
approximation to the Hamiltonian (1) is useful. As we will
see below, themean-field approximation is a good approx-
imation only for weak interaction strengths. However, it
is simpler to calculate and serves as a reference. We look
for homogeneous solutions, such that the ground state
expectation value of the particle number operator nβ =
⟨n̂iβ⟩ becomes independent of unit cell index i and only
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Figure 2: Bandstructures of the lattices in Figure 1, (a)–(d) corresponding to Figure 1. For the diamond lattice in (d) a transverse hopping
t′ = 3t was chosen. For this value the flat band is the highest energy band.

depends on the orbital β. With this assumption the mean
field Hamiltonian can be written

HMF = E0 −
∑︁

⟨iα,jβ⟩
tiα,jβc†jβciα +

∑︁
iα

VMF
α n̂iα , (2)

where E0 is a constant energy offset

E0 = −V
2

∑︁
⟨iα,jβ⟩

⟨n̂jβ⟩⟨n̂iα⟩ = −V
2

∑︁
⟨iα,jβ⟩

nβnα . (3)

Here, VMF
α is an effective mean field potential that is

seen by particles at α sites and given by

VMF
α = V

n.n.∑︁
β

nβ , (4)

where the sum runs over all neighbours of site α.
Within themean field approximation the Hamiltonian

HMF describes a system of noninteracting fermions and
can be diagonalised by transformation into momentum
space. This way it can be brought into the form

HMF = E0 +
∑︁
kα

εMF
kα b

†
kαbkα . (5)

where εMF
kα are the energy eigenvalues and b†kα and bkα are

the creation and annihilation operators of the correspond-
ing eigenstates. The ground state of this system is given
by

|Φ⟩ =

(︃occ.∏︁
kα

b†kα

)︃
|0⟩, (6)

where |0⟩ is the vacuum state and the product runs over
the occupied lowest energy states. Both εMF

kα and |Φ⟩
depend on the particle number expectation values nβ.
Thus, a selfconsistent solution needs to be found, that
fulfils

nβ =
⟨︀
Φ

⃒⃒
n̂iβ

⃒⃒
Φ

⟩︀
(7)

These solutions are determined iteratively, i.e. one
starts with a reasonable guess for nβ, calculates εMF

kα and
|Φ⟩ and obtains new values for nβ from (7). This procedure
is repeated until a selfconsistent solution for nβ is found.
With this solution the mean field bandstructure εMF

kα can
be analyzed for the existence of flat bands.

2.2 Exact Calculations Using the Lanczos
Procedure

In an interacting many particle system, a band structure
in the strict sense does not exist anymore. However, we
can still examine the single particle excitations above the
ground state of an interacting many particle system and
ask whether they possess flat bands in the sense that the
excitation energy is independent of momentum. For this
purposewe calculated the single particle spectral function
and looked for flat band structures.

To find the ground state of the system we used the
Lanczos procedure [32]. In the Lanczos procedure one
starts with a normalised random state vector and con-
structs an orthonormal basis by repeatedly applying the
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Hamiltonian. Within this basis the Hamiltonian is of tridi-
agonal form. After NL steps one obtains an NL × NL tridi-
agonal matrix, whose eigenvalues and eigenvectors give
an approximation for the full spectrum of the Hamilto-
nian. In particular, the extreme eigenstates of the Hamil-
tonian converge very quickly. The method is particulary
efficient when the Hamiltonian is a sparse matrix as in
the present tight-binding case. The Lanczos procedure is
stopped, when the relative change of the ground state
energy becomes less than ε = 10−15.

In the presence of a flat band, the ground state of the
Hamiltonian can be highly degenerate. For a noninteract-
ing system this becomes clear from the bandstructures in
Figure 2: if the band filling is chosen such that the flat band
is only partially occupied, the particles in the flat band can
be rearranged without changing the energy of the system.
For this reason it is of interest here to also determine the
degeneracy of the ground state. This can be done with the
Lanczos procedure in the following way: after a ground
state has been determined from a random start vector, the
Lanczos procedure is repeated with a different random
start vector. If the new ground state is linearly indepen-
dent from the first ground state, the Lanczos procedure is
repeated again until no new linearly independent ground
state is found anymore. Technically, after each Lanczos
run, one determines the rank of the matrix of all ground
states found so far. If the rank does not change anymore,
the procedure can be stopped.

2.3 Spectral Functions

The single particle spectral function Aα(k, E) gives the
energy distribution of the system after a particle with
momentum k and orbital α has been added to the system
or, respectively, the energy spectrum after a particle with
momentum k and orbital α has been removed from the sys-
tem [33]. It can be calculated using the Lanczos procedure
in the following way: let us define the Fourier transform of
the annihilation operator

dkα =
1√
N

N−1∑︁
j=0

e−ikjcjα . (8)

We first determine the ground state |Φ⟩ of the
system with M fermions numerically using the Lanczos
procedure. We can then add or remove a particle with
momentum k creating the states

⃒⃒
⃒Φ+

kα

⟩
= d†kα|Φ⟩ and

⃒⃒
⃒Φ−

kα

⟩
= dkα|Φ⟩. (9)

Note, that the state
⃒⃒
Φ+

kα
⟩︀
is an M + 1 particle state

and
⃒⃒
Φ−

kα
⟩︀
an M − 1 particle state, i.e. they belong to dif-

ferent subspaces of the full 2N dimensional Hilbert space.
We are now interested in determining the energy spec-
trum of the states

⃒⃒
Φ±

kα
⟩︀
. To do so, we can again use the

Lanczos procedure in the M + 1 particle subspace or the
M − 1 particle subspace, respectively. In this case, the
states

⃒⃒
Φ±

kα
⟩︀
are normalised and taken as start vectors for

further Lanczos runs. The Lanczos procedure will then
generate an orthonormal basis that is particularly well
suited to expand the start vectors into the eigenstates of
the Hamiltonian. After NL Lanczos steps let

⃒⃒
⃒Ψ±

j

⟩
with

1 ≤ j ≤ NL be the eigenstates of the tridiagonalmatrix and
E±
j their corresponding eigenvalues. Then we can obtain

an approximation for the spectral function using

A±
α (k, E) =

NL∑︁
j=1

⃒⃒
⃒
⟨
Φ±

kα|Ψ
±
j

⟩⃒⃒
⃒
2

π
Γ

[E ± (EG − E±
j )]

2
+ Γ2

.

(10)

Here, EG is the ground state energy of the M particle
system (before the particlewas removed or added) and Γ is
a broadening parameter which helps to visualise the spec-
tral function and is taken to be Γ = 0.05 here. The function
A+
α (k, E)describes the particle excitations of the fermionic

system at energies above the Fermi level, while A−
α (k, E)

describes the hole excitations at energies below the Fermi
level. To get a complete picture of both particle and hole
excitations it is useful to calculate the sum

Aα(k, E) = A+
α (k, E) + A−

α (k, E). (11)

3 Results
In this section our results for the mean field bandstruc-
ture and the spectral function (11) are presented for the
triangle lattice, stub lattice, and diamond lattices shown
in Figure 1. In all cases the bandfilling was chosen in such
a way that the flat band is half filled in the noninteracting
case V = 0. In most cases a few hundred Lanczos itera-
tions were sufficient to obtain accurate ground states and
spectral functions.

3.1 Triangle Lattice

In this section the triangle lattice from Figure 1a with t′ =
t/

√
2 is investigated.Weconsidered 10unit cells filledwith

15 particles, such that in the noninteracting case the lower
dispersive band is fully filled and the upper flat band is
half filled.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Hamiltonian. Within this basis the Hamiltonian is of tridi-
agonal form. After NL steps one obtains an NL × NL tridi-
agonal matrix, whose eigenvalues and eigenvectors give
an approximation for the full spectrum of the Hamilto-
nian. In particular, the extreme eigenstates of the Hamil-
tonian converge very quickly. The method is particulary
efficient when the Hamiltonian is a sparse matrix as in
the present tight-binding case. The Lanczos procedure is
stopped, when the relative change of the ground state
energy becomes less than ε = 10−15.

In the presence of a flat band, the ground state of the
Hamiltonian can be highly degenerate. For a noninteract-
ing system this becomes clear from the bandstructures in
Figure 2: if the band filling is chosen such that the flat band
is only partially occupied, the particles in the flat band can
be rearranged without changing the energy of the system.
For this reason it is of interest here to also determine the
degeneracy of the ground state. This can be done with the
Lanczos procedure in the following way: after a ground
state has been determined from a random start vector, the
Lanczos procedure is repeated with a different random
start vector. If the new ground state is linearly indepen-
dent from the first ground state, the Lanczos procedure is
repeated again until no new linearly independent ground
state is found anymore. Technically, after each Lanczos
run, one determines the rank of the matrix of all ground
states found so far. If the rank does not change anymore,
the procedure can be stopped.

2.3 Spectral Functions

The single particle spectral function Aα(k, E) gives the
energy distribution of the system after a particle with
momentum k and orbital α has been added to the system
or, respectively, the energy spectrum after a particle with
momentum k and orbital α has been removed from the sys-
tem [33]. It can be calculated using the Lanczos procedure
in the following way: let us define the Fourier transform of
the annihilation operator

dkα =
1√
N

N−1∑︁
j=0

e−ikjcjα . (8)

We first determine the ground state |Φ⟩ of the
system with M fermions numerically using the Lanczos
procedure. We can then add or remove a particle with
momentum k creating the states

⃒⃒
⃒Φ+

kα

⟩
= d†kα|Φ⟩ and

⃒⃒
⃒Φ−

kα

⟩
= dkα|Φ⟩. (9)

Note, that the state
⃒⃒
Φ+

kα
⟩︀
is an M + 1 particle state

and
⃒⃒
Φ−

kα
⟩︀
an M − 1 particle state, i.e. they belong to dif-

ferent subspaces of the full 2N dimensional Hilbert space.
We are now interested in determining the energy spec-
trum of the states

⃒⃒
Φ±

kα
⟩︀
. To do so, we can again use the

Lanczos procedure in the M + 1 particle subspace or the
M − 1 particle subspace, respectively. In this case, the
states

⃒⃒
Φ±

kα
⟩︀
are normalised and taken as start vectors for

further Lanczos runs. The Lanczos procedure will then
generate an orthonormal basis that is particularly well
suited to expand the start vectors into the eigenstates of
the Hamiltonian. After NL Lanczos steps let

⃒⃒
⃒Ψ±

j

⟩
with

1 ≤ j ≤ NL be the eigenstates of the tridiagonalmatrix and
E±
j their corresponding eigenvalues. Then we can obtain

an approximation for the spectral function using

A±
α (k, E) =

NL∑︁
j=1

⃒⃒
⃒
⟨
Φ±

kα|Ψ
±
j

⟩⃒⃒
⃒
2

π
Γ

[E ± (EG − E±
j )]

2
+ Γ2

.

(10)

Here, EG is the ground state energy of the M particle
system (before the particlewas removed or added) and Γ is
a broadening parameter which helps to visualise the spec-
tral function and is taken to be Γ = 0.05 here. The function
A+
α (k, E)describes the particle excitations of the fermionic

system at energies above the Fermi level, while A−
α (k, E)

describes the hole excitations at energies below the Fermi
level. To get a complete picture of both particle and hole
excitations it is useful to calculate the sum

Aα(k, E) = A+
α (k, E) + A−

α (k, E). (11)

3 Results
In this section our results for the mean field bandstruc-
ture and the spectral function (11) are presented for the
triangle lattice, stub lattice, and diamond lattices shown
in Figure 1. In all cases the bandfilling was chosen in such
a way that the flat band is half filled in the noninteracting
case V = 0. In most cases a few hundred Lanczos itera-
tions were sufficient to obtain accurate ground states and
spectral functions.

3.1 Triangle Lattice

In this section the triangle lattice from Figure 1a with t′ =
t/

√
2 is investigated.Weconsidered 10unit cells filledwith

15 particles, such that in the noninteracting case the lower
dispersive band is fully filled and the upper flat band is
half filled.
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Themean field band structures and spectral functions
Aα(k, E) are shown in Figure 2. For V = 0 the ground
state has a degeneracy of

(︁
10
5

)︁
= 252, because five parti-

cles can be distributed over 10 available states in the flat
band. For V = 0.01 this degeneracy is already lifted and
the ground state becomes nondegenerate. In Figure 3a the
mean field bandstructure appears flat, however a closer
look at the numerical results shows that the flat band
gained a tiny dispersion, which is responsible for the lift-
ing of the degeneracy. The spectral function is seen to
closely follow the mean field bandstructure. In Figure 3b
forV = 1 the dispersion of the upper bandbecomes appar-
ent in both mean field bandstructure and spectral func-
tion. There is similar intensity of the spectral function in
both bands. This is due to the fact that the bands are linear
combinations of both a and b lattice sites. In Figure 3c for
V = 2 one can see that the exact spectral function starts to
deviate from the mean field bandstructure. For the a sites,
the spectral function gets stronger weight in the lower
energy band. This can be understood from Figure 1a in the
followingway: eacha site is connected to twob sites,while
each b site is connected to two a and two b sites. Thus,
at higher interaction strength the a sites become energet-
ically more favorable. As a result, the lower energy band
gains more weight on the a sites, while the higher energy
band becomesmore located at the b sites. This can be seen
more clearly for V = 10 in Figure 3d. Here it is apparent
that the band on the a sites becomes almost flat. The band
on the b sites splits into two almost flat subbands. In this
strong interaction limit, the a sites become fully occupied
and the b sites are occupied half. The energy of an elec-
tron on an a site approaches 2 V

2 = V. The splitting of the b
band into two subbands can be understood qualitatively,

if one considers a spontaneous breaking of translational
invariance such that every other b site is fully occupied,
while the sites in between are empty. Then, the energy of
an occupied b site becomes 2V, while adding a particle to
an empty b site costs an energy of 4V. This explains the
splitting of the b band into two subbands at energies 2V
and 4V.

To verify this qualitative picture we expanded the
ground statewave function into the real space basis states.
For large positive interaction strength V � 10 it turns out
that the ground state is essentially just a linear superpo-
sition of the two real space eigenstates shown in Figure 4.
For V = 10 we found that both states contributed 46.9 %
each to the ground state wave function. For V = 100 they
even contributed 49.96 % each.

To summarise, for the triangular lattice the flat band
becomes dispersive as soon as a repulsive nearest neigh-
bour interaction is turned on. In the limit of strong inter-
action at three quarter filling, however, the interaction can
block themotion of the particles and all bands become flat
again.

3.2 Stub Lattice

In this section the stub lattice from Figure 1b is studied.
We considered six unit cells filledwith nine particles, such
that in the noninteracting case the lower dispersive band
is fully filled, the flat band is half filled, and the upper
dispersive band is empty.

Themean field band structures and spectral functions
Aα(k, E) are shown in Figure 5. ForV = 0 the ground state
has a degeneracy of

(︁
6
3

)︁
= 20, because three particles can

be distributed over six available states in the flat band.
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Figure 3: Spectral functions Aα(k, E) and mean field bandstructures for the triangle lattice with next nearest neighbour hopping t′ = t/
√
2,

10 unit cells and 15 particles. Black solid lines show the mean field bandstructure and the black dots indicate the occupied states. The
spectral function Aα(k, E) is shown color coded on a logarithmic color scale. The upper panel shows the spectral function for lattice sites
α = a and the lower panel for α = b. The four columns show the results for interaction strengths (a) V = 0.01, (b) V = 1, (c) V = 2, and
(d) V = 10.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 4: The two leading real space basis states that contribute most to the ground state wave function of the triangular lattice for V � 10.
In both states the a sites are fully occupied. In (a) the even numbered b sites are occupied, while in (b) the even numbered b sites are
empty.
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Figure 5: Spectral functions Aα(k, E) and mean field bandstructures for the stub lattice with 6 unit cells and 9 particles. Black solid lines
show the mean field bandstructure and the black dots indicate the occupied states. The spectral function Aα(k, E) is shown color coded on a
logarithmic color scale. The upper panel shows the spectral function for lattice sites α = a, the center panel for α = b, and the lower panel
for α = c. The four columns show the results for interaction strengths (a) V = 0.01, (b) V = 1, (c) V = 2, and (d) V = 10.

For V = 0.01 this degeneracy is already lifted and the
ground state becomes nondegenerate. Similarly as for the
triangle lattice, in Figure 5a the mean field bandstructure
appears flat, however the numerical results show that the
flat band gained a tiny dispersion, which is responsible for
the lifting of the degeneracy. The spectral functions have
weight in the flat band in the α = a and α = c channels,
but not in the α = b channel. This is due to the fact that
the flat band is a superposition of states on the a and c
sites. In Figure 5b for V = 1 the dispersion of the center
band becomes apparent in both mean field bandstructure
and spectral function. When the interaction strength is
further increased, the spectral functions deviate from the
mean field dispersions. In Figure 5c for V = 2 the energy

distribution is very much blurred over a large range of
energies. Well defined bands can hardly be seen in this
case. In the strongly interacting limit V ≫ 1 the b sites
becomeunfavourable, because they are connected to three
sites each. Thus, the particles predominantly occupy the a
and c sites to avoid the repulsion. For this reason excita-
tions in the b channel appear at much higher energy than
in the a and c channels.

3.3 Diamond Lattice

In contrast to the triangle lattice and stub lattice, the
diamond lattice possesses an additional mirror symmetry
with respect to themain axis of the lattice. Thus, all energy
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 4: The two leading real space basis states that contribute most to the ground state wave function of the triangular lattice for V � 10.
In both states the a sites are fully occupied. In (a) the even numbered b sites are occupied, while in (b) the even numbered b sites are
empty.
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Figure 5: Spectral functions Aα(k, E) and mean field bandstructures for the stub lattice with 6 unit cells and 9 particles. Black solid lines
show the mean field bandstructure and the black dots indicate the occupied states. The spectral function Aα(k, E) is shown color coded on a
logarithmic color scale. The upper panel shows the spectral function for lattice sites α = a, the center panel for α = b, and the lower panel
for α = c. The four columns show the results for interaction strengths (a) V = 0.01, (b) V = 1, (c) V = 2, and (d) V = 10.

For V = 0.01 this degeneracy is already lifted and the
ground state becomes nondegenerate. Similarly as for the
triangle lattice, in Figure 5a the mean field bandstructure
appears flat, however the numerical results show that the
flat band gained a tiny dispersion, which is responsible for
the lifting of the degeneracy. The spectral functions have
weight in the flat band in the α = a and α = c channels,
but not in the α = b channel. This is due to the fact that
the flat band is a superposition of states on the a and c
sites. In Figure 5b for V = 1 the dispersion of the center
band becomes apparent in both mean field bandstructure
and spectral function. When the interaction strength is
further increased, the spectral functions deviate from the
mean field dispersions. In Figure 5c for V = 2 the energy

distribution is very much blurred over a large range of
energies. Well defined bands can hardly be seen in this
case. In the strongly interacting limit V ≫ 1 the b sites
becomeunfavourable, because they are connected to three
sites each. Thus, the particles predominantly occupy the a
and c sites to avoid the repulsion. For this reason excita-
tions in the b channel appear at much higher energy than
in the a and c channels.

3.3 Diamond Lattice

In contrast to the triangle lattice and stub lattice, the
diamond lattice possesses an additional mirror symmetry
with respect to themain axis of the lattice. Thus, all energy
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eigenstates can be chosen as symmetric or antisymmetric
states with respect to this axis. For this reason it is useful
to define the following annihilation operators:

dk+ =
1√
2
(dka + dkc) (12)

and

dk− =
1√
2
(dka − dkc) (13)

and calculate the corresponding spectral functions
A±(k, E) instead of Aa(k, E) and Ac(k, E). As for the stub
lattice, we considered six unit cells filled with nine par-
ticles, such that in the noninteracting case the lower
dispersive band is fully filled, the flat band is half filled,
and the upper dispersive band is empty.

The mean field band structures and spectral func-
tions Aα(k, E) for α ∈ {b,−,+} are shown in Figure 6.
For V = 0 the ground state has a degeneracy of

(︁
8
4

)︁
= 70.

This is because the six states of the flat band are degen-
erate with one state of the upper and lower band each at
k = π. So five particles occupy the lowest five states in
the lower dispersive band. The remaining four particles
can then be distributed over the eight available degenerate
states. In contrast to the triangle lattice and stub lattice,
for V > 0 this degeneracy is only partially lifted and the
ground state degeneracy becomes six, which is equal to
the number of unit cells. This indicates that the systemhas

a tendency to develop an inhomogeneous charge distribu-
tion in the ground state or in other words that the ground
state is a superposition of 6 degenerate inhomogeneous
states that are shifted with respect to each other.

As is seen in Figure 6 the flat band appears in the
α = − channel and thus corresponds to those states that
possess antisymmetric wave functions with respect to the
mirror axis. The two dispersive bands appear to be linear
combinations of the b and + channels. For V � 1 the flat
band remains flat in bothmean field solution and spectral
function. For V � 2 in the exact calculation the flat band
starts to split into two flat bands, seen in Figure 6c and d.
In the strongly interacting limit V ≫ 1 the b sites become
unfavourable, because they are connected to four sites
each. Thus, theparticles predominantly occupy theaand c
sites to avoid the repulsion. For this reason the excitations
in the b channel appear at much higher energy than in the
a and c channels when V becomes large. In this limit all
three bands become flat. The b band appears to split into
5 sub-bands at energies E ≈ nV with n ∈ {0, 1, 2, 3, 4}.
These energies can be interpreted as coming from states
at which a b site has 0, 1, 2, 3, or 4 occupied neighbouring
a and c sites. The + and − bands become degenerate and
split into two flat bands at energies E ≈ 0 and E ≈ V. The
band at E ≈ 0 is coming from states in which the b sites
are unoccupied. The band at E ≈ V, which has less inten-
sity, can be interpreted as coming from states in which
a single b site is occupied. For V = 10 we calculated the
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Figure 6: Spectral functions Aα(k, E) for α ∈ {b,−,+} and mean field bandstructures for the diamond lattice with six unit cells and nine
particles. Black solid lines show the mean field bandstructure. The black dots indicate the occupied states. The spectral function Aα(k, E)
is shown color coded on a logarithmic color scale. The upper panel shows the spectral function for lattice sites α = b, the center panel for
α = −, and the lower panel for α = +. The four columns show the results for interaction strengths (a) V = 0.01, (b) V = 1, (c) V = 2, and
(d) V = 10.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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expectation value of the particle number on the b sites in
the exact ground state and found it to be nb = 0.09, i.e.
there is still some occupation of b sites, which accounts
for the band visible at E ≈ V in the + and − channels.

To summarise, for the diamond lattice we found a flat
band in the α = − channel that persists throughout the
whole range of interaction strengths V. For V � 2 this
band starts to split into two separate flat sub-bands. The
higher energy sub-band can be interpreted as coming from
states with occupied b sites.

3.4 Diamond Lattice with Transverse
Hopping

The diamond lattice with transverse hopping and an inter-
action between the a and c sites possesses the samemirror
symmetry as the bare diamond lattice. Therefore the spec-
tral functions for the +, −, and b channels are discussed
also in this section.

In Figure 7 the spectral functions Aα(k, E) for t′ = 3t
are shown. We considered 10 unit cells filled with 25 par-
ticles, such that in the noninteracting case the two dis-
persive bands are fully filled and the flat band is half
filled. For V = 0 the ground state has a degeneracy of(︁
10
5

)︁
= 252, because five particles can be distributed over

10 available states in the flat band. In contrast to the tri-
angle lattice and stub lattice, for V = 0.01 this degener-
acy is not lifted, but remains unchanged up to a value
of V ≈ 1.8. As for the bare diamond lattice, the flat band

appears in the α = − channel. The lowest dispersive band
mostly corresponds to the + channel, while the higher
dispersive band mostly corresponds to the b channel. In
the limit of large interaction strength V ≫ 1 the b sites
become unfavourable, because they are connected to four
sites each, while the a and c sites nowpossess three neigh-
bours each. In this limit the a and c sites approach 100 %
occupation, while the b sites approach 50 % occupation.
For this reason the energy of the upper dispersive band
increases more strongly with V than the energy of the
flat band. Starting from V = 0 with increasing interaction
strength the upper dispersive band thusmoves toward the
flat band. At a specific interaction strength (here around
V = 1.8) the upper dispersive band starts to overlap with
the flat band. For V = 1.8 we also found that the degener-
acy of the ground state drops from 252 to 10, which is equal
to the number of unit cells. When V is further increased
above 2.1 the dispersive band becomes the highest energy
band and the flat band is located between the two dis-
persive bands. For V > 2.1 the ground state becomes non-
degenerate, then. In Figure 7b–d the spectral functions
in the transition region are shown, where the two bands
cross each other. While for V = 1.7 (Fig. 7b) the flat band
is still flat, forV = 1.9 (Fig. 7c) the flat band splits into two
sub-bands. For V = 1.9 the upper of these two sub-bands
has stronger spectral weight. When V is further increased,
the spectral weight is gradually transferred to the lower
subband, as can be seen in Figure 7d.

In Figure 8 the spectral functions Aα(k, E) for t′ = −3t
are shown. In this case the flat band is the lowest energy
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Figure 7: Spectral functions and mean field bandstructures for the diamond lattice with next nearest neighbour hopping t′ = 3t, 10 unit
cells, and 25 particles. The upper panel shows the spectral function for lattice sites α = b, the center panel for α = −, and the lower panel
for α = +. The four columns show the results for interaction strengths (a) V = 1, (b) V = 1.7, (c) V = 1.9, and (d) V = 2.3.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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expectation value of the particle number on the b sites in
the exact ground state and found it to be nb = 0.09, i.e.
there is still some occupation of b sites, which accounts
for the band visible at E ≈ V in the + and − channels.

To summarise, for the diamond lattice we found a flat
band in the α = − channel that persists throughout the
whole range of interaction strengths V. For V � 2 this
band starts to split into two separate flat sub-bands. The
higher energy sub-band can be interpreted as coming from
states with occupied b sites.

3.4 Diamond Lattice with Transverse
Hopping

The diamond lattice with transverse hopping and an inter-
action between the a and c sites possesses the samemirror
symmetry as the bare diamond lattice. Therefore the spec-
tral functions for the +, −, and b channels are discussed
also in this section.

In Figure 7 the spectral functions Aα(k, E) for t′ = 3t
are shown. We considered 10 unit cells filled with 25 par-
ticles, such that in the noninteracting case the two dis-
persive bands are fully filled and the flat band is half
filled. For V = 0 the ground state has a degeneracy of(︁
10
5

)︁
= 252, because five particles can be distributed over

10 available states in the flat band. In contrast to the tri-
angle lattice and stub lattice, for V = 0.01 this degener-
acy is not lifted, but remains unchanged up to a value
of V ≈ 1.8. As for the bare diamond lattice, the flat band

appears in the α = − channel. The lowest dispersive band
mostly corresponds to the + channel, while the higher
dispersive band mostly corresponds to the b channel. In
the limit of large interaction strength V ≫ 1 the b sites
become unfavourable, because they are connected to four
sites each, while the a and c sites nowpossess three neigh-
bours each. In this limit the a and c sites approach 100 %
occupation, while the b sites approach 50 % occupation.
For this reason the energy of the upper dispersive band
increases more strongly with V than the energy of the
flat band. Starting from V = 0 with increasing interaction
strength the upper dispersive band thusmoves toward the
flat band. At a specific interaction strength (here around
V = 1.8) the upper dispersive band starts to overlap with
the flat band. For V = 1.8 we also found that the degener-
acy of the ground state drops from 252 to 10, which is equal
to the number of unit cells. When V is further increased
above 2.1 the dispersive band becomes the highest energy
band and the flat band is located between the two dis-
persive bands. For V > 2.1 the ground state becomes non-
degenerate, then. In Figure 7b–d the spectral functions
in the transition region are shown, where the two bands
cross each other. While for V = 1.7 (Fig. 7b) the flat band
is still flat, forV = 1.9 (Fig. 7c) the flat band splits into two
sub-bands. For V = 1.9 the upper of these two sub-bands
has stronger spectral weight. When V is further increased,
the spectral weight is gradually transferred to the lower
subband, as can be seen in Figure 7d.

In Figure 8 the spectral functions Aα(k, E) for t′ = −3t
are shown. In this case the flat band is the lowest energy
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Figure 7: Spectral functions and mean field bandstructures for the diamond lattice with next nearest neighbour hopping t′ = 3t, 10 unit
cells, and 25 particles. The upper panel shows the spectral function for lattice sites α = b, the center panel for α = −, and the lower panel
for α = +. The four columns show the results for interaction strengths (a) V = 1, (b) V = 1.7, (c) V = 1.9, and (d) V = 2.3.
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Figure 8: Spectral functions and mean field bandstructures for the diamond lattice with next nearest neighbour hopping t′ = −3t, 10 unit
cells, and 5 particles. The upper panel shows the spectral function for lattice sites α = b, the center panel for α = −, and the lower panel
for α = +. The four columns show the results for interaction strengths (a) V = 1, (b) V = 2, (c) V = 4, and (d) V = 10.

band. We considered 10 unit cells filled with 5 particles,
such that in the noninteracting case the two dispersive
bands are empty and the flat band is half filled. For V = 0
the ground state has a degeneracy of

(︁
10
5

)︁
= 252, because

5 particles can be distributed over 10 available states in
the flat band. For V > 0 this degeneracy is not lifted, but
remains unchanged for all values of V. In contrast to the
case with t′ = 3t the dispersive bands do not cross the flat
band. The flat band remains the lowest energy band for all
interaction strengths V > 0. As can be seen in Figure 8 for
the α = − channel the flat band remains flat and does not
split.

To summarise, for the diamond lattice with t′ = 3t
the flat band remains intact for V � 1.8. For V � 1.8 the
flat band overlaps with one of the dispersive bands and
splits into two sub-bands. For V � 2.1 a dispersive band
becomes the highest energy band. While the flat band is
still flat, it becomes fully occupied and the highest disper-
sive band becomes half filled. As a result, the ground state
of the system becomes nondegenerate then. In contrast,
for t′ = −3t the flat band remains intact over the full range
of interaction strengths V > 0.

We have seen that under a finite interaction the flat
band does not stay flat for the triangle lattice and stub lat-
tice, while it has a robustness for the two diamond lattices.
We suggest that the mirror symmetry of the diamond lat-
tice plays an important role here to stabilise the flat band.
The mirror symmetry guarantees the existence of energy
eigenstates that are antisymmetric, i.e. have zeroes on the

b sites. In such states the particles in different unit cells are
effectively decoupled. Then, Wannier states localised in a
single unit cell become eigenstates of the Hamiltonian. As
a result, the flat band remains flat, even in the presence of
interaction.

4 Summary and Conclusions
We have investigated spinless fermions in several quasi
one-dimensional lattices that are known to host flat bands
in the noninteracting limit. We studied the influence of a
repulsive nearest neighbour interaction on the flat bands
using both mean field approximation and exact diagonal-
isation by Lanczos technique.

For the triangle lattice and stub lattice we found that
the flat band becomes dispersive, as soon as a finite inter-
action is turned on. For the three quarter filled triangle lat-
tice the bands become flat again in the strongly interacting
limit V → ∞.

For the bare diamond lattice we found that the flat
band remains flat for all interaction strengths. For V � 2
the flat band splits into two flat sub-bands. The ground
state degeneracy becomes equal to the number of lattice
sites as soon as a finite interaction strength is turned on.

For the diamond lattice with transverse hopping t′ =
3t we could identify three different regimes for the inter-
action strength with three qualitatively different ground
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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states. With increasing interaction strength the upper dis-
persive band moves upward in energy relative to the other
bands. In the first regime, the flat band is located above
the upper dispersive band and remains intact as does the
ground state degeneracy. In the second regime the flat
band overlaps with the upper dispersive band and splits
into two flat subbands. The ground state degeneracy drops
and becomes equal to the number of lattice sites. In the
third regime the upper dispersive band has moved up in
energy so much that the flat band is no longer relevant at
the Fermi level. As a result, the ground state is no longer
degenerate.

For the diamond lattice with transverse hopping t′ =
−3t both the flat band and the ground state degeneracy
remain intact for all interaction strengths and the flat band
does not split.

Generally, for small interaction strengths V � 1 the
results from mean field approximation agree well with
exact results from the Lanczos technique. For larger
interaction strengths the spectral functions appear to be
smeared out in energy or show splittings that are not
reproduced by mean field approximation.
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1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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