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Abstract: The influence of concentration of solute par-
ticles on squeeze film lubrication between two poroe-
lastic surfaces has been analyzed using a mathematical
model. Newtonian viscous fluid is considered as a
lubricant whose viscosity varies linearly with concen-
tration of suspended solute particles. Convection-diffu-
sion model is proposed to study the concentration of
solute particles and is solved using finite difference
method of Crank–Nicolson scheme. An iterative pro-
cedure is used to get the solution for concentration,
pressure and velocity components in film region. It has
been observed that load carrying capacity decreases as
the concentration of solute particles in the fluid film
decreases. Further, the concentration of suspended so-
lute particles decreases as the permeability of the
poroelastic plate increases and these results may be
useful in understanding the mechanism of human joint.

Keywords: convection-diffusion model; poroelastic
surface; squeeze film lubrication; variation of viscosity
with concentration.

1 Introduction

Lubrication is a process by which friction and wear be-
tween two moving surfaces are reduced by a suitable
substance called as lubricant. We can observe the lubri-
cation process in machines, human body and other sys-
tems. Synovial joints are weight bearing systems in the

human body with low frictional coefficient and wear in
comparison with mechanical bearings [1].

Synovial joint is a connection between two moving
bones consisting of a cartilage lined cavity filled with
a lubricant called as synovial fluid. The behavior of
synovial joint is mainly governed by the properties of
synovial fluid and articular cartilage. The articular
cartilage exhibits elastic behavior and is slightly
permeable. The principal role of synovial fluid is to
reduce friction between two moving articular cartilage
surfaces. Its viscosity is due to the presence of hyal-
uronic acid (HA) molecules in it. In normal joints,
these acid molecules cannot pass through the articular
cartilage [2].

Torzilli and Mow [3] studied theoretically the char-
acteristics of articular cartilage and synovial fluid.
Bujurke et al. [4] have analyzed the squeeze film lubri-
cation of synovial joint using a mathematical model by
considering the lubricant as second-order fluid and
cartilage as a porous surface. Hou et al. [5] have studied
the lubrication mechanism of articular cartilage.
Squeeze film lubrication of synovial joint with Bingham
fluid as a lubricant and cartilage as a two layered porous
region is mathematically modeled by Tandon et al. [6].
Bujurke and Kudenatti [7] have studied the effect of
surface roughness and poroelastic behavior of cartilage
on lubrication mechanism of joint. From all these
research articles one can observe that load carrying ca-
pacity and pressure are important physical quantities in
the study of lubrication mechanism. These quantities
decrease with increasing values of permeability of the
porous surface and increase with increasing values of
elastic parameter.

Walker et al. [8] proposed the concept of boosted
lubrication in load bearing phase of synovial joint. It is
mentioned that when two bones approach each other,
water and low molecular weight molecules pass through
the cartilage surface and the HAmolecules remain in the
joint cavity. Due to the presence and increase in the
concentration of acid molecules, the joint supports more
load. Tannin et al. [9] experimentally investigated that
presence of HA in synovial fluid reduces coefficient of
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friction in joint. Collins [10] analyzed the gel formation of
HA molecules in joint. Tandon et al. [11] studied the
lubricant gelling in synovial joint during articulation
with viscoelastic fluid as lubricant. Mathematical model
on dispersion of acid molecules and nutrients transport
in the articular cartilage is useful in understanding the
mechanism of synovial joint [12]. These studies modeled
the effect of HA molecules on joint mechanism,
assuming constant viscosity coefficient. But, the coeffi-
cient of viscosity of the synovial fluid changes with
concentration of acid molecules present in it.

Recently, studies have been carried out to model the
synovial fluid flow in rectangular cavity [13, 14]. In these
investigations, the following assumptions are made: (i)
viscosity depends on concentration and shear rate and
(ii) shear-thinning index depends on concentration. But,
geometry considered in the study is not relevant to
biological synovial joint. That is, surfaces are rigid and
flat. In nature, the joint surfaces are poroelastic. Further,
the effect of concentration of HA molecules on pressure
and load carrying capacity is not investigated in these
articles.

Morris et al. [15] reported that the viscosity of synovial
fluid increases rapidly and exponentially with concen-
tration of HA molecules. Mathematical model describing
the combined effect of variation of viscosity with con-
centration of HA and poroelastic nature of cartilage sur-
face on lubrication of joint is not available in the
literature. Hence, the main purpose of the present paper
is to study the effect of concentration of solute particles
on squeeze film lubrication between two poroelastic
surfaces, assuming variable viscosity coefficient with
respect to concentration.

2 Mathematical formulation

Figure 1 is the geometrical representation of model of
synovial joint under consideration along with cartesian
coordinate system (x,  z), where x and z are parallel and
perpendicular to the plates, respectively. According to
Walker and Erkman [16], the load bearing area of the
synovial knee joint is small under loading conditions.
Therefore, two articular surfaces may be considered to
be parallel. The x− axis is taken as middle of the channel.
Let 2L be the length of the plates, 2h be the thickness of
the film region and δ be the thickness of the poroelastic
region. Upper poroelastic surface is moving normally
with constant velocity dh/dt towards fixed poroelastic
surface.

The assumptions involved in mathematical formu-
lation of the problem are listed below: In the film region,
Newtonian viscous fluid is taken as lubricant, whose
viscosity varies with concentration of HA. Fluid flow is
laminar. Body forces are neglected. Fluid inertia is small
compared to viscous shear. The height of the fluid film h
is very small compared to the length L. Since squeeze
film thickness is smaller than the length of the plates,
variation of pressure across the fluid film is insignifi-
cant. Compared with the velocity gradient ∂u/∂z all
other velocity gradient are considered negligible. Since
u is predominant velocity and z is a dimension smaller
than x. Thus the velocity gradient ∂u/∂z is large
compared with all other velocity gradients. Therefore,
the differential of the product of viscosity and the de-
rivative ∂u/∂z with respect to z dominate the viscous
term and remaining all derivatives are neglected. Based
upon these assumptions as given in [17], the governing
equations for the fluid flow in the film region are as
follows:

Film region:

∂u
∂x

+ ∂w
∂z

� 0 (1)

∂p
∂x

� ∂
∂z

[μ ∂u
∂z

] (2)

∂p
∂z

� 0 (3)

u
∂c
∂x

+ w
∂c
∂z

� D
∂2c
∂z2

(4)

h
Film Region
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δ

Poroelastic Region

o
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Figure 1: Geometry of the present problem.
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where u and w are velocity components in the film region
along x and z directions, respectively. p is fluid film
pressure, μ is the coefficient of viscosity. c is concentration
of solute particles and D is diffusion coefficient.

Ferguson et al. [19] experimentally proved that the
viscosity of the synovial fluid linearly depends on con-
centration of HA. Accordingly, we assume that the coeffi-
cient of viscosity (μ) depends upon the concentration, as
given in the following expression [2, 19],

μ � μ0(1 + λc) (5)

where λ is constant and μ0 is viscosity of fluid entering
poroelastic region.

In poroelastic region, the fluid is assumed to be New-
tonian fluid with constant viscosity μ0. Coupled governing
equations of fluid flow in deformable cartilage matrix can
be written as in [3, 18],

Poroelastic region:

Matrix: ρm
∂2U

→

∂t2
� div(σm) − μ0

k
⎛⎝∂U

→

∂t
− V

→⎞⎠ (6)

Fluid: ρf
DV

→

Dt
� div(σf ) + μ0

k
⎛⎝∂U

→

∂t
− V

→⎞⎠ (7)

where U
→
is displacement vector of the cartilage, ρf and ρm

are the densities of fluid and cartilage respectively. k is
permeability of the cartilage andV

→
isfluid velocity vector in

cartilage. The stress tensors σm and σf for cartilage and
fluid respectively, may be expressed as below

σm � p′I + 2Ne + AeI (8)

σf � −p′I + EeI (9)

where N ,E and A are elastic parameters of the cartilage, p′

is the fluid pressure in the cartilage, e is cartilage dilatation
and I is the identity tensor. Inertial terms are neglected in
the Eqs (6) and (7) due to the physical reasons and the
corresponding order of magnitude analysis as mentioned
in [7, 19]. Then we have,

div(σm) − μ0

k
⎛⎝∂U

→

∂t
− V

→⎞⎠ � 0 (10)

div(σf ) + μ0

k
⎛⎝∂U

→

∂t
− V

→⎞⎠ � 0 (11)

Adding Eqs (10) and (11) and using Eqs (8) and (9), we
get

∇e � 0 (12)

The divergence of Eq. (12) gives

∇2e � 0 (13)

We define cartilage dilatation in terms of average bulk
modulus K as given in [20],

e � e0 + p′

K
(14)

We get equation of pressure in poroelastic region by
substituting Eq. (14) in (13) as,

∇2p′ � 0 (15)

Next, we will derive the equation corresponding to the
pressure in film region, using velocity components u andw.
For which, the governing Eqs (1) and (2) are solved to get
solution for u andw, using suitable boundary conditions as
given below.

Boundary conditions:
The boundary conditions for velocity field are:

i. At the axis of symmetry:

∂u
∂z

� 0 and w � 0 at  z � 0. (16)

ii. At the permeable wall, the tangential velocity (u) is
zero. That is, no-slip boundary condition is applied. The
normal velocity (w) of fluid in the film region is equal to
normal component of the relative fluid velocity (wn) at
the cartilage surface and velocity of the upper moving
plate (dh/dt), as given below [1] :

u � 0 and w � −wn −
dh
dt

 at  z � h. (17)
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The boundary conditions for concentration of solute
particles in fluid film region are:
i. Atmiddle of the channel (x � 0), as height h decreases,

the solute concentration increases uniformly about
that cross-section [10]. That is,

c � c0h0
h

 at x � 0, (18)

where c0 is the uniform solute concentration value when
initial height is h0.
ii. At the symmetry plane :

∂c
∂z

� 0 at z � 0. (19)

iii. Solute mass flux at the permeable wall is given by [21] :

−D
∂c
∂z

� h∗(c − cp) + (Th − 1)wnc at z � h, (20)

where cp is the concentration inside the poroelastic region,
h∗ is permeability of solute at the wall and Th is
transmittance factor. Th is defined as the fraction of the
solute present at the interface, which actually enters the
pores of the surface and which gets transferred through it
by bulk flow [21].

The solute flux through the interface is given by the
boundary condition (20). The solute fluxbydiffusionprocess is
given by product of permeability of solute at thewall (h∗) and
transmembrane concentration difference [c(z � h) − cp]. The
solute flux by bulk flow is given by (Th − 1)wnc.

3 Solution

Solution of velocity component (u) is obtained by inte-
grating the x− momentum Eq. (2), twice with respect to z
and applying the boundary conditions (16) and (17). It is
expressed as :

u � ∂p
∂x

∫
z

h

(z
μ
)dz. (21)

Solution of normal velocity component (w) is obtained
by substituting the velocity u in the continuity Eq. (1) and
integrating it with respect to z. Further, applying boundary
condition (16) on w and following Leibnitz rule, we get,

w � ∂
∂x

⎧⎨⎩ ∫
0

z

⎡⎣∂p
∂x

∫
z

h

(z
μ
) dz⎤⎦dz⎫⎬⎭. (22)

Substituting the velocity component u in the continuity
Eq. (1) and integrating it over the film thickness from z � 0
to z � h with respect to z using boundary conditions (16)
and (17) of w, we get Reynolds equation as below,

∂
∂x

⎧⎨⎩ ∫
h

0

⎡⎣∂p
∂x

∫
z

h

(z
μ
) dz⎤⎦dz⎫⎬⎭ � wn + dh

dt
(23)

After neglecting the inertia term in Eq. (7), we have

∂U
→

∂t
− V

→ � −
k
μ0

(− ∇p′ + E∇e) (24)

Substitution of Eq. (14) in Eq. (24), gives

∂U
→

∂t
− V

→ � k
μ0

∇p′(1 − E
K
) (25)

Now wn can be defined as

wn � normal component of⎛⎝∂U
→

∂t
− V

→⎞⎠ � k
μ0

(1 − E
K
) ∂p′

∂z

∣∣∣∣∣∣∣∣z�h
(26)

Integrating the Laplace Eq. (15) with respect to z over
porous matrix thickness from z � h to z � h + δ and using

boundary condition ∂p′/∂z � 0 at z � h + δ, we get

∂p′

∂z

∣∣∣∣∣∣∣∣z�h � ∫
h+δ

h

∂2p′

∂x2
dz (27)

If the thickness of porous layer (δ) is assumed to be of
very small then Eq. (27) reduces to

∂p′

∂z

∣∣∣∣∣∣∣∣z�h � δ
∂2p
∂x2

(28)
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Eq. (28) is valid in the limiting case when δ ≈ 0 (see
reference [22]).

Therefore,

wn � k
μ0

δ(1 − E
K
) ∂2p
∂x2

(29)

Substituting Eq. (29) in Reynolds Eq. (23), we get
equation for pressure in film region as,

∂
∂x

{∂p
∂x

F(x)} � dh
dt

(30)

where F(x) � ∫
h

0
(∫ ​z

h
(z
μ)dz)dz − k

μ0
δ(1 − E

K)
Solution for pressure in the film region canbeobtainedby

solving Eq. (30) along with boundary conditions given below.
Boundary conditions for Pressure:

i. At middle of the channel :

dp
dx

� 0 at x � 0. (31)

ii. At end of the channel :

p � 0 at x � L. (32)

Integrating Eq. (30) with respect to x twice and using
boundary conditions (31) and (32) we get pressure in the
dimensional form as,

p � dh
dt

∫
x

L

x
F
dx (33)

We define the following non-dimensional quantities

x � x
L
, z � z

h0
, h � h

h0
, u � u

dh/dt, 
w � w

dh/dt, wn � wn

dh/dt, ψ0 �
kδ
h30
, p � ph30

μ0L
2(dh/dt) ,

 l � L
h0
, c � c

c0
, cp � cp

c0
, μ � μ

μ0

to get the dimensionless form of the Eqs (4), (5), (21), (22)
and (33).

We get the non-dimensional pressure in the film region

as, after dropping bar,

p � ∫
x

1

x
F
dx (34)

where F � ∫
h

0

⎛⎝∫
z

h

(z
μ)dz⎞⎠dz − ψ0(1 − E

K)
The convection diffusion Eq. (4) and corresponding

initial and boundary conditions (18), (19) and (20) are

written in non-dimensional form (after removing bar) as :

Pe[u ∂c
∂x

+ w
∂c
∂z

] � ∂2c
∂z2

, (35)

c � 1
h
 at x � 0 (36)

∂c
∂z

� 0 at z � 0 (37)

and 
∂c
∂z

� Sh(cp − c) + Pe(1 − Th)wnc at z � h, (38)

where Pe � (dh/dt) h0/D is the Peclet number and
Sh � h∗h0/D is Sherwood number.

Non-dimensional form of velocity components and
viscosity (after removing bar) are

u � ∂p
∂x

∫
z

h

(z
μ
)dz (39)

w � ∂
∂x

⎧⎨⎩ ∫
0

z

⎡⎣∂p
∂x

∫
z

h

(z
μ
)dz⎤⎦dz⎫⎬⎭ (40)

and μ � 1 + λc0c (41)

Now, we solve Eq. (35), which is coupled with Eqs (34),

(39), (40) and (41). It is not possible to solve the Eq. (35)

analytically, along with u, v and p quantities. Hence, Eq.

(35) is solved numerically along with initial and boundary

conditions (36), (37) and (38), in an iterative manner.
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3.1 Numerical procedure

Finite difference method of Crank–Nicolson scheme is
used to solve the convection-diffusion Eq. (35) along with
the initial and boundary conditions (36)–(38), to get
concentration value c(x,  z). Trapezoidal procedure is
used to evaluate integrals appearing in the solutions for
pressure (p) and velocity components (u) and (w). Let the
channel middle (x � 0) and outlet (x � 1) be denoted by
index i � 0 and i �M, respectively. Similarly, the bottom
(z � 0) and the top (z � h) are represented by index j � 0
and j � N. Assume that Δx and Δz are increments in x and z
directions, respectively. The discretized form of solute
transport Eq. (35) at a general grid point with indices (i,  j)
can be written as,

Aj  ci+1, j−1 + Bj ci+1, j + Ej  ci+1, j+1 � Rj,  f or 0 < i ≤M,  0 ≤ j < N

(42)

where coefficients Aj, Bj, Ej and Rj are given by

Aj � −Pe
Δx
Δz

wi+1, j − 2r,

Bj � 2Pe[ui, j + ui+1, j] + 4r,

Ej � Pe
Δx
Δz

wi+1, j − 2r,

Rj � [PeΔx
Δz

wi, j + 2r]ci, j−1 + [2Pe(ui, j + ui+1, j)
−4r]ci, j + [− Pe

Δx
Δz

wi, j + 2r]ci, j+1
and r � Δx

(Δz)2

To obtain the solute concentration value at the sym-
metric plane (z � 0), we use discretized form of Eq. (37)
along with (42). That is, at z � 0, we have

B0 ci+1,0 + E0ci+1,1 � R0,  f or 0 < i ≤M (43)

where B0 � 2Pe[ui,0 + ui+1,0] + 4r,  E0 � −4r

and R0 � [2Pe(ui,0 + ui+1,0) − 4r]ci,0 + 4rci, 1

To calculate solute concentration values at top
boundary, we discretize the boundary condition (38) by

using three point backward difference formula [23]. Hence,
at z � h, we have

ci,n � 4ci, n−1 − ci, n−2 + 2 Δ zShcp
3 + 2 Δ z(Sh + (Ta − 1)Pewn),  for 0 < i ≤M (44)

Thomas algorithm is used to solve the system of linear
Eqs (42)–(44). The solutions for concentration (c), velocity
components (u, w) and pressure (p) are obtained using an
iterative procedure.

Solution procedure is started by assuming an approxi-

mate value for c, say c0i, j, for grid points with indices

(i � 1 to M  and j � 0 to N). At i � 0 level, p, u, w and c are
known values. The approximate c values need to be cor-
rected based upon Eqs. (34), (35) and (39)–(41) by satisfying
theboundary conditions (37) and (38). The assumed c values
are used to get approximate solutions for p, u and w, which
are calculated from Eqs. (34), (39) and (40). Now, new c, say

c1i, j, values are calculated from Eq. (42) alongwith boundary

conditions (43) and (44). Using these new c values, new p, u
andw are calculated. This algorithmic procedure is repeated

until
∣∣∣∣∣cn+1i, j − cni, j

∣∣∣∣∣ ≤ 10−6.

Once the correct c value for all grid points is obtained,
then the fluid viscosity and the squeeze film pressure are
calculated numerically using Eqs. (41) and (34), respec-
tively. Further, the non-dimensional form of load carrying
capacity can be obtained by integrating this pressurep over
the film region. It is expressed as:

W � ∫
1

0

p dx (45)

4 Results and discussion

The objective of this analysis is to study the effect of solute
concentration on squeeze film lubrication between two
poroelastic surfaces. This study may be useful in under-
standing the lubrication mechanism of joint due to the
following reasonWhen the articular cartilages move closer
to each other, water and low molecular solutes may press
out from joint cavity into cartilage surface. As a result, the
concentration of HA molecules increases in the film region
which supports more load [24].

The computational results are obtained for solute
concentration (c), squeeze film pressure (p) and load car-
rying capacity (W ). The parameters of interest in this paper
are film height h, permeability parameter ψ0 and elastic
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parameter E/K. Effect of these parameters on c, p andW are
discussed. Further, we have fixed Sh � 0.3, cp � 0.5 and
Ta � 0.8 throughout the analysis.

Solute concentration (c(x,  z)):
Figure 2(a) depicts the influence of squeeze film height

(h) on the distribution of concentration of solute particles
(c) along normal direction z at cross section x � 0.06, for
ψ0 � 0.001 and E/K � 0.5. It is clear that there is an increase
in the value of concentration of the solute particles as the
height between two surfaces decreases. Also, the profile of
c is obtained at cross section x � 0.9, and is given in
Figure 2(b). Similar trend is observed as in Figure 2(a), with
a quantity difference. Thismay be illustrated that in normal
synovial joint(low permeability), as the height becomes
smaller, the fluid squeezes through the cartilage surfaces
and HA molecules remain in the joint cavity [8, 11, 24–26].
Hence, as the height decreases, concentration increases in
the film region.

Figure 3 shows the distribution of concentration c
along normal direction z for various values of permeability
of the poroelastic surface ψ0 at cross section x � 0.06, at
fixed height h � 0.4. The concentration of solute particles
decreases in the film region with increase in values of ψ0.
This may be interpreted as that, in diseased joint, the
articular cartilage becomes softer and has more perme-
ability. As a result of this, more voids are available in the
poroelastic surface. In such case, acid molecules can pass
through the articular cartilage during joint movement,
hence, concentration of solute particles decreases as ψ0

increases [2]. Further, it is observed in the experimental
work of Temple et al. [27] that the concentration of HA
differed between diseased and normal synovial fluid in a
manner that varied with molecular weight and HA con-
centration in diseased synovial fluid to normal case was
lower in the large molecular weight range. Dahl et al. [28]
also reported that there are reduced HA concentration in
synovial fluids from rheumatoid arthritis patients.

Effect of elastic parameter E/K on the distribution of c
varying with z at cross section x � 0.06 is presented in
Figure 4. It is observed that, the concentration c increases for

increasing values of E
K. The values of E/K for normal and

degenerative articular cartilage are 0.6 and0.2, respectively,
as remarked in the experimental study [20]. The degenera-
tive cartilage surface is characterizedby increasing porosity,
permeability and decreasing stiffness [3]. If E/K � 0.6, then,
the cartilage surface hasmore stiffness than the surfacewith
E/K � 0.2. Hence, joint with degenerative cartilage has less
solute particles movement during joint motion.

Figure 5 illustrates the influence of Peclet number Pe
on the distribution of concentration c at cross section
x � 0.06. It is understood that c increases as Pe increases. It
may be interpreted as that there is a significant effect of
convection term on the distribution of concentration of
solute particles in squeeze film lubrication.

Solute concentration at interface (ci):
Figure 6 represents axial distribution of solute con-

centration (ci) at the interface for various squeeze film
heights, for ψ0 � 0.001. It is seen that, ci increases as h
decreases for small value of ψ0 � 0.001.

0
= 0.001

Pe = 1.0

h = 0.7

h = 0.6 h = 0.4

E
K

= 0.5
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c
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Figure 2: Distribution of concentration c with z at different cross sections (a) x = 0.06 and (b) x = 0.09.

0
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Figure 3: Distribution of concentration cwith z for different values ofψ0.
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Squeeze film pressure (p):
Axial distribution of squeeze film pressure p with x for

various values of h is shown in Figure 7. The general
pattern is that p increases as h decreases. It may be noted

that when the gap between two articular surfaces de-
creases, there is a resistance to sideways flow and further,
the viscosity of the fluid increases due to increase in con-
centration of HA in the film region. Because of these rea-
sons, squeeze film pressure increases as the gap decreases.

Figure 8 shows the effect of variation of permeability
parameterψ0 on squeeze film pressure pwith respect to x.
The effect of surface permeability is to decrease the
pressure in the film region. As permeability of the carti-
lage surface increases, HA and synovial fluid can easily
move through the surface. Hence, viscosity of the fluid
decreases due to decrease in concentration of acid mole-
cules and also the amount of fluid retained in the film
region is small which in turn decrease the squeeze film
pressure.

Figure 9 represents the distribution of squeeze film
pressure p with x for various values of elastic parameter
E/K. The general profile is that p increases with increasing
values of E/K. As mentioned earlier, the values of E/K for
normal anddegenerative articular cartilage are 0.6 and 0.2,
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respectively. Therefore, joint with normal cartilage surface
may have more pressure in comparison with degenerative
cartilage surface.

Load carrying capacity (W):
Variation of load carrying capacity W with film

height h for different values of λc0 is shown in
Figure 10. Decrease in the height between two surfaces
increases the load carrying capacity. This may be
explained that as the height of the film region de-
creases the pressure distribution increases and hence
the load carrying capacity increases. Further, the load
carrying capacity increases as λc0 increases. In other
words, the load carrying capacity increases with
increased values of concentration of solute particles in
the film region.

Figures 11 and 12 depict the variation ofWwith h for
different values of ψ0 and E/K, respectively. It is
observed that W decreases as ψ0 increases, from
ψ0 � 0.001 and ψ0 � 0.1. Due to more permeability of the
poroelastic surface, the pressure in the film region

decreases and consequently the load carrying capacity
decrease. Further, W increases with increasing values
of E/K.

5 Conclusion

In this paper, a mathematical model has been proposed to
study the squeeze film lubrication by taking into account
the permeability, elasticity of the bearing surfaces and the
viscosity variation of the lubricant due to change in the
concentration of solute particles.
(1) It is found that the squeeze film pressure and the load

carrying capacity increase as the concentration of so-
lute particle increases.

(2) Further the concentration of solute particles, squeeze
film pressure and load carrying capacity increase as
the elastic parameter increases but they decrease with
increase in the permeability.
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(3) The results obtained for various values of parameter h
show a strong influence on the concentration of solute
particles and the film pressure.
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