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Abstract: Based on the positive and negative second-order
strain gradient theories along with Kirchhoff thin plate
theory and von Karman hypothesis, the pull-in instabil-
ity of rectangular nanoplate is analytically investigated in
the present article. For this purpose, governing models
are extracted under intermolecular, electrostatic, hydro-
static, and thermal forces. The Galerkin method is formally
exerted for converting the governing equation into an ordi-
nary differential equation. Then, the homotopy analysis
method is implemented as a well-designed technique to
acquire the analytical approximations for analyzing the
effects of disparate parameters on the nonlinear pull-in
behavior. As an outcome, the impacts of nonlinear forces
on nondimensional fundamental frequency, the voltage of
pull-in, and softening and hardening effects are examined
comparatively.

Keywords: Homotopy Analysis Method; Positive and
Negative Second-Order Strain Gradient Theories; Pull-in
Instability; Rectangular Nanoplates.

1 Introduction

Nanostructures such as nanobeams, nanotubes, and
nanoplates have conspicuous importance for scholars
because of their various applications in disparate systems;
including nanoelectromechanical and microelectrome-
chanical systems, nano biosensors, and nano actuators
[1, 2]. It seems that the classical continuum theories

*Corresponding authors: R. Ansari and J. Torabi, Faculty of
Mechanical Engineering, University of Guilan, Rasht, Iran, E-mail:
R_ansari@guilan.ac.ir (R. Ansari); Jalal.torabii@gmail.com. https://
orcid.org/0000-0001-7525-8442 (J. Totrabi)

A. Zabihi: Department of Mechanical Engineering, Ahrar Institute of
Technology and Higher Education, Rasht, Iran

K. Hosseini: Department of Mathematics Rasht Branch, Islamic Azad
University, Rasht, Iran

F. Samadani: Faculty of Mechanical Engineering, University of
Guilan, Rasht, Iran

are unable to consider the size effect in the mechanical
analysis of nanostructures, as they do not contain any
appropriate parameter; thus, some nonclassical contin-
uum theories, such as nonlocal elasticity theory [3-8],
Gurtin—-Murdoch elasticity continuum [9], couple stress
theory [10, 11], and strain-driven and stress-driven nonlo-
cal integral elasticity [12, 13], two-phase integral elasticity
[14, 15], nonlocal strain gradient elasticity [16—21], modi-
fied nonlocal strain gradient elasticity [22], and strain gra-
dient theory (SGT) [23-33], have been proposed with the
capability of considering the size effect.

One of the capable nonclassical continuum theories
called SGT was first presented by Mindlin [23, 24]. The
SGT has different forms and formulas; to exemplify, in the
first-order SGT [23], only first strain gradients were calcu-
lated with five material length scales in the corresponding
constitutive relations. In the second-order SGT [24], the
second-order derivatives of strain were calculated in the
strain energy density along with 16 material length scale
parameters. Lam et al. [25] proposed successfully another
form of SGT called the modified SGT, which has three
material length scale parameters and considered strain
energy density as a function of dilatation gradient, sym-
metric strain, deviatoric stretch gradient, and symmetric
rotation gradient tensors. Scholars employed SGT to ana-
lyze the vibration of nanostructures. For instance, Thai
et al. [26] applied the modified SGT to analyze free vibra-
tion and static bending of microplates. Torabi et al. [27, 28]
implemented the 3-D SGT to analyze the free vibration of
nanoplates.

Besides, Altan and Aifantis [29] and Aifantis [30] pro-
posed the simplified SGT, which involves one length scale
parameter. This simplified form of SGT has a positive
and negative sign, which signifies softening and hard-
ening behavior. The survey of the literature shows that
several studies have been done with the help of this
simplified form. To exemplify, Babu and Patel [31] stud-
ied linear bending, free vibration, and buckling of rect-
angular nanoplate based on the positive and negative
SGT. Based on the positive and negative SGT, natural fre-
quency and buckling load of Euler-Bernoulli beam/tubes
were presented by Babu and Patel [32]. Babu and Patel
[33] analyzed the transverse static loading of rectangular
nanoplate using negative second-order SGT.
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Considering another failure pattern of microstruc-
tures/nanostructures, when the movable electrode falls
into the substrate one, because of the critical amounts of
applied voltage, one of the prominent phenomena in the
nanostructures called the pull-in instability occurs, and
this phenomenon is not reversible. For the first time, the
pull-in instability was informed experimentally by Taylor
[34] and Nathanson et al. [35]. Other researchers worked
on this phenomenon, for instance, Ansari et al. [36] ana-
lyzed the behavior of pull-in instability on rectangular
nanoplates. Dynamic pull-in instability of a microbeam
was studied by Yang et al. [37]. Gholami et al. [38] stud-
ied the pull-in instability of rectangular microplates based
on the SGT. Pull-in instability of rectangular nanoplate
was analyzed based on the modified couple stress theory
by Wang et al. [39]. The interested reader is referred to
[40-45].

Generally, solution models for pull-in instability are
divided into two categories of numerical and analytical
solutions, and the second one is utilized in this article.
It is transparent that the classical analytical methods
are disabled to solve bouncing nonlinear ordinary dif-
ferential equations (ODEs); hence, Liao [46] proposed a
powerful solution strategy called the homotopy analysis
method (HAM) to handle such nonlinear ODEs. Based on
the application of HAM, other researchers utilized it in
their articles, for example, Alipour et al. [47] employed
HAM to analyze the nonlinear behavior of nanobeams. The
HAM was applied via Samadani et al. [48] to scrutinize the
pull-in instability of nanobeam.

It is invaluable to mention that in the present arti-
cle two nonlinear forces including electrostatic and inter-
molecular ones are considered. In the intermolecular force
portion, there are two forces such as the van der Waals
(vdW) or the Casimir. When the space between two elec-
trodes is less than the plasma wavelength of the ingredient
material of surfaces, the vdW attraction is considered (typ-
ically <20 nm) [49]. On the other hand, the Casimir force
[50, 51] is considered when space is larger than the afore-
mentioned situation; thus, they do not exist simultane-
ously [47]. As a result, in this article, models are presented
with considering the Casimir force. To procure mathe-
matical modeling of hydrostatic and electrostatic actua-
tion, some researches have been done [52, 53]. When the
hydrostatic force is applied, the nanoplate is stable; nev-
ertheless, the pull-in instability is occurred by applying
electrostatic and intermolecular forces.

The main objective of this study is the geometrically
nonlinear pull-in analysis of rectangular nanoplates based
on the positive and negative second-order SGTs. The non-
linear governing equations based on the Kirchhoff thin

DE GRUYTER

plate theory, von Karman nonlinear kinematic relation,
and second-order SGTs are presented for the first time.
The present study is organized as follows: In the following
section, the governing equations are derived. In Section 3,
the equations subjected to SSSS, CCCC, and CSCS bound-
ary conditions (BCs) (clamped edges and simply supported
are truncated to C and S) are converted to nondimen-
sional equations and metamorphosed into ODEs through
the Galerkin method (GM). In Section 4, the HAM is used
to procure analytical approximate solutions of governing
models. In Section 5, the effects of intermolecular, electro-
static, hydrostatic, and thermal forces, along with nonlin-
ear fundamental frequency, the pull-in voltage, softening,
and hardening impacts, are investigated. In Section 6, the
main achievements of the article are given.

2 Model Description

2.1 Second-Order SGT

Generally, the second-order SGT has two forms of posi-
tive and negative coefficient. The main difference between
them is that the positive form evinces softening effect,
albeit the negative equivalent represents the hardening
effect [29-33]. The positive and negative second-order
SGTs are presented in the following form:

0 = Cijt &1 Legmm ey
where 035, Cjjq, and g are the components of the stress,
fourth-order elasticity, and strain tensors, and [ is the
length scale parameter introduced to consider the strain
gradient effect.

2.2 Kirchhoff Plate Theory

Based on Kirchhoff’s theory, the displacement of plate u,
v and w along with x, y, and z directions can be shown as
follows:

_ . ow(x,y)
ulx,y,z) = Ziax )
_ ow(x,y)
v(x,y,z) = Ziay )
w(x,y, z) = w(x, y), 2

where w is the transverse displacement of the plate. Based
on Kirchhoff’s theory, deduced from the classical elastic-
ity formulation of Saint-Venant problem [54-56], and von
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Karman hypothesis, the strains in the classical rectangular
plate can be expressed as

T2 ox ox2’
g, =L ow o ow
W2 oy oy’
_ oW ow o*w
Exy = o0 (Ty ZaTay’ 3)

The geometrically linear relations can be obtained
ow ow

. 1 ow 2 1 ow 2
by removing 5 > 2 o o and > oy - In the
second-order SGT, the relation of stress can be offered in

the following form:

E E
Oxx = 17'92(8)()( + Beyy) 1217‘92 I’Z(SXX + Sgyy),
E E
=7 szf(fyy +0en) I 1 92 r’(gyy + 9ex),
Oxy = _E £ 2 E r’c
YT2a+9)Y T 2a+9) T @)
where r? i Clearly, the relations of force and

= oyZ*
moment resultants are defined as

2/2
Nyx = oxxdZ,
h/2
2/2
Nyy = oyydZ,
h/2
22
ny = nydZ, (5)
h/2
22
Mxx = zoxdZ,
h/2
202
h/2
202
Myy = z0xydZ, (6)
h/2

where the thickness of the nanoplate is h. Thus, by substi-
tuting (4) in the aforementioned formulas, the force and
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moment resultants for the second-order SGT are procured
relatively in terms of transverse displacement w(x, y)

_ 1 ow 1 ow
24 or’w 2 awa3 L ow w
ox* T ox x> T ox dxdy?
L]
vy WL ow Pw  owdw
oy? ay dyox* 9y 9y’
2!
o*w
+(1+9) oxdy
2 2!
_ 1 ow 1 ow
pa 0w T, owdw ow ow
oy? ay ay3 dy dyox?
1
ox2 ax axay ox ox3
2!
o*w
+(1+
a+9 X0y ’
_A ow ow 2 A
wdw  ow Pw  ow dw  owddw
oy 0x3  0x dyoxZ Oy oxdoy?  ox 0y3
oy Pw dw O
oxoy  ox2  oy?2 ’
@
?’w . 0%w
Moc="D W+8672
o*w 4W o*w
’D S5 +.9 + (1 S)a 26 5
?’w  o°w
Myy - D W + SW
4w 4w 4w
lDa—yl‘+8 +(1 8)626y ,
_ o*w
Mxy - D(l S)Yay
4 4
2 o'w o'w
Fa 9p <5 oy " oxoy? @)
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where A = % and D = m are the stiffness and
bending rigidity of the nanoplate, respectively. Herein,
Hamilton’s principle is offered for attaining the governing
equations:

7T
§ [K
0

(U wydt=o. ©)]

where T, W, U, and K signify time, work of external forces,
strain energy, and kinetic energy, respectively. First, the
variation of strain energy is displayed as

T 2Tz R2
6 Udt=
0 0 S hA2

(OxxO8exx + Oxybexy

+ oyy6eyy)dzdSdt, (10)

where S points out the area.
Second, the variation of the work of external loads has
the following form:

T 7

_ ¢ Owodw ow oéw
5 wdt= N 5 —5- + by o oy
0 0 s
+N§y6 Z—W%—W + qbéw dSdt,
11

where the terms Ni, = N}, = N¢, and g are determined by
the external forces. Moreover, N f(y = 0. The thermal force
caused by the uniform temperature variation 8 =T Ty
is elucidated by

Ehat
Ne= —©0,
a9
where h and a indicate the thickness of the nanoplate and
the coefficient of thermal expansion [57].
Lastly, by considering the integration by parts in the
time domain, the variation of the kinetic energy is

T YA

o’w
Kdt = Io—
6 dt 0 Y2
0 0 s
o*w o*w
I W+W swdsde, (12)

where Ip = ph and I; = % are translatory inertia and

rotatory inertia in which p states the mass density of the
nanoplate.
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Equations (10) to (12) are substituted in (9), there-
upon the governing equation for rectangular nanoplates
is obtained in this form:

My |, ,0°Myy | O’Myy , ONxx  ONy Ow
ox? o0x0y oy? ox oy ox
ONxy , ONyy ow o’w
ox oy oy X ox2
o*w o*w ’w  *w
+ Nyya—y2 + Znyiaxay +q+ N; 52 + Tyz
= oh ’w ph>  o'w o*w
—P 56 12 ooz« ay2orr
(13)
where %l + oy = o 4 90 = 0 [58, 59]. Now, by

ox oy ox
means of the force and moment resultants given in (5) and

(6) and expanding (13), the governing equations for the
second-order SGT of rectangular nanoplates with consid-
ering von Karman nonlinearity are proposed in this form
correspondingly:

o'w
oy

o*w

otw 5 +
0x29y?

Do
1

2w

oy®

0w +
oxZoy*

0w
ox*ay?

2w

2 —_
rD ox®6

2 2

2
A 16w67w +aw

10°w ow
2 0x2  ox 20y oy

Lot ow
2 0x2 oy
L]

o'w ow ow
0xdy 0x 9y
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0Xx0y 0x 0y
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2 0y?  ox

2
’w

12 02w
0xoy

Fr=3 + 2

ow o’w d’w
ox 0x9dy dy 0x?

’w

ow dw
+ -
ox?

0x 0x 0?2

o*w ow
0x0y dy
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+
0x 0y?
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’w
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—_——  +
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} Pw
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Oy oxdy 9x3

ow v
ox oy?

+9
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L dwow owow  Dw
0x2 9y  Ox oxdy Oy 0x?
L wdlw owow  Dw
ox dy2 Oy oxdy Ox oy?
L, wdw owdw o
oy 0x2  90x oxdy oy3
LI |
L, Pw, dw dwotw  ow
oy = ox? oy2 ox2? ox oy
, 1
5 *w 2w d’w
— 4 +gq
0x0y oy ox?
o’w  *w
_ o*w ph®>  o*w o*w
=P SE 12 oxer T ayor (14)

Note that the governing equation is converted to the
classical model by setting [ = 0.

3 Mathematical Modeling

Schematic of the rectangular nanoplate with length I, and
width I, including a pair of parallel electrodes with the
distance g, is given in Figure 1. The upper movable elec-
trode is assumed to be under the impact of electrostatic,
intermolecular, hydrostatic, and thermal forces.

The electrostatic force per unit area can be expressed
as follows [60]:

e0(Vae)?

Fe: 2
206 w)

(15)

wheregy = 8.854 10 2 C*N 'm 2,V,.,andgarevac-
uum permittivity, direct current voltage, and air initial gap
between two plates, respectively, as illustrated in Figure 1.

Figure 1: Schematic of a NEMS rectangular nanoplates.
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The Casimir force relatively per unit area of the rectan-
gular plate has the following formula [50, 51]:
m’~c

Fo=—— - 6
240(g  w)" (16)

where the Plank’s constantis ~ = 1.055 10 3“,andc¢ =

2.998 10%m/s is the speed of light. For further analysis,
the term q is referred to

q=Fe+Fc+Fp, (17)

where F;, stands for the hydrostatic actuation.

In this attitude, (15) and (16) are substituted in (17)
and inserted in (14), so the governing equations of second-
order SGT are procured:

o
oy*

o*w
ox20y?

o*w
D _
ox*
1

%w

ay®

0w
ox2oy*4

0w +
ox*9y?

2w
0x®

’D

10%w 2

2 ox2
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o'w ow ow
0X0y 0X 0y
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20y2 oy
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ow ’w ow o*w Therefore, the nondimensional form of the governing
oy 0x%2  0x oxody equation is achieved:
LI |
dw  d*w . ’w  d*wotw ?w W W W
oy3 oy2  ox2  9y? ox? 0x 0 2 4on 4
Y R Y oxt N Sxrave T S
+ 9 o’w 2 ’w + o’w .
0x0y oy2  ox2 12 oW 52 o°w
0X6 0X4oY?
2
So(Vdc) n°he e I
2(g w)? 240(g w) 3 0w A6a w
2w w 0X20Y4 oYe
+N S+
L ox2 " 9y? , ,
10°W oW 1°W ow
_ a?w  ph®  d*w o*w +k =S =+ —
2 2 2
W oW oW 1o0°W oW
The BCs of rectangular isotropic Kirchhoff nanoplate 2 aa Xov % X aaY +¢ 5 % 2 aa—Y
are presented in Table 1. The BCs are presented as the
classical and nonclassical ones. LW oW 2 ow oW oW
These nondimensional variables are applied compar- >3V Sy W oMol
atively: 2 0Y2 oX 0X0Y 0X oY
2 ) 2
w X y En? 2 *W o2 OW
A4 =2 — 21
W= g’ K= la’Y lb’D 121 9° a 0X?2 0XoY
s
= E szl L LW W W oW 3PW W
> 12p1 92 ly la 0X 90X 0Y2 oX2 dX 0XoY dY oX?
" (Vae)? 2helg” N¢l
B=%, h= e, Np= T oW 3*W W Azaw oW
g g 0X 0X2 ox3 0X 0Y2
_ Fyla* Ag 29 1
Nos = "pg > K= oo =AY qwow  ow dw . ow *
h2 hz 0X0Y oY oY oY oX? 0X oY
= —, = — 1
= T o 19) ,
o*w ’w
4 6
and Taylor expansion is employed as follows: A JY2 +A JY?
1
; = 56W° +35W" + 200’ A(,awa W, 40W 3w Pw
a oY ov2 " 39X oXaY ov?
+10W? +4W + 1, 20
0) ¢ W IW oW °'W W
1 = 6W° + 5W* + 4> 0X 0Y?2 oY oXoY 0X3
a w
, FWoWw oW *W W
+3WS+2W+1, (21) 0X2 0Y  0X 0X oY 0Y oX2
Table 1: Boundary condition for rectangular isotropic Kirchhoff nanoplate [31, 61].
Boundary condition x=0,l, y=0,l,
Clamped Classic W_?a:_aaj/v:aa%:o w-%j-%jz%zo
Nonclassic D2 =0 IZDa;y“; =0
Simply supported Classic w= ‘3—‘;’ = ‘ZZT"Z" 327"2" =0 w = ‘;‘;" = ‘;X‘Q’ = ZZT‘;" =0
Nonclassic p 2w pdw p 2w p gbyh

oy?
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L OWow oW o'W, O°W 4 Applying the HAM
0Y2 90X  9Y oX oY 0X oY?
) ) 3 To apply the HAM, the following transformation is used:
+ OW o'W oW o'W ,0°W
. ’w N W ., W PW Then, (25) is turned into the following equation:
0X2 oY? 0Y2 0X2 )
2d u(1) 2
1 MQy + ayu(t) + a; u(1)
2 2 2 2 dr?
o-w + 22 o°w 3 4 5
X oY 3 XY +as u(r) +ag u(t) +asu(r)’ +ap =0,
u(0)=B, u(0)=0, (27)
FW 1 *W N - .
372 + 2 ox2 where B signifies the initial amplitude; furthermore, the

+ (56R4 + 6B)W° + (35R4 + 58)W*

+ (20R; + 4B)W> + (10R4 + 3B)W?

+ (4R4 + 2B)W + Ry + B + Ny

W W
TN Sxr YAy
o*w o*w o'w
oz TXigxzarz TXogyzerz =0 (22

Now, GM is used due to altering (22) to ODE. The
related formula is used:

wWX,Y, T)= on(X, Vun(T), (23)
n=1
where
@1(X, Y)(CCCC) = sin®(nX)sin* (1Y),
@1(X, Y)(CSCS) = sinz(nX)sin(ﬂY),
@1(X, Y)(SSSS) = sin(nX)sin(nY), (24)

are the first eigenmode of nanoplate.

The W(X, Y, T) is substituted in (22), multiplied by
¢1(X, Y), and then integrated two times from zero to one
with respect to X and Y. Therefore, the following duff-
ing form is procured for the positive and negative second-
order SGTs

2
Mddl;(zT) +a1u(T)+ a; u(T)2 +as u(T)3
+ a4 u(T)* + as u(T)’ + ao = 0. (25)
For instance, the parameters M and a¢;(0 i 5)are

presented in the Appendix for the CCCC BC.

frequency (Qg) is constructed as follows:

(28)
i=0

According to the HAM, the zeroth-order deformation
equation is considered as follows:
(1 @)L[p(t; 9)] = ghN[P(T; ), Qq],
$©0;q9) =B, @(0;q9) =0,
where L, g, and N are the linear operator, embedding

parameter, and the nonlinear operator, respectively. The
linear and nonlinear operators are defined as follows:

25({1’( 3 9)

(29)

L[¢(t; 9)] = w5 +d(r;q) ,  (30)
NIg(r: ), 0 = 1103 " 25D + s g
+asp(t; 9)" + az (1 q)°
+ ad(1;9)” + ard(t;9) + ao.  (31)

The solution ¢(t; q) is expanded in the power series
using the Taylor theorem as follows:

P q) = uo(t) +  um()q". (32)

m=1

Relatively, differentiating zeroth-order deformation
(29) with respect to g results in

hasuo(t)’  haiuo(t) hazuo(T)2
hasuo(@  hauon® @ o
w(z)uo(r) th(z) dz;;)z(ﬂ hao
+wiui(1) =0, u1(0)=0, u(0)=0,  (33)
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dZ
hayuy(t) + w} ;Tzz(T)
2
+w(2)u2(r) hMw} d;le(T) 2hayuo(t)u1(t)
3hasuo(1)*us(t)  4hayuo(r)’us(r)
d*uy(t
Shasuo(r)wn(r)  whur(r) wj 4D
2
2hMwowq d Uo(T) =0,

dr?

u1(0) =0, ©1(0) =0, (34)

By substituting uo(7) = Bcos(t) into (33), one can
find

%ha;,B5 ha.B %ha3B3+hMa)(2,B cos(T)

p_d
2 M SB4a5 + 6B2a3 + 8aq

4M
1

Q Qq:wo+w1=

=+ e |
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1 5 5 5
16haSB cos(57) 16ha5B cos(37)

1hazB2 cos(2T1) 1hazB2 1hagB3 cos(31)

2 2 4

1 4 1 4

ghaz,B cos(4T) Eha4B cos(27)

3 d*uy(t

gha4B4 hay + w%ul(r) + w} d‘;z( ) =0.
(35)

For removing the secular terms, coefficient of cos(r)
is taken to be zero. Consequently, the nondimensional
fundamental frequency and deflection are obtained as fol-
lows:

960 M 5B%as + 6B%as + 8a; 5B%as + 6B2as + 8a;

p—
Mh 2 325B%a? 3840B’asa, + 480B°asa;

+ 6048B%a2  6400B’asa, 2304B’asas + 13440B*asa, + 180B*a3  19200Bagas
3840Ba,as + 23040Bapas + 6400B*a3  11520Bagas + 15360a0a; ,
(36)
and
u(T) = uo(T) + us(T)
— B+ 80MhB’as 384B*Mhay, + 60B>Mhas 640B>Mha, 1920Mhag cos(QT)
1200B%as + 1440B2a3 + 1920a;
320B*Mha, 320B>*Mha, 75B°Mhas 60B>Mhas
2QT) + QT
1200B%a; + 1440B2a; + 1920a; D™ 1500B4a; + 1440B2a; + 1920a; 2C4D
16B“Mhay 5B°Mhas
QT QT
1200B%a; + 1440B2a; + 1920a;  “°°“D) 1500B%as + 14408245 + 1920a, OC4D
720B*Mhay + 960B*>Mha, + 1920Mhag 37)
1200B*as + 1440B%as3 + 1920a;
5 Results and Discussion
Table 2: Material properties and geometrical of the rectangular
The geometry of the structure and material properties nanoplate [36].
are presented in Table 2 [36]. To validate the results of Parameter Value
this research, the natural frequencies of the nanoplate
analyzed through Babu and Patel [31] are compared in Young modulus (Alalloy) 68.5 GPa
Table 3. Otherwise stated, the parameters are considered ~Poisson ratio (Alalloy) 0.35
as 4 = 0.1, 0 = 300, and initial amplitude B = 0.1 Coefficient of thermal expansion 2.6 10 61/ C
In Figure 2, the nondimensional deflection is derived Ihithr;esls (_h) | ;1) Em
by the HAM and compared to that obtained through Ge;;g (la =1 Lo h

the Runge—Kutta method verifying complete arrangement.
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Table 3: Comparison of the natural frequencies of nanoplates based on the second-order SGT with the results of Babu and Patel [31] (SSSS).

Second-order SGT Length scale (y)
0 0.02 0.05 0.1
Positive Babu and Patel [31] 19.7205 19.6432 19.2328 -
Present study 19.7205 19.6425 19.2277 17.6672
Negative Babu and Patel [31] 19.7205 19.7976 20.1971 21.5632
Present study 19.7205 19.7982 20.2012 21.5792
Negative-CCCC Negative-CSCS
05 05
041 041
8 03 8
g g 03
(=] (=]
L 027 =
E = 024
£ 01 H
£ o e
Z 014 z
-024 -0.1
0 01 02 03 0 01 02 03 04

Nondimensional time

Nondimensional time

=== Runge-Kutta HAM |

| === Runge-Kutta

HAM|

Negative-SSSS

=
-
vy

040

o
w
N

Nondimensional deflection

0 01 02 03 04 05
Nondimensional time

HAM|

| === Runge-Kutta

06

Figure 2: The Runge—Kutta method against HAM results on negative second-order SGT (u = 0.04, V4. =2, B =10.5).

Based on the graphs, negative second-order SGT is plotted
in different BCs such as CCCC, CSCS, and SSSS considering
geometrical nonlinear hypothesis.

The variations of nondimensional deflection against
the nondimensional time are disclosed in Figure 3. Cer-
tainly, the movable nanoplate deflects into the substrate
one, when the pull-in occurs. According to Table 4, the
CCCC has a higher pull-in voltage than other BCs. Also,
in all of BCs, the positive theory has lower pull-in voltage

than the negative one. Based on Table 4, one can also find
that by considering the geometrical nonlinear terms the
range of pull-in voltage changed lower than the geomet-
rical linear situation.

The nondimensional fundamental frequency with
respect to S is displayed in Figure 4 in order to show
the size dependency based on the positive and nega-
tive second-order SGTs. It is clear that the nondimen-
sional fundamental frequency reduces by increasing the A;
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Negative-nonlinear

Nondimensional deflection
Nondimensional deflection

10 1
Nondimensional time

o
[

un

=3227

—_—V

-~ V=32.26

Positive-nonlinear

Nondimensional deflection
Nondimensional deflection

10 15 20
Nondimensional time

L=
LA -

—_

ww=29.37 — V' =2936
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Negative-linear

10 1
ondimensional time

L

w

N

—_— I";ufm =3224 —— Vv =3223

Positive-linear

10 15 20
Nondimensional time

[

—_—

de= 2931 — v =29130

Figure 3: Centerpoint deflection of rectangular nanoplates considering geometrical nonlinear and linear terms in CCCC BC.

consequently, the pull-in instability delayed as A is
increased. On the other side, the pull-in instability occurs
at a lower voltage by decreasing the A. Moreover, this sit-
uation is free from nonclassical continuum theories and
BCs.

In Figure 5, the deviations of the nondimensional fun-
damental frequencies against f§ are revealed for dissimilar
values of the nondimensional length scale parameters (i)
in order to show the softening and hardening behavior. It
can be inferred that through intensifying u the nondimen-
sional fundamental frequency abates for positive second-
order SGT and enhances for the negative one relatively.
Likewise, the softening and hardening behaviors are dis-
played based on the positive and negative second-order
SGTs with considering geometrical nonlinearity.

The differences of the nondimensional fundamental
frequencies against nondimensional hydrostatic pressure
parameters on behalf of dissimilar values of u are exhib-
ited in Figure 6 with considering CCCC BC. One can find
that via rising Ny, the fundamental frequency decreases
comparatively, and it is the prime characteristic of hydro-
static pressure.

In Figure 7, the variations of the nondimensional fun-
damental frequencies versus N7 are presented for dis-
parate values of . It can be concluded that by increasing
N7 the nondimensional fundamental frequency enlarges,
thereupon the gist of thermal actuation is sensible.

The variations of the nondimensional fundamen-
tal frequency against initial amplitude are presented in
Figure 8 for disparate values of u. It is pellucid that by
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Table 4: Dynamic pull-in voltage of the rectangular nanoplate.

Second-order SGT Geometrical Length scale (1) cccc Cscs SSSS
Negative Nonlinear 0 30.86 24.55 16.37
0.03 31.66 25.05 16.52
0.06 33.96 26.50 16.94
0.10 38.87 29.65 17.89
Linear 0 30.81 24.50 16.32
0.03 31.62 25.01 16.46
0.06 33.94 26.47 16.89
0.10 38.88 29.66 17.86
Positive Nonlinear 0 30.86 24.55 16.37
0.03 30.03 24.03 16.23
0.06 27.40 22.43 15.79
0.10 19.83 18.05 14.70
Linear 0 30.81 24.50 16.32
0.03 29.98 23.98 16.17
0.06 27.33 22.36 15.73
0.10 19.66 17.92 14.61
Negative Positive
2w 3
=) a
e % 30
u_m‘: . 2 20
é 10 —é 101
0 . ' . . . 0 ; . | T
0 100 200 380 400 500 600 0 100 200 " 300 400
[—2=08 —a=09 —a=1 A=11—a=12] [—i=08—i=09—2a=1 A=11—hA=12]

Figure 4: Impact of size dependency on nondimensional fundamental frequency against electrostatic force considering CCCC BC.

Negative Positive
40
2 401 g
g g
= =
& & 307
= =
£ 304 ;|
: g
& 90 &°
3 =
g g
g g 104
5 101 g
s 5
z =
0 ; T | . 0 ; .
0 100 200 300 400 500 0 100 200 300
P
[—u=0 — =002 —p=004  u=006 — p=008] [—p=0—p=002—p=004  p=006 — u=0.08|

Figure 5: Impact of the parameter y on the nondimensional fundamental frequency against nondimensional electrostatic actuation

considering CCCC BC.
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Figure 6: Outcome of parameter p on nondimensional fundamental frequency versus nondimensional hydrostatic pressure considering
CCCCBC (V4o = 15).
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Figure 7: Influence of parameter s on nondimensional fundamental frequency against nondimensional thermal actuation considering CCCC
BC (V4 = 10).
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Figure 8: Consequence of parameter ¢ on nondimensional fundamental frequency versus initial amplitude considering CCCC BC (V4. = 15).

enhancing B the nonlinear frequency declines, and this In Figure 9 dynamic pull-in voltage against length
attitude is free from BCs and the type of second-order scale is presented based on the positive and nega-
SGT. tive second-order SGTs in different BCs and considering
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Figure 9: Dynamic pull-in voltage against length scale.

geometrical nonlinear terms. One can find that by increas-
ing the length scale parameter the hardening behavior has
occurred in negative theory, but the softening behavior is
visible in a positive one.

Dynamic pull-in voltage against length scale is
depicted based on the positive and negative second-order
SGTs with considering geometrical linear and nonlinear in
CCCC BC, as shown in Figure 10. It can be concluded that
the dynamic pull-in voltage is decreased in positive theory

Second-order SGT-CCCC

[
[=]

40 -

30 1

Dynamic pull-in voltage

10 1

0 002 004 006 008 010 012 014 016

Length scale
— Negative-nonlinear —— Negative-linear
Positive-nonlinear Positive-linear

Figure 10: Dynamic pull-in voltage against length scale in CCCC BC
(B =0.5).
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by increasing the length scale parameter; however, it is
increased in the negative one.

To show the pull-in nature and its destructive behav-
ior on the nanosensor, the nondimensional velocity %—V}/
against the nondimensional deflection (phase diagram) is
presented in Figure 11. It can be inferred that by inputting

- b

a S o

=] S =]
T

Nondimensional velocity
&
(=] o

=100 -

-150

Nondimensional velocity

| . | I | L . L
-15 -1 -05 0 0.5 1 15 2 25 3
Nondimensional deflection

Pull-in

80

60 [

40 -

20r

Nondimensional velocity
o

Nondimensional deflection

Figure 11: Phase diagram based on negative second-order SGT in
CCCCBC.
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voltage the stable region decreases until the pull-in insta-
bility occurs.

6 Conclusion

In this article, the pull-in instability of rectangular
nanoplates subjected to the electrostatic, hydrostatic,
intermolecular, and thermal forces was analyzed based
on the positive and negative second-order SGTs. Addi-
tionally, the von Karman hypothesis was considered to
apply geometrical nonlinearity, and Hamilton’s principle
was employed to obtain the nonlinear governing equation.

In this respect, GM was used for converting the govern-

ing equation to ODE in the time domain, with employing

appropriate shape functions for different BCs. Then, the

HAM was implemented as an analytical solution method-

ology. For analyzing the issue, various analytical results

were reported. The results expose the folllowing:

— In negative second-order SGT, through increasing
length scale parameter, the nondimensional fundamen-
tal frequency enhances. Conversely, in positive second-
order SGT, the nondimensional fundamental frequency
subsides via intensifying the length scale parameter.

— The nondimensional pull-in voltage and fundamental
frequency are increased by increasing the nanoplates
aspect ratio.

- By escalating hydrostatic pressure, the nondimensional
fundamental frequency decreases, but it is increased by
intensifying the thermal load.

— The softening and hardening effects are discovered
through mechanical behavior in agreement with the
positive and negative second-order SGTs.

Appendix

Parameters of positive second-order SGT in CCCC BC con-
sidering geometrical nonlinearity:

ap = 0.25(Nys + R4 + fB), (A1)
ay = 2884.17°> + 2884.17> 73.06 A*
+ 2884.17u°> 1.85Np 48.704 A’
+2884.17u> +0.28128 1.85Ny
+0.562R; 73.06, (A2)
a, = (0.293B + 0.9765Ry), (A3)

DE GRUYTER
as = Aiz A%(0.2998 + 1.4954R,
+k( 1.6647 9.512¢
+u? 150.217¢ 18.777¢%  262.88

+ kA" 2.378 + u2(150.217¢  93.886)

+kA®  1.6647 93.886)°
262.88ku’A®  18.777kué? (A.4)
a; = (0.30288 + 2.12R,), (A.5)
as = (0.3058 + 2.8498R,), (A.6)
M = 1.8505(x1 + x2) + 0.1406. (A7)

Parameters of negative second-order SGT in CCCC BC
considering geometrical nonlinearity:

ao = 0.25(Nps + R4 + f), (A.8)
a; = 2884.17A°* +  2884.17% 73.06 A"
+ 2884.17u> 1.85N; 48.704 A
2884.17u* +0.28128 1.85N7
+0.562R, 73.06, (A9)
a, = (0.293B + 0.977R,), (A.10)
as = }liZ A%(0.2998 + 1.4953R,
+k 1.6647 9.512¢ +p’( 150.217¢
+18.777&% + 262.88
+kA* 2.378 + p?( 150.217& + 93.886)
+kA®  1.6647 +93.886°
+262.88ku’A® + 18.777ku’é* (A.11)
a; = (0.30288 + 2.12R,), (A12)
as = (0.3058 + 2.8498R;), (A.13)
M = 1.8505(x1 + x2) + 0.1406. (A.14)
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