
Z. Naturforsch. 2020; 75(4)a: 317–331

A. Zabihi, R. Ansari*, K. Hosseini, F. Samadani and J. Torabi*
Nonlinear Pull-in Instability of Rectangular Nanoplates Based on
the Positive and Negative Second-Order Strain Gradient Theories
with Various Edge Supports
https://doi.org/10.1515/zna-2019-0356
Received December 3, 2019; accepted March 1, 2020

Abstract: Based on the positive and negative second-order
strain gradient theories along with Kirchhoff thin plate
theory and von Kármán hypothesis, the pull-in instabil-
ity of rectangular nanoplate is analytically investigated in
the present article. For this purpose, governing models
are extracted under intermolecular, electrostatic, hydro-
static, and thermal forces. TheGalerkinmethod is formally
exerted for converting the governing equation into an ordi-
nary differential equation. Then, the homotopy analysis
method is implemented as a well-designed technique to
acquire the analytical approximations for analyzing the
effects of disparate parameters on the nonlinear pull-in
behavior. As an outcome, the impacts of nonlinear forces
on nondimensional fundamental frequency, the voltage of
pull-in, and softening and hardening effects are examined
comparatively.

Keywords: Homotopy Analysis Method; Positive and
Negative Second-Order Strain Gradient Theories; Pull-in
Instability; Rectangular Nanoplates.

1 Introduction

Nanostructures such as nanobeams, nanotubes, and
nanoplates have conspicuous importance for scholars
because of their various applications in disparate systems;
including nanoelectromechanical and microelectrome-
chanical systems, nano biosensors, and nano actuators
[1, 2]. It seems that the classical continuum theories
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are unable to consider the size effect in the mechanical
analysis of nanostructures, as they do not contain any
appropriate parameter; thus, some nonclassical contin-
uum theories, such as nonlocal elasticity theory [3–8],
Gurtin–Murdoch elasticity continuum [9], couple stress
theory [10, 11], and strain-driven and stress-driven nonlo-
cal integral elasticity [12, 13], two-phase integral elasticity
[14, 15], nonlocal strain gradient elasticity [16–21], modi-
fied nonlocal strain gradient elasticity [22], and strain gra-
dient theory (SGT) [23–33], have been proposed with the
capability of considering the size effect.

One of the capable nonclassical continuum theories
called SGT was first presented by Mindlin [23, 24]. The
SGT has different forms and formulas; to exemplify, in the
first-order SGT [23], only first strain gradients were calcu-
lated with five material length scales in the corresponding
constitutive relations. In the second-order SGT [24], the
second-order derivatives of strain were calculated in the
strain energy density along with 16 material length scale
parameters. Lam et al. [25] proposed successfully another
form of SGT called the modified SGT, which has three
material length scale parameters and considered strain
energy density as a function of dilatation gradient, sym-
metric strain, deviatoric stretch gradient, and symmetric
rotation gradient tensors. Scholars employed SGT to ana-
lyze the vibration of nanostructures. For instance, Thai
et al. [26] applied the modified SGT to analyze free vibra-
tion and static bending ofmicroplates. Torabi et al. [27, 28]
implemented the 3-D SGT to analyze the free vibration of
nanoplates.

Besides, Altan and Aifantis [29] and Aifantis [30] pro-
posed the simplified SGT, which involves one length scale
parameter. This simplified form of SGT has a positive
and negative sign, which signifies softening and hard-
ening behavior. The survey of the literature shows that
several studies have been done with the help of this
simplified form. To exemplify, Babu and Patel [31] stud-
ied linear bending, free vibration, and buckling of rect-
angular nanoplate based on the positive and negative
SGT. Based on the positive and negative SGT, natural fre-
quency and buckling load of Euler–Bernoulli beam/tubes
were presented by Babu and Patel [32]. Babu and Patel
[33] analyzed the transverse static loading of rectangular
nanoplate using negative second-order SGT.
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Considering another failure pattern of microstruc-
tures/nanostructures, when the movable electrode falls
into the substrate one, because of the critical amounts of
applied voltage, one of the prominent phenomena in the
nanostructures called the pull-in instability occurs, and
this phenomenon is not reversible. For the first time, the
pull-in instability was informed experimentally by Taylor
[34] and Nathanson et al. [35]. Other researchers worked
on this phenomenon, for instance, Ansari et al. [36] ana-
lyzed the behavior of pull-in instability on rectangular
nanoplates. Dynamic pull-in instability of a microbeam
was studied by Yang et al. [37]. Gholami et al. [38] stud-
ied the pull-in instability of rectangular microplates based
on the SGT. Pull-in instability of rectangular nanoplate
was analyzed based on the modified couple stress theory
by Wang et al. [39]. The interested reader is referred to
[40–45].

Generally, solution models for pull-in instability are
divided into two categories of numerical and analytical
solutions, and the second one is utilized in this article.
It is transparent that the classical analytical methods
are disabled to solve bouncing nonlinear ordinary dif-
ferential equations (ODEs); hence, Liao [46] proposed a
powerful solution strategy called the homotopy analysis
method (HAM) to handle such nonlinear ODEs. Based on
the application of HAM, other researchers utilized it in
their articles, for example, Alipour et al. [47] employed
HAM to analyze the nonlinear behavior of nanobeams. The
HAMwas applied via Samadani et al. [48] to scrutinize the
pull-in instability of nanobeam.

It is invaluable to mention that in the present arti-
cle two nonlinear forces including electrostatic and inter-
molecular ones are considered. In the intermolecular force
portion, there are two forces such as the van der Waals
(vdW) or the Casimir. When the space between two elec-
trodes is less than the plasmawavelength of the ingredient
material of surfaces, the vdWattraction is considered (typ-
ically <20 nm) [49]. On the other hand, the Casimir force
[50, 51] is considered when space is larger than the afore-
mentioned situation; thus, they do not exist simultane-
ously [47]. As a result, in this article, models are presented
with considering the Casimir force. To procure mathe-
matical modeling of hydrostatic and electrostatic actua-
tion, some researches have been done [52, 53]. When the
hydrostatic force is applied, the nanoplate is stable; nev-
ertheless, the pull-in instability is occurred by applying
electrostatic and intermolecular forces.

The main objective of this study is the geometrically
nonlinear pull-in analysis of rectangular nanoplates based
on the positive and negative second-order SGTs. The non-
linear governing equations based on the Kirchhoff thin

plate theory, von Kármán nonlinear kinematic relation,
and second-order SGTs are presented for the first time.
The present study is organized as follows: In the following
section, the governing equations are derived. In Section 3,
the equations subjected to SSSS, CCCC, and CSCS bound-
ary conditions (BCs) (clampededges and simply supported
are truncated to C and S) are converted to nondimen-
sional equations and metamorphosed into ODEs through
the Galerkin method (GM). In Section 4, the HAM is used
to procure analytical approximate solutions of governing
models. In Section 5, the effects of intermolecular, electro-
static, hydrostatic, and thermal forces, along with nonlin-
ear fundamental frequency, the pull-in voltage, softening,
and hardening impacts, are investigated. In Section 6, the
main achievements of the article are given.

2 Model Description

2.1 Second-Order SGT

Generally, the second-order SGT has two forms of posi-
tive and negative coefficient. Themain difference between
them is that the positive form evinces softening effect,
albeit the negative equivalent represents the hardening
effect [29–33]. The positive and negative second-order
SGTs are presented in the following form:

σij = Cijkl
(︁
εkl ± l2εkl,mm

)︁
, (1)

where σij, Cijkl, and εkl are the components of the stress,
fourth-order elasticity, and strain tensors, and l is the
length scale parameter introduced to consider the strain
gradient effect.

2.2 Kirchhoff Plate Theory

Based on Kirchhoff’s theory, the displacement of plate u,
v and w along with x, y, and z directions can be shown as
follows:

u(x, y, z) = −z ∂w(x, y)∂x ,

v(x, y, z) = −z ∂w(x, y)∂y ,

w(x, y, z) = w(x, y), (2)

wherew is the transverse displacement of the plate. Based
on Kirchhoff’s theory, deduced from the classical elastic-
ity formulation of Saint-Venant problem [54–56], and von
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Kármánhypothesis, the strains in the classical rectangular
plate can be expressed as

εxx =
1
2

(︂
∂w
∂x

)︂2
− z ∂

2w
∂x2 ,

εyy =
1
2

(︂
∂w
∂y

)︂2
− z ∂

2w
∂y2 ,

εxy =
(︂
∂w
∂x

)︂(︂
∂w
∂y

)︂
− 2z ∂

2w
∂x∂y , (3)

The geometrically linear relations can be obtained
by removing 1

2

(︁
∂w
∂x

)︁2
, 1

2

(︁
∂w
∂y

)︁2
, and

(︁
∂w
∂x

)︁(︁
∂w
∂y

)︁
. In the

second-order SGT, the relation of stress can be offered in
the following form:

σxx =
E

1 − ϑ2 (εxx + ϑεyy) ± l2 E
1 − ϑ2 ∇2(εxx + ϑεyy),

σyy =
E

1 − ϑ2 (εyy + ϑεxx) ± l2 E
1 − ϑ2 ∇2(εyy + ϑεxx),

σxy =
E

2(1 + ϑ)
εxy ± l2 E

2(1 + ϑ)
∇2εxy , (4)

where ∇2 = ∂2
∂x2 + ∂2

∂y2 . Clearly, the relations of force and
moment resultants are defined as

Nxx =

h/2∫︁
−h/2

σxxdZ,

Nyy =

h/2∫︁
−h/2

σyydZ,

Nxy =

h/2∫︁
−h/2

σxydZ, (5)

Mxx =

h/2∫︁
−h/2

zσxxdZ,

Myy =

h/2∫︁
−h/2

zσyydZ,

Mxy =

h/2∫︁
−h/2

zσxydZ, (6)

where the thickness of the nanoplate is h. Thus, by substi-
tuting (4) in the aforementioned formulas, the force and

moment resultants for the second-order SGT are procured
relatively in terms of transverse displacement w(x, y)

Nxx = A
(︃
1
2

(︂
∂w
∂x

)︂2
+ ϑ12

(︂
∂w
∂y

)︂2
)︃

∓ l2A
(︃(︂

∂2w
∂x2

)︂2

+
∂w
∂x

∂3w
∂x3

+
∂w
∂x

∂3w
∂x∂y2

+ ϑ
(︃(︂

∂2w
∂y2

)︂2

+
∂w
∂y

∂3w
∂y∂x2

+
∂w
∂y

∂3w
∂y3

)︃

+ (1 + ϑ)
(︂
∂2w
∂x∂y

)︂2)︃
,

Nyy = A
(︃
1
2

(︂
∂w
∂y

)︂2
+ ϑ12

(︂
∂w
∂x

)︂2
)︃

∓ l2A
(︃(︂

∂2w
∂y2

)︂2

+
∂w
∂y

∂3w
∂y3 +

∂w
∂y

∂3w
∂y∂x2

+ ϑ
(︃(︂

∂2w
∂x2

)︂2

+
∂w
∂x

∂3w
∂x∂y2 +

∂w
∂x

∂3w
∂x3

)︃

+ (1 + ϑ)
(︂
∂2w
∂x∂y

)︂2)︃
,

Nxy =
A
2 (1 − ϑ)

(︂
∂w
∂x

∂w
∂y

)︂
∓ l2(1 − ϑ)

A
2(︂

∂w
∂y

∂3w
∂x3 +

∂w
∂x

∂3w
∂y∂x2 +

∂w
∂y

∂3w
∂x∂y2 +

∂w
∂x

∂3w
∂y3

+ 2
(︂
∂2w
∂x∂y

)︂(︂
∂2w
∂x2 +

∂2w
∂y2

)︂)︂
,

(7)

Mxx = −D
(︂
∂2w
∂x2 + ϑ ∂

2w
∂y2

)︂

± l2D
(︂
∂4w
∂x4 + ϑ ∂

4w
∂y4 + (1 + ϑ)

∂4w
∂x2∂y2

)︂
,

Myy = −D
(︂
∂2w
∂y2 + ϑ ∂

2w
∂x2

)︂

± l2D
(︂
∂4w
∂y4 + ϑ ∂

4w
∂x4 + (1 + ϑ)

∂4w
∂x2∂y2

)︂
,

Mxy = −D(1 − ϑ)
∂2w
∂x∂y

± l2(1 − ϑ)D
(︂

∂4w
∂x3∂y +

∂4w
∂x∂y3

)︂
, (8)
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where A = Eh
(1−ϑ2) and D = Eh3

12(1−ϑ2) are the stiffness and
bending rigidity of the nanoplate, respectively. Herein,
Hamilton’s principle is offered for attaining the governing
equations:

δ
T∫︁

0

[K − (U − W)]dt = 0. (9)

where T,W, U, and K signify time, work of external forces,
strain energy, and kinetic energy, respectively. First, the
variation of strain energy is displayed as

δ
T∫︁

0

Udt =

T∫︁
0

∫︁
S

h/2∫︁
−h/2

(σxxδεxx + σxyδεxy

+ σyyδεyy)dzdSdt, (10)

where S points out the area.
Second, the variation of thework of external loads has

the following form:

δ
T∫︁

0

Wdt = −
T∫︁

0

∫︁
S

(︂
N t
xx

(︂
∂w
∂x

∂δw
∂x

)︂
+ N t

yy

(︂
∂w
∂y

∂δw
∂y

)︂

+N t
xyδ

(︂
∂w
∂x

∂w
∂y

)︂
+ qδw

)︂
dSdt,

(11)
where the terms N t

xx = N t
yy = Nt, and q are determined by

the external forces. Moreover, N t
xy = 0. The thermal force

caused by the uniform temperature variation θ = T − T0
is elucidated by

Nt = − Ehαθ
(1 − ϑ)

,

where h and α indicate the thickness of the nanoplate and
the coefficient of thermal expansion [57].

Lastly, by considering the integration by parts in the
time domain, the variation of the kinetic energy is

δ
T∫︁

0

Kdt =

T∫︁
0

∫︁
S

(︂
I0
∂2w
∂t2

−I1
(︂

∂4w
∂x2∂t2 +

∂4w
∂y2∂t2

)︂)︂
δwdSdt, (12)

where I0 = ρh and I1 = ρh3
12 are translatory inertia and

rotatory inertia in which ρ states the mass density of the
nanoplate.

Equations (10) to (12) are substituted in (9), there-
upon the governing equation for rectangular nanoplates
is obtained in this form:

∂2Mxx
∂x2 + 2∂

2Mxy
∂x∂y +

∂2Myy
∂y2 +

(︂
∂Nxx
∂x +

∂Nxy
∂y

)︂
∂w
∂x

+
(︂
∂Nxy
∂x +

∂Nyy
∂y

)︂
∂w
∂y + Nxx

∂2w
∂x2

+ Nyy
∂2w
∂y2 + 2Nxy

∂2w
∂x∂y + q + Nt

(︂
∂2w
∂x2 +

∂2w
∂y2

)︂

= ρh
(︂
∂2w
∂t2

)︂
− ρh3

12

(︂
∂4w

∂x2∂t2 +
∂4w

∂y2∂t2

)︂
,

(13)
where ∂Nxx

∂x + ∂Nxy
∂y = ∂Nxy

∂x + ∂Nyy
∂y = 0 [58, 59]. Now, by

means of the force andmoment resultants given in (5) and
(6) and expanding (13), the governing equations for the
second-order SGT of rectangular nanoplates with consid-
ering von Kármán nonlinearity are proposed in this form
correspondingly:

−D
(︂
∂4w
∂x4 + 2 ∂4w

∂x2∂y2 +
∂4w
∂y4

)︂

± l2D
(︃
∂6w
∂x6

+ 3 ∂6w
∂x4∂y2 + 3 ∂6w

∂x2∂y4 +
∂6w
∂y6

)︃

+ A
(︃(︃

1
2
∂2w
∂x2

(︂
∂w
∂x

)︂2
+

1
2
∂2w
∂y2

(︂
∂w
∂y

)︂2

+
∂2w
∂x∂y

∂w
∂x

∂w
∂y

)︂
+ ϑ

(︃
1
2
∂2w
∂x2

(︂
∂w
∂y

)︂2

+
1
2
∂2w
∂y2

(︂
∂w
∂x

)︂2
− ∂2w

∂x∂y
∂w
∂x

∂w
∂y

)︃

∓ l2
(︃(︃(︂

∂2w
∂x2

)︂2

+ 2
(︂
∂2w
∂x∂y

)︂2

+
∂w
∂x

∂3w
∂x ∂y2

)︂
∂2w
∂x2 +

∂w
∂x

∂2w
∂x∂y

∂3w
∂y ∂x2

+
∂w
∂x

∂2w
∂x2

∂3w
∂x3 +

(︂
∂3w
∂x3 +

∂3w
∂x ∂y2

)︂
∂2w
∂x∂y

∂w
∂y

+

(︃
∂w
∂y

∂3w
∂y ∂x2 + 2

(︂
∂2w
∂x ∂y

)︂2)︃
∂2w
∂y2

+
(︂
∂2w
∂y2

)︂3

+
(︂
∂w
∂y

∂2w
∂y2 +

∂w
∂x

∂2w
∂x∂y

)︂
∂3w
∂y3

+ ϑ
(︂(︂

∂w
∂x

∂2w
∂y2 − ∂w

∂y
∂2w
∂x∂y

)︂
∂3w
∂x3
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+
(︂
∂2w
∂x2

∂w
∂y − ∂w

∂x
∂2w
∂x∂y

)︂
∂3w

∂y ∂x2

+
(︂
∂w
∂x

∂2w
∂y2 − ∂w

∂y
∂2w
∂x∂y

)︂
∂3w

∂x ∂y2

+
(︂
∂w
∂y

∂2w
∂x2 − ∂w

∂x
∂2w
∂x∂y

)︂
∂3w
∂y3

+
(︂
∂2w
∂y2 +

∂2w
∂x2

)︂(︃
∂2w
∂y2

∂2w
∂x2 −

(︂
∂2w
∂x ∂y

)︂2)︃)︃

+ ϑ2
(︂
∂2w
∂x∂y

)︂2(︂
∂2w
∂y2 +

∂2w
∂x2

)︂)︃)︃
+ q

+ Nt

(︂
∂2w
∂x2 +

∂2w
∂y2

)︂

= ρh
(︂
∂2w
∂t2

)︂
− ρh3

12

(︂
∂4w

∂x2∂t2 +
∂4w

∂y2∂t2

)︂
. (14)

Note that the governing equation is converted to the
classical model by setting l = 0.

3 Mathematical Modeling

Schematic of the rectangular nanoplate with length la and
width lb, including a pair of parallel electrodes with the
distance g, is given in Figure 1. The upper movable elec-
trode is assumed to be under the impact of electrostatic,
intermolecular, hydrostatic, and thermal forces.

The electrostatic force per unit area can be expressed
as follows [60]:

Fe =
ε0(Vdc)2

2(g − w)2
, (15)

where ε0 = 8.854×10−12 C2N−1m−2, Vdc, and g are vac-
uum permittivity, direct current voltage, and air initial gap
between two plates, respectively, as illustrated in Figure 1.

Figure 1: Schematic of a NEMS rectangular nanoplates.

The Casimir force relatively per unit area of the rectan-
gular plate has the following formula [50, 51]:

Fc =
π2ℏc

240(g − w)4
, (16)

where the Plank’s constant isℏ = 1.055×10−34, and c =
2.998×108m/s is the speed of light. For further analysis,
the term q is referred to

q = Fe + Fc + Fh , (17)

where Fh stands for the hydrostatic actuation.
In this attitude, (15) and (16) are substituted in (17)

and inserted in (14), so the governing equations of second-
order SGT are procured:

−D
(︂
∂4w
∂x4 + 2 ∂4w

∂x2∂y2 +
∂4w
∂y4

)︂

± l2D
(︃
∂6w
∂x6

+ 3 ∂6w
∂x4∂y2 + 3 ∂6w

∂x2∂y4 +
∂6w
∂y6

)︃

+ A
(︃(︃

1
2
∂2w
∂x2

(︂
∂w
∂x

)︂2

+
1
2
∂2w
∂y2

(︂
∂w
∂y

)︂2
+

∂2w
∂x∂y

∂w
∂x

∂w
∂y

)︃

+ ϑ
(︃
1
2
∂2w
∂x2

(︂
∂w
∂y

)︂2
+

1
2
∂2w
∂y2

(︂
∂w
∂x

)︂2

− ∂2w
∂x∂y

∂w
∂x

∂w
∂y

)︂
∓ l2

(︃(︃(︂
∂2w
∂x2

)︂2

+ 2
(︂
∂2w
∂x∂y

)︂2

+
∂w
∂x

∂3w
∂x ∂y2

)︃
∂2w
∂x2

+
∂w
∂x

∂2w
∂x∂y

∂3w
∂y ∂x2 +

∂w
∂x

∂2w
∂x2

∂3w
∂x3

+
(︂
∂3w
∂x3 +

∂3w
∂x ∂y2

)︂
∂2w
∂x∂y

∂w
∂y

+

(︃
∂w
∂y

∂3w
∂y ∂x2 + 2

(︂
∂2w
∂x ∂y

)︂2)︃
∂2w
∂y2 +

(︂
∂2w
∂y2

)︂3

+
(︂
∂w
∂y

∂2w
∂y2 +

∂w
∂x

∂2w
∂x∂y

)︂
∂3w
∂y3 + ϑ

(︂(︂
∂w
∂x

∂2w
∂y2

− ∂w
∂y

∂2w
∂x∂y

)︂
∂3w
∂x3 +

(︂
∂2w
∂x2

∂w
∂y − ∂w

∂x
∂2w
∂x∂y

)︂
∂3w

∂y ∂x2 +
(︂
∂w
∂x

∂2w
∂y2 − ∂w

∂y
∂2w
∂x∂y

)︂
∂3w

∂x ∂y2
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+
(︂
∂w
∂y

∂2w
∂x2 − ∂w

∂x
∂2w
∂x∂y

)︂
∂3w
∂y3 +

(︂
∂2w
∂y2 +

∂2w
∂x2

)︂(︃
∂2w
∂y2

∂2w
∂x2 −

(︂
∂2w
∂x ∂y

)︂2)︃)︃

+ϑ2
(︂
∂2w
∂x∂y

)︂2(︂
∂2w
∂y2 +

∂2w
∂x2

)︂)︃)︃

+
ε0(Vdc)2

2(g − w)2
+

π2hc
240(g − w)4

+ Fh

+ Nt

(︂
∂2w
∂x2 +

∂2w
∂y2

)︂
= ρh

(︂
∂2w
∂t2

)︂
− ρh3

12

(︂
∂4w

∂x2∂t2 +
∂4w

∂y2∂t2

)︂
. (18)

The BCs of rectangular isotropic Kirchhoff nanoplate
are presented in Table 1. The BCs are presented as the
classical and nonclassical ones.

These nondimensional variables are applied compar-
atively:

W =
w
g , X =

x
la
, Y =

y
lb
, D =

Eh3

12
(︀
1 − ϑ2

)︀ ,
T =

th
la2

√︃
E

12ρ
(︀
1 − ϑ2

)︀ , λ =
la
lb
, µ =

l
la
,

β =
ε0la4(Vdc)2

2Dg3 , R4 =
π2hcla4

240Dg5 , NT =
Nt la2

D ,

Nhs =
Fh la4

Dg , k =
Ag2

D , ξ = λ2ϑ,

χ1 =
h2

12l2a
, χ2 =

h2

12l2b
(19)

and Taylor expansion is employed as follows:

1
(1 − W)4

∼= 56W5 + 35W4 + 20W3

+ 10W2 + 4W + 1, (20)

1
(1 − W)2

∼= 6W5 + 5W4 + 4W3

+ 3W2 + 2W + 1, (21)

Therefore, the nondimensional form of the governing
equation is achieved:

−
(︂
∂4W
∂X4 + 2λ2 ∂4W

∂X2∂Y2 + λ4 ∂
4W
∂Y4

)︂

± µ2
(︃
∂6W
∂X6

+ 3λ2 ∂6W
∂X4∂Y2

+ 3λ4 ∂6W
∂X2∂Y4 + λ6 ∂

6W
∂Y6

)︃

+ k
(︃(︃

1
2
∂2W
∂X2

(︂
∂W
∂X

)︂2
+ λ4 12

∂2W
∂Y2

(︂
∂W
∂Y

)︂2

+ λ2 ∂2W
∂X∂Y

∂W
∂X

∂W
∂Y

)︂
+ ξ

(︃
1
2
∂2W
∂X2

(︂
∂W
∂Y

)︂2

+
1
2
∂2W
∂Y2

(︂
∂W
∂X

)︂2
− ∂2w
∂X∂Y

∂W
∂X

∂W
∂Y

)︂

∓ µ2
(︃(︃(︂

∂2W
∂X2

)︂2

+ 2λ2
(︂

∂2W
∂X∂Y

)︂2

+λ2 ∂W∂X
∂3W

∂X ∂Y2

)︂
∂2W
∂X2 + λ2 ∂W∂X

∂2W
∂X∂Y

∂3W
∂Y ∂X2

+
∂W
∂X

∂2W
∂X2

∂3W
∂X3 +

(︂
λ2 ∂

3W
∂X3 + λ4 ∂3W

∂X ∂Y2

)︂

∂2W
∂X∂Y

∂W
∂Y +

(︃
∂W
∂Y

∂3W
∂Y ∂X2 + 2

(︂
∂2W
∂X ∂Y

)︂2)︃

λ4 ∂
2W
∂Y2 + λ6

(︂
∂2W
∂Y2

)︂3

+
(︂
λ6 ∂W∂Y

∂2W
∂Y2 + λ4 ∂W∂X

∂2W
∂X∂Y

)︂
∂3W
∂Y3

+ ξ
(︂(︂

∂W
∂X

∂2W
∂Y2 − ∂W

∂Y
∂2W
∂X ∂Y

)︂
∂3W
∂X3

+
(︂
∂2W
∂X2

∂W
∂Y − ∂W

∂X
∂2W
∂X ∂Y

)︂
∂3W

∂Y ∂X2

Table 1: Boundary condition for rectangular isotropic Kirchhoff nanoplate [31, 61].

Boundary condition x = 0, la y = 0, lb

Clamped Classic w = ∂w
∂x = ∂w

∂y = ∂2w
∂y2 = 0 w = ∂w

∂x = ∂w
∂y = ∂2w

∂x2 = 0
Nonclassic ±l2D ∂3w

∂x3 = 0 ±l2D ∂3w
∂y3 = 0

Simply supported Classic w = ∂w
∂y = ∂2w

∂x2 = ∂2w
∂y2 = 0 w = ∂w

∂x = ∂2w
∂x2 = ∂2w

∂y2 = 0
Nonclassic −D

(︁
∂2w
∂x2 ± l2 ∂4w

∂x4

)︁
−D

(︁
∂2w
∂y2 ± l2 ∂4w

∂y4

)︁
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+
(︂
∂2W
∂Y2

∂W
∂X − ∂W

∂Y
∂2W
∂X ∂Y

)︂
λ2 ∂3W

∂X ∂Y2

+
(︂
∂W
∂Y

∂2W
∂X2 − ∂W

∂X
∂2W
∂X ∂Y

)︂
λ2 ∂

3W
∂Y3

+
(︂
∂2W
∂X2 +

∂2W
∂Y2 λ

2
)︂(︂

∂2W
∂Y2

∂2W
∂X2

−
(︂

∂2W
∂X ∂Y

)︂2)︃)︃
+ ξ2

(︂
∂2W
∂X∂Y

)︂2

(︂
∂2W
∂Y2 +

1
λ2

∂2W
∂X2

)︂)︂)︂
+ (56R4 + 6β)W5 + (35R4 + 5β)W4

+ (20R4 + 4β)W3 + (10R4 + 3β)W2

+ (4R4 + 2β)W + R4 + β + Nhs

+ NT

(︂
∂2W
∂X2 + λ2 ∂

2W
∂Y2

)︂

− ∂2W
∂T2 + χ1

∂4W
∂X2∂T2 + χ2

∂4W
∂Y2∂T2 = 0. (22)

Now, GM is used due to altering (22) to ODE. The
related formula is used:

W(X, Y , T) =
∞∑︁
n=1

φn(X, Y)un(T), (23)

where

φ1(X, Y)(CCCC) = sin2(πX)sin2(πY),

φ1(X, Y)(CSCS) = sin2(πX)sin(πY),

φ1(X, Y)(SSSS) = sin(πX)sin(πY), (24)

are the first eigenmode of nanoplate.
The W(X, Y , T) is substituted in (22), multiplied by

φ1(X, Y), and then integrated two times from zero to one
with respect to X and Y. Therefore, the following duff-
ing form is procured for the positive and negative second-
order SGTs

Md2u(T)
dT2 + a1u(T) + a2 u(T)2 + a3 u(T)3

+ a4 u(T)4 + a5 u(T)5 + a0 = 0. (25)

For instance, the parametersM and ai(0 ≤ i ≤ 5) are
presented in the Appendix for the CCCC BC.

4 Applying the HAM

To apply the HAM, the following transformation is used:

τ = ΩqT, (26)

Then, (25) is turned into the following equation:

MΩ2
q
d2u(τ)
dτ2 + a1u(τ) + a2 u(τ)2

+ a3 u(τ)3 + a4 u(τ)4 + a5 u(τ)5 + a0 = 0,
u(0) = B, u̇(0) = 0, (27)

where B signifies the initial amplitude; furthermore, the
frequency (Ωq) is constructed as follows:

Ωq =
n∑︁

i=0
ωiqi . (28)

According to the HAM, the zeroth-order deformation
equation is considered as follows:

(1 − q)L[ϕ(τ; q)] = qhN[ϕ(τ; q), Ωq],
ϕ(0; q) = B, ϕ̇(0; q) = 0, (29)

where L, q, and N are the linear operator, embedding
parameter, and the nonlinear operator, respectively. The
linear and nonlinear operators are defined as follows:

L[ϕ(τ; q)] = ω2
0

[︂
∂2ϕ(τ; q)

∂τ2 + ϕ(τ; q)
]︂
, (30)

N[ϕ(τ; q), Ωq] = MΩ2
q
∂2ϕ(τ; q)

∂τ2 + a5ϕ(τ; q)5

+ a4ϕ(τ; q)4 + a3ϕ(τ; q)3

+ a2ϕ(τ; q)2 + a1ϕ(τ; q) + a0. (31)

The solution ϕ(τ; q) is expanded in the power series
using the Taylor theorem as follows:

ϕ(τ; q) = u0(τ) +
+∞∑︁
m=1

um(τ)qm . (32)

Relatively, differentiating zeroth-order deformation
(29) with respect to q results in

−ha5u0(τ)5 − ha1u0(τ) − ha2u0(τ)2

− ha3u0(τ)3 − ha4u0(τ)4 − ω2
0

(︂
d2u0(τ)
dτ2

)︂
− ω2

0u0(τ) − hMω2
0

(︂
d2u0(τ)
dτ2

)︂
− ha0

+ ω2
0

(︂
d2u1(τ)
dτ2

)︂
+ ω2

0u1(τ) = 0, u1(0) = 0, u̇1(0) = 0, (33)
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− ha1u1(τ) + ω2
0

(︂
d2u2(τ)
dτ2

)︂
+ ω2

0u2(τ) − hMω2
0

(︂
d2u1(τ)
dτ2

)︂
− 2ha2u0(τ)u1(τ)

− 3ha3u0(τ)2u1(τ) − 4ha4u0(τ)3u1(τ)

− 5ha5u0(τ)4u1(τ) − ω2
0u1(τ) − ω2

0

(︂
d2u1(τ)
dτ2

)︂
− 2hMω0ω1

(︂
d2u0(τ)
dτ2

)︂
= 0,

u1(0) = 0, u̇1(0) = 0, (34)

By substituting u0(τ) = B cos(τ) into (33), one can
find(︂

−5
8ha5B

5 − ha1B − 3
4ha3B

3 + hMω2
0B

)︂
cos(τ)

− 1
16ha5B

5 cos(5τ) − 5
16ha5B

5 cos(3τ)

− 1
2ha2B

2 cos(2τ) − 1
2ha2B

2 − 1
4ha3B

3 cos(3τ)

− 1
8ha4B

4 cos(4τ) − 1
2ha4B

4cos(2τ)

− 3
8ha4B

4 − ha0 + ω2
0u1(τ) + ω2

0

(︂
d2u1(τ)
dτ2

)︂
= 0.

(35)

For removing the secular terms, coefficient of cos(τ)
is taken to be zero. Consequently, the nondimensional
fundamental frequency and deflection are obtained as fol-
lows:

Ω ≡ Ωq ∼= ω0 + ω1 =

√
2

√︁
M

(︀
5B4a5 + 6B2a3 + 8a1

)︀
4M

+
1

960
√︁
M

(︀
5B4a5 + 6B2a3 + 8a1

)︀ (︀
5B4a5 + 6B2a3 + 8a1

)︀Mh
√
2

(︁
325B8a25 − 3840B7a5a4 + 480B6a5a3

+ 6048B6a24 − 6400B5a5a2 − 2304B5a3a4 + 13440B4a2a4 + 180B4a23 − 19200B3a0a5

− 3840B3a2a3 + 23040B2a0a4 + 6400B2a22 − 11520Ba0a3 + 15360a0a2
)︁
,

(36)
and

u(T) ∼= u0(T) + u1(T)

=
(︂
B +

80MhB5a5 − 384B4Mha4 + 60B3Mha3 − 640B2Mha2 − 1920Mha0
1200B4a5 + 1440B2a3 + 1920a1

)︂
cos(ΩT)

+
(︂

−320B4Mha4 − 320B2Mha2
1200B4a5 + 1440B2a3 + 1920a1

)︂
cos(2ΩT) +

(︂
−75B5Mha5 − 60B3Mha3

1200B4a5 + 1440B2a3 + 1920a1

)︂
cos(3ΩT)

−
(︂

16B4Mha4
1200B4a5 + 1440B2a3 + 1920a1

)︂
cos(4ΩT) −

(︂
5B5Mha5

1200B4a5 + 1440B2a3 + 1920a1

)︂
cos(5ΩT)

+
720B4Mha4 + 960B2Mha2 + 1920Mha0

1200B4a5 + 1440B2a3 + 1920a1
. (37)

5 Results and Discussion

The geometry of the structure and material properties
are presented in Table 2 [36]. To validate the results of
this research, the natural frequencies of the nanoplate
analyzed through Babu and Patel [31] are compared in
Table 3. Otherwise stated, the parameters are considered
as µ = 0.1, θ = 300, and initial amplitude B = 0.1.

In Figure 2, the nondimensional deflection is derived
by the HAM and compared to that obtained through
the Runge–Kuttamethod verifying complete arrangement.

Table 2:Material properties and geometrical of the rectangular
nanoplate [36].

Parameter Value

Young modulus (Al alloy) 68.5 GPa
Poisson ratio (Al alloy) 0.35
Coeflcient of thermal expansion −2.6 × 10−6 1/∘C
Thickness (h) 21 nm
Length (la = lb) 30 h
Gap 1.2 h
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Table 3: Comparison of the natural frequencies of nanoplates based on the second-order SGT with the results of Babu and Patel [31] (SSSS).

Second-order SGT Length scale (µ)

0 0.02 0.05 0.1

Positive Babu and Patel [31] 19.7205 19.6432 19.2328 –
Present study 19.7205 19.6425 19.2277 17.6672

Negative Babu and Patel [31] 19.7205 19.7976 20.1971 21.5632
Present study 19.7205 19.7982 20.2012 21.5792

Figure 2: The Runge–Kutta method against HAM results on negative second-order SGT (µ = 0.04, Vdc = 2, B = 0.5).

Based on the graphs, negative second-order SGT is plotted
in different BCs such as CCCC, CSCS, and SSSS considering
geometrical nonlinear hypothesis.

The variations of nondimensional deflection against
the nondimensional time are disclosed in Figure 3. Cer-
tainly, the movable nanoplate deflects into the substrate
one, when the pull-in occurs. According to Table 4, the
CCCC has a higher pull-in voltage than other BCs. Also,
in all of BCs, the positive theory has lower pull-in voltage

than the negative one. Based on Table 4, one can also find
that by considering the geometrical nonlinear terms the
range of pull-in voltage changed lower than the geomet-
rical linear situation.

The nondimensional fundamental frequency with
respect to β is displayed in Figure 4 in order to show
the size dependency based on the positive and nega-
tive second-order SGTs. It is clear that the nondimen-
sional fundamental frequency reduces by increasing the λ;
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Figure 3: Centerpoint deflection of rectangular nanoplates considering geometrical nonlinear and linear terms in CCCC BC.

consequently, the pull-in instability delayed as λ is
increased. On the other side, the pull-in instability occurs
at a lower voltage by decreasing the λ. Moreover, this sit-
uation is free from nonclassical continuum theories and
BCs.

In Figure 5, the deviations of the nondimensional fun-
damental frequencies against β are revealed for dissimilar
values of the nondimensional length scale parameters (µ)
in order to show the softening and hardening behavior. It
can be inferred that through intensifying µ the nondimen-
sional fundamental frequency abates for positive second-
order SGT and enhances for the negative one relatively.
Likewise, the softening and hardening behaviors are dis-
played based on the positive and negative second-order
SGTs with considering geometrical nonlinearity.

The differences of the nondimensional fundamental
frequencies against nondimensional hydrostatic pressure
parameters on behalf of dissimilar values of µ are exhib-
ited in Figure 6 with considering CCCC BC. One can find
that via rising Nhs, the fundamental frequency decreases
comparatively, and it is the prime characteristic of hydro-
static pressure.

In Figure 7, the variations of the nondimensional fun-
damental frequencies versus NT are presented for dis-
parate values of µ. It can be concluded that by increasing
NT the nondimensional fundamental frequency enlarges,
thereupon the gist of thermal actuation is sensible.

The variations of the nondimensional fundamen-
tal frequency against initial amplitude are presented in
Figure 8 for disparate values of µ. It is pellucid that by
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Table 4: Dynamic pull-in voltage of the rectangular nanoplate.

Second-order SGT Geometrical Length scale (µ) CCCC CSCS SSSS

Negative Nonlinear 0 30.86 24.55 16.37
0.03 31.66 25.05 16.52
0.06 33.96 26.50 16.94
0.10 38.87 29.65 17.89

Linear 0 30.81 24.50 16.32
0.03 31.62 25.01 16.46
0.06 33.94 26.47 16.89
0.10 38.88 29.66 17.86

Positive Nonlinear 0 30.86 24.55 16.37
0.03 30.03 24.03 16.23
0.06 27.40 22.43 15.79
0.10 19.83 18.05 14.70

Linear 0 30.81 24.50 16.32
0.03 29.98 23.98 16.17
0.06 27.33 22.36 15.73
0.10 19.66 17.92 14.61

Figure 4: Impact of size dependency on nondimensional fundamental frequency against electrostatic force considering CCCC BC.

Figure 5: Impact of the parameter µ on the nondimensional fundamental frequency against nondimensional electrostatic actuation
considering CCCC BC.
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Figure 6: Outcome of parameter µ on nondimensional fundamental frequency versus nondimensional hydrostatic pressure considering
CCCC BC (Vdc = 15).

Figure 7: Influence of parameter µ on nondimensional fundamental frequency against nondimensional thermal actuation considering CCCC
BC (Vdc = 10).

Figure 8: Consequence of parameter µ on nondimensional fundamental frequency versus initial amplitude considering CCCC BC (Vdc = 15).

enhancing B the nonlinear frequency declines, and this
attitude is free from BCs and the type of second-order
SGT.

In Figure 9 dynamic pull-in voltage against length
scale is presented based on the positive and nega-
tive second-order SGTs in different BCs and considering
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Figure 9: Dynamic pull-in voltage against length scale.

geometrical nonlinear terms. One can find that by increas-
ing the length scale parameter the hardening behavior has
occurred in negative theory, but the softening behavior is
visible in a positive one.

Dynamic pull-in voltage against length scale is
depicted based on the positive and negative second-order
SGTswith considering geometrical linear and nonlinear in
CCCC BC, as shown in Figure 10. It can be concluded that
the dynamic pull-in voltage is decreased in positive theory

Figure 10: Dynamic pull-in voltage against length scale in CCCC BC
(B = 0.5).

by increasing the length scale parameter; however, it is
increased in the negative one.

To show the pull-in nature and its destructive behav-
ior on the nanosensor, the nondimensional velocity

(︁
dW
dT

)︁
against the nondimensional deflection (phase diagram) is
presented in Figure 11. It can be inferred that by inputting

Figure 11: Phase diagram based on negative second-order SGT in
CCCC BC.
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voltage the stable region decreases until the pull-in insta-
bility occurs.

6 Conclusion

In this article, the pull-in instability of rectangular
nanoplates subjected to the electrostatic, hydrostatic,
intermolecular, and thermal forces was analyzed based
on the positive and negative second-order SGTs. Addi-
tionally, the von Kármán hypothesis was considered to
apply geometrical nonlinearity, and Hamilton’s principle
was employed to obtain the nonlinear governing equation.
In this respect, GM was used for converting the govern-
ing equation to ODE in the time domain, with employing
appropriate shape functions for different BCs. Then, the
HAM was implemented as an analytical solution method-
ology. For analyzing the issue, various analytical results
were reported. The results expose the folllowing:
– In negative second-order SGT, through increasing

length scale parameter, thenondimensional fundamen-
tal frequency enhances. Conversely, in positive second-
order SGT, the nondimensional fundamental frequency
subsides via intensifying the length scale parameter.

– The nondimensional pull-in voltage and fundamental
frequency are increased by increasing the nanoplates
aspect ratio.

– By escalating hydrostatic pressure, the nondimensional
fundamental frequency decreases, but it is increased by
intensifying the thermal load.

– The softening and hardening effects are discovered
through mechanical behavior in agreement with the
positive and negative second-order SGTs.

Appendix

Parameters of positive second-order SGT in CCCC BC con-
sidering geometrical nonlinearity:

a0 ∼= 0.25(Nhs + R4 + β), (A.1)

a1 ∼= 2884.17λ6µ2 +
(︁
2884.17µ2 − 73.06

)︁
λ4

+
(︁
2884.17µ2 − 1.85NT − 48.704

)︁
λ2

+ 2884.17µ2 + 0.2812β − 1.85NT

+ 0.562R4 − 73.06, (A.2)

a2 ∼= (0.293β + 0.9765R4), (A.3)

a3 ∼=
1
λ2

(︁
λ2(0.299β + 1.4954R4

+ k(−1.6647 − 9.512ξ

+ µ2
(︁
150.217ξ − 18.777ξ2 − 262.88

)︁)︁)︁
+ kλ4

(︁
2.378 + µ2(150.217ξ − 93.886)

)︁
+ kλ6

(︁
−1.6647 − 93.886µ2

)︁
− 262.88kµ2λ8 − 18.777kµ2ξ2

)︁
, (A.4)

a4 ∼= (0.3028β + 2.12R4), (A.5)

a5 ∼= (0.305β + 2.8498R4), (A.6)

M ∼= 1.8505(χ1 + χ2) + 0.1406. (A.7)

Parameters of negative second-order SGT in CCCC BC
considering geometrical nonlinearity:

a0 ∼= 0.25(Nhs + R4 + β), (A.8)

a1 ∼= −2884.17λ6µ2 +
(︁

−2884.17µ2 − 73.06
)︁
λ4

+
(︁

−2884.17µ2 − 1.85NT − 48.704
)︁
λ2

− 2884.17µ2 + 0.2812β − 1.85NT

+ 0.562R4 − 73.06, (A.9)

a2 ∼= (0.293β + 0.977R4), (A.10)

a3 ∼=
1
λ2

(︁
λ2(0.299β + 1.4953R4

+ k
(︁

−1.6647 − 9.512ξ + µ2(−150.217ξ

+18.777ξ2 + 262.88
)︁)︁)︁

+ kλ4
(︁
2.378 + µ2(−150.217ξ + 93.886)

)︁
+ kλ6

(︁
−1.6647 + 93.886µ2

)︁
+262.88kµ2λ8 + 18.777kµ2ξ2

)︁
, (A.11)

a4 ∼= (0.3028β + 2.12R4), (A.12)

a5 ∼= (0.305β + 2.8498R4), (A.13)

M ∼= 1.8505(χ1 + χ2) + 0.1406. (A.14)
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