DE GRUYTER

Z. Naturforsch. 2020; 75(5)a: 381-391

Heinz-)iirgen Schmidt*

Geometry of the Rabi Problem and Duality

of Loops

https://doi.org/10.1515/zna-2019-0352
Received December 1, 2019; accepted January 24, 2020

Abstract: We investigate the motion of a classical spin pro-
cessing around a periodic magnetic field using Floquet
theory, as well as elementary differential geometry and
considering a couple of examples. Under certain condi-
tions, the role of spin and magnetic field can be inter-
changed, leading to the notion of “duality of loops” on the
Bloch sphere.
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1 Introduction

The Rabi problem usually refers to the response of an atom
to an applied harmonic electric field, with an applied fre-
quency very close to the atom’s natural frequency [1, 2].
Assuming that the atom can be approximated by a two-
level system, its semiclassical Hamiltonian (in the sense
that the radiation field is treated classically) will be of the
form of a Zeeman term in an s = 1/2 spin system:

H = woSz+ b1(t) Sx + ba(t) Sy + bs(t) Sz, @)

where the Sy, Sy, S; are the s = 1/2 spin operators. If (t)
is a solution of the corresponding Schrédinger equation
(h=1):

i%l/)(t) = Hy(1), )

then the projector P(t) = [(t)) ((¢)| can be expanded as
a linear combination of the spin operators:

PO = 3148105 + 805, + 0. )

It follows that s(t) = (s1(t), s2(0), 53(t))T will be a
unit vector that obeys the same equation of motion

d
d—ts(t) = h(t) x s(t) (4)
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as a classical magnetic moment performing a Larmor
precession around the time-dependent periodic mag-
netic field h(t) = (k1 (0, ha(), h3(8)) " = (b1(0), by (D),
bs(t) + wo)T. The study of this equation will be called
the “classical Rabi problem” in what follows. Interest-
ingly, the problem of a sphere rolling on a curved surface
also leads to a differential equation of the form (4) [3, 4].

To illustrate the preceding remarks, consider the text-
book example of the circularly polarised Rabi problem
with

Fcoswt
Fsinwt |. (5)

wo

h(t) =

A special solution of the corresponding Schrédinger
equation (2) is the following:

0= (yo)
) e*%i[‘”(cos(%)—%sin<%>> e

—i—Fe% sin g
Q 2

where A is the “detuning”
A= Wy — w, (7)

and Q denotes the “Rabi frequency”
Q=+VF2+ A2 (8)

This solution demonstrates the well-known Rabi oscil-
lations of the occupation numbers of the eigenstates of the
static Hamiltonian according to

Y101 = 1 - [0 = gATzz sin? <%) + cos’ <%>
©)

However, the projector P(t) defined in (3) has also
components that are not %”-periodic, as is illustrated in
Figure 1.

On the other hand, it can be shown [5, 6] that in

the general case of periodic h(t) there will always exist
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Figure 1: The curve swept by a classical spin vector s(f) that solves
the equation of motion (4) with a circularly polarised magnetic field
according to (5). The z-component of s(t) oscillates with the Rabi fre-
quency Q. The physical parameters are chosenas F = 0.5, w =1
and wo = 0.9.

T = 2—("] -periodic solutions of (4) if the initial conditions are
appropriately chosen. These solutions of the classical Rabi
problem vyield solutions of the underlying Schrodinger
equation (2) up to a (time-depending) phase factor. But
it turns out [5] that also this phase factor can be recon-
structed from the periodic solution of (4) by means of cer-
tain integrals. Here we encounter the rare case where a
quantum problem and the corresponding classical prob-
lem are essentially equivalent, due to the mathematical
fact that the Lie groups SO(3) and SU(2) are locally iso-
morphic. This endows the classical Rabi problem with
additional importance concerning quantum applications.
Moreover, there are connections between quantum search
Hamiltonians and exactly solvable time-dependent two-
level quantum systems [7].

We mention in passing that solutions of the classi-
cal Rabi problem also yield solutions of the quantum Rabi
problem for arbitrary spin quantum number s. This follows
either from representation theory [5] or by using the Majo-
rana stellar representation [8] of spin states by 2s points of
the Bloch sphere. A third way to look at this is to consider
spin fluctuation tensors, see, e.g. [9].

The differential equation (4) can be explicitly solved
only in a few cases of physical interest. The most
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prominent one, already mentioned above, is a constant
field superimposed by a monochromatical, circularly
polarised field perpendicular to the constant one [1]. The
analogous problem with a linearly polarised field com-
ponent is solvable in terms of confluent Heun functions
[10-13] for the corresponding s = 1/2 Schrodinger equa-
tion. In this article, we will shift the problem of finding
solutions of (2) or (4) to the study of geometric relations
between such solutions and to the interplay between Flo-
quet theory, differential geometry of the unit sphere, and
duality of loops. Not all results will be new, but we will
provide new proofs that only use properties of solutions
of the classical Rabi problem that are easier to visualise
and do not resort to the mathematics of the underlying
Schrodinger equation. Obviously, there exist close con-
nections between the present article and the theory of
geometric phases, initiated by M. Berry [14], generalised
by [15], and still a topic of current experimental research
(e.g. [16-19]). However, a detailed account of these con-
nections cannot be given here and must be left for future
publications.

2 Periodic Solutions

We will sketch the essential arguments leading to peri-
odic solutions of the classical Rabi problem and the recon-
struction of the (time-depending) phase factor. First, we
may apply the Floquet theory [20, 21] to the Schrédinger
equation (2) and conclude that it has special solutions
(“Floquet solutions”) of the form
P = us() e, (10)

such that u (t) will be T-periodic and the “quasienergies”
€+ are real numbers uniquely determined up to integer
multiples of w. It can be shown that there exist represen-
tatives of quasienergies satisfying

€+ = tesuchthate > 0, (11)
and these will be chosen in the sequel. It follows imme-
diately that the projectors P+(t) = [ +(£))(y+(t)| will be
T-periodic functions of t.

Conversely, let a T-periodic solution of (4) be given
and P(t) be the corresponding time-dependent projector
defined by (3). It may be written as P(t) = |¢(¢)) (¢p(t)|, p(t)
being T-periodic, such that the solution ¥(t) of (2) we are
looking for is of the form

»() = e 79O (o). (12)
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It follows that

(H - i%)z/)m

— o ia® (H _ l%)(f)(t) _ %e—ia(t)(p(t)’ (14)

(13)

and hence
da .0
ot = (#0]a-i3 o)

_ Z:an ema)t,

nez

(15)

(16)

where (16) represents the Fourier series of the T-periodic
function (15). The integration of (16) yields

a .
a(t):aot—i—z n inwt

— "V, (17)
inw
n#0

and hence, 1(t) will be a Floquet solution of the form

() = ¢(6) exp (—i > i%; e""wf) e i@l (18)
n#0

with quasienergy € = ap. It is plausible that ay can be
expressed by an integral of a function of the components of
P(t) = |¢(t))(¢p(t)| over one period (see [5] for the details).
In the next section, we will derive an alternative integral
representation of the quasienergy.

It will be instructive to consider another argument
leading to a periodic solution of (4). To this end, we con-
sider a 3 x 3 matrix R(t), the columns of which are three
solutions s(i)(t), i=1, 2, 3, of (4) such that the initial
conditions can be written as

R(0) = 1, (19)

the latter denoting the 3 x 3 unit matrix. As the equation
of motion (4) leaves scalar products invariant, it follows
that the columns of R(t) will always form a right-handed
orthonormal frame, in other words, that R(¢t) € SO(3). The
three equations of motion (4) for the sO(t), i=1,2,3can
be compactly written in matrix form as

d
at R(t) = H(t) R(¢), (20)
where H(t) is the real, antisymmetric 3 x 3 matrix
0 —h3() ha(t)
H(t) =] h3(0 0 —hi(®], (21)
—ha(t) hai(t) 0
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and the h;(t) are the components of the magnetic field
according to (4). The value of R(t) value after one period
will be the rotational matrix R(T) € SO(3). As any rota-
tional matrix with unit determinant, it will be a rotation
about an axis with an angle §. Accordingly, R(T) will have
the eigenvalues 1, e*®, corresponding to a real eigenvec-
tor aand two generally complex eigenvectors, respectively.
The eigenvector a satisfying
R(T)a=a (22)
represents the axis of rotation and, after normalisation
||al]] = 1, will be unique up to a sign. Let s(t) = R(t)a
be the solution of (4) with initial value s(0) = a, then it
follows that
s(T) = R(T)a = a = s(0), (23)
and hence, s(t) is, up to a possible sign, the T-periodic
solution of (4) that we have constructed above by consid-
ering a Floquet solution of (2).
The angle of rotation 6 > O corresponding to R(T) is
related to the quasienergy as follows:

Proposition 1:

6=2e€T. (24)
Proof. This follows from [5] by the “lift” from s = 1/2
to s = 1. Independently, one may directly prove the
proposition by considering the unitary matrix of Floquet
solutions

u(t) e—iet _m eiet
U(t) = IR (25)
V(t) e—let u(t) elet
and the superposition
ao- Lul’ (26)
o=, )
Here
u(t) = ug () + iux(t) (27)
and
v(t) = vi(t) +iva(t) (28)

are T-periodic functions satisfying

[u(®)® + [v(6)* =1 (29)
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for all t€R. The corresponding projector P(t) =
1P(t)) (Y(t)| yields a solution $(t) of (4) via (3), which is
always orthogonal to the periodic solution s(t) according
to (23). After some straightforward calculations, we obtain

P11(0) = 5 (10~ v10)” + (0 + v,0)") (30)
P15(0) = P1(0)
= 2 (00 +1w©)” - (v1(0) ~ iv2(0))°)
(1)
P20 = 5 ((1(0) +v1(0)) + (1(0) = v2(0))*) (32
and
P1u(T) = 5 — (u2(0)v1(0) + u1 (0)v2(0)) sin(2Te)
+ (uz(O)Vz(O) —u1(0)v1(0)) cos(2Te)  (33)
P1>(T) = Po(T) = %efzﬂe
((w0) + u2(0))* = (v1(0) — iv2(0) ™)
(34)
P2(T) = = + (42(0)v1(0) + u1(0)v2(0)) sin(2Te)

+ (u1(0)v1(0) — u2(0)v2(0)) cos(2Te).  (35)
Hence, s(t) will in general not be T-periodic but satis-
fies
Tr(P(O)P(T) ) = %(1 +5(0)-3(T)) = %(1 + cos 2€T),
(36)

as can be shown by a straightforward calculation. This
completes the proof of Proposition 1. O

In view of Proposition 1, we will define the “classical
quasienergy” by

G(d) (2:4)

2e. 37)

6
T
Quasienergy

It has been shown [5] that the quasienergy of the s = 1/2
Schrédinger equation (2) with a periodic magnetic field
can be expressed in terms of integrals using the periodic
solution of the analogous classical Rabi problem. Here we
will rederive this result without employing the reference
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to the Schrodinger equation, solely by using the periodic
solution s(¢) of (4) considered in Section 2.

To this end, we consider a time-dependent right-
handed orthonormal frame, shortly called “e frame,”
defined by

e () = s(0), (38)
0= 51 9
eV (1) = e (o) x (. (40)
Further, let

50 = (sP©0,s70,s70) es0G) @

be a solution of (20) with initial conditions
sP0) =e?0), i=1,2,3, (42)

and hence

sV = e () = s() 43)

for all t € R. It follows that the other two components of
S(t) can be expanded with respect to the e frame in the
form

s (6) = cos(a()) e?(0) + sin(a(t)) e® (1), (44)

sO(6) = —sin(a(0) €@ (6) + cos(a(t) eP(r),  (45)
where a(t) is a smooth function. The differential equation
(20) yields a corresponding one for a(t) that can be solved
in terms of an indefinite integral, see Appendix A. Recall
that 6 is the angle between e (T) = s?(0) and s®(T).
Hence, using the integral representation (113) of a(t), the
classical quasienergy can be written as

T
<cl><3:7>§_1/ g 69
€ T=T (h-s) — o dt.
0

(46)

This result slightly improves the corresponding equa-
tion (62) in [5] in so far as it is manifestly independent of
a coordinate system. The explicit accordance with [5] has
been shown in [6]. We note that the form of (46) suggests
the following splitting of the quasienergy:

e(cl) (cD

(CD + €g

E%/h sdt + = /(

s-(§x8)
§:S

) dt 47
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into a “dynamical part” e €D and a “geometrical part” e (CD.
The dynamical part e(d) is obviously the time average of
the energy h - s and depends on the details of the dynam-
ics, not only on the curve S swept by the periodic solution

s(t).

For the geometrical part e(d)

we note that the cor-
responding integral fo ...)dt is invariant under an arbi-
trary parameter transformation ¢ +— s(t) that leads to a
new period S:

T
( )
O/( S- sxs)dt
S
(
O/( s-(s" xs” )ds,

where we have denoted the s derivative by a prime ’. This

transformation produces a factor (gﬁ)

of the integrand of the left-hand side of (48) and a factor

(48)

in the numerator

2
(%) in the denominator; after cancelling the remain-

ing factor, ¢ 5 is used to transform the dt integration into
a ds integration. Equation (48) means that the integral
fOT(. ..)dt is independent of the dynamics of the spin pre-
cession and depends only on the geometry of the curve S,
thereby justifying the denotation as “geometrical part of
the (classical) quasienergy.” Note, however, that egl) still
depends on the period T according to the prefactor % in
(47). The integral (48) can be identified with the geomet-
ric phase of the Bloch sphere [5, 22], but we will not dwell
upon this aspect in the present article.

Furthermore, for the calculation of e(gd), we could
choose any magnetic field h(s) that yields the curve S
when solving the corresponding equation of motion.

The following choices considerably simplify the cal-
culations: As a parameter of S, we will use the arc length
that will always be denoted by s in what follows. Differen-
tiation with respect to s will again be denoted by a prime ’
without danger of confusion. The length of the curve S will
be denoted by |S|. This has the consequence that

v=[s'(s)]| = 1and s'(s) - s(s) =
foralls € [0, |S)). (49)

Further, we will choose as a suitable magnetic field

h(s) = s(s) x s’(s), (50)
which will always be of unit length,
['h(s) =1 (51)
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as the vector product of two orthogonal unit vectors. Equa-
tion (48) yields the correct spin curve S as it satisfies

(49)

hxs=(sxs)xs =s" (52)

Ash-s = 0, the dynamical part e(d) of the quasienergy

always vanishes. For reasons that w111 become clear later,
we call (50) the “dual magnetic field” of the spin vector
function s(s), and the curve H swept by h(s) the “dual
loop” of the loop S. With the above choices, the geometric
part of the quasienergy can be written as

IS

eled _ % / (—s-(s' x §”))ds. (53)
0

It is known from elementary differential geometry that
the “geodesic curvature” kg of a curve S on a surface
parametrised by its arc length is defined as the triple
product

ke=s-(s’ xs") (54)
measuring the component of the acceleration s” in the
tangent plane of the curve (see, e.g. [23]). It can have
positive or negative values and vanishes at the inflection
points of the curve. It follows that the integrand in (53)
can be, up to a sign, interpreted as the geodesic curva-
ture kg of S. Inspired by [24], we will apply the theorem of
Gauss—Bonnet [23] for the unit sphere that may be written

as
/KdA+/kgds=2n.

M oM

(55)

Here M denotes a two-dimensional submanifold of
$? with boundary oM and (constant) Gaussian curva-
ture K. In our case, we set oM = S and can identify the
surface integral |, y KdA with the (signed) solid angle
A(S) encircled by the loop S and thus rewrite (55) in the
form

]Sl(—s (8" x8") = —/ kg ds
0 S

The last term —27 is irrelevant as the quasienergy is
only defined modulo w = ZT” Thus, we have reestablished
the result

(55)

= A(S) —2n. (56)

eé,d) = %A(S) mod w, (57)

that endows e(gd)

with [5].

with a geometric meaning in accordance
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4 Duality of Loops

We start with aloop S and its dual loop H on the unit Bloch
sphere parametrised by the arc length s of S such that s(s)
and h(s) satisfy

d
&S =hxs (58)
and
h=sx is. (59)

ds

(We will avoid the use of primes for derivatives in
this section in order to avoid misunderstandings.) Hence,
the triple (h, S, %s) will be a right-handed orthonormal
frame for all values of the parameter s. It follows that

d, 6o _ d
gh = S X @S (60)

is orthogonal to h and s and hence must be proportional
to %s:

d d
Eh(s) = al(s) gs, (61)
where a(s) is a smooth function. Moreover,
d> s d d d
@s = g(h X §) = (&h) x s+h x <£s)
(5821)a (%s) x s+h x (h xs)
2 —ah —s, (62)
and hence
_ d d® (59.62) _
g:(sxdss>-dszs =" —ah-h=—a. (63)
Now (58), (61), and (63) imply
d d .
Eh_fggs_(gs)xh:sxh. (64)

The latter equation has the form of (4) and hence can
be interpreted in such a way that the “spin vector” h moves
according to (4) under the influence of the “magnetic
field” 8. In this sense, the role of classical spin and mag-
netic field is interchanged. However, in general, § will not
be a unit vector, and s will not be the arc length parameter
of the loop H.

The situation will be more symmetric if we addition-
ally pass from s to the arc length parameter of 7, denoted
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by r. Then, the equation of motion for h(r) assumes the
form

dr  drds

dno b dpe (s
dr

gs)xthxh. (65)

Now the new “magnetic field” s has unit length as it is
the vector product of two orthogonal unit vectors:

h x ih:h>< (Ssxhy=sh-h-hs-h=s. (66)
dr ~ =~
1 0
This means that
_ ds
151 = | 5] = st = 1. (67
and hence
ds 1
Tl .
Together with (65), this implies
s(r) = +s(r). (69)
If the role of S and H is interchanged, we obtain
dr 1
ds—gI—‘G, (70)
where G is the geodesic curvature of H:
- dr = dr? )’
Using (59) and (63), we may rewrite (62) as
2 d
@s =-—-s+4gsx ES' (72)
Then, it follows that
d, 6o _ d°
&h =8 X @s
(72) d _ d
='gsx <s X ES) =-g dss’ (73)
and hence
d
2] - (74)

This means that, up to a possible sign, the geodesic
curvature differential g ds of S equals the arc length dif-
ferential dr of H. If g does not change its sign, both differ-
entials can be integrated and yield identical integrals, up
to a possible sign.
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The curve S will be called simple if its geodesic curva-
ture does not change its sign. In this case, we obtain

|S|
/kg ds = +|H), (75)
0
and, by means of (56) and (57),
e(gd) = i% mod w. (76)

The result (75) reminds of the relationship between the
geometric phase and the contracted length of the system’s
path in projective Hilbert space according to [25].

Summarising, we have two loops S and H on the unit
Bloch sphere that give rise to two different solutions of (4):
Either S consists of spin vectors or H consists of magnetic
field vectors, and the time parameter ¢ in (4) is chosen as
the arc length s of S. Or, H consists of spin vectors and +S
of magnetic field vectors, and the time parameter ¢ in (4) is
chosen as the arc length parameter r of 7. This symmetry
between S and H justifies the denotation as “dual loops.”

For both realisations of solutions of (4), we can cal-
culate the classical quasienergy denoted by e(sd) and egl),
respectively. It consists only of its geometric part as spin
vector and magnetic field will be orthogonal in both real-
isations. For the case of simple spin curves, (76) immedi-
ately implies that there are representatives e(sd) and e(;”
such that

@ 1
€S =+ W ’ (77)
€y

further illustrating the duality between S and H.

We note that there is still a minor asymmetry between
the curves S and H of a dual pair, insofar the two branches
+8 occur only at the S side. Recall that both branches cor-
respond to physical solutions as (4) is invariant under the
reflection s — —s. The introduction of +H would mean
that we consider both orientations of +S on an equal
footing, as (4) is also invariant under the simultaneous
reflections h — —h and ¢t — —t. Thus, the completely
symmetric duality would have to be defined between +S
and +H.

Still another way of looking at the duality of loops con-
sidered in this section would be based on the observation
that the equation of motion (4) can be viewed as a Hamilto-
nian equation with a two-dimensional phase space S and
the time-dependent Hamiltonian

H(s, t) =h(t) - s, (78)
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see [5]. In the special case where t is the arc length para-
meter of S, it follows that h(¢) can be chosen as h(t) € S2.
Due to the symmetry of the scalar product in (77), we
may then swap the role of h(t) and s(t) and regard (77)
as the Hamiltonian depending on the phase space vari-
able h € $? and the t-depending field s(t). Any solution
of the corresponding Hamiltonian equation can then be
interpreted in two different ways as explained above.

4.1 Example 1

In order to illustrate the notion of duality considered in
this section, we consider two examples. The first one is a
special case of the Rabi problem with circular polarisation.
Let

VA fzzcos(
V1 —zzsin(

z

=)

s(s) = , (79)

=)

be the arc length parametrisation of a circle S on S? lying
in the plane z = const. with —1 < z < 1 and z # 0. This
leads to

S| =2nv1—22 = %1

Then, (59) yields the parametrisation of the dual loop
H:

(80)

h(s)=| . s , (81)
zsin <7m>
V1-—2z2

satisfying

2
|H|:2n|z|56ﬂ. (82)

After some elementary calculations, we obtain

d d? z
= —_ =S = ——, 8
§ (S " ds s) 2° " i ®)
and hence, the first expression for the classical
quasienergy egd) reads

S|
(i3 1 z

s mo/(g)dsgm- (84)
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The solid angle enclosed by S will be

(575)

AS) =211 — 2) 21 + |H|, (85)
and hence, a second expression for e(sd) will be
@GN AS) _ Vi-z
€7 = ot = . (86)
S| vi+z
It satisfies
e(sclz) — €gdl) + w’ (87)

and hence, both expressions (84) and (86) agree mod-
ulo w.

The arc length parameter r corresponding to H is
obtained as

(68) (83) z
r= = ——35. 88)
V1-—22 (
After some elementary calculations, we obtain
2 V1 = 22
6= (hxdn). L p_VI=Z @1 4
dr dr? z g

and hence, the first expression for the quasienergy e(d)

reads

7]
(et (3) 1 / G dr (89) V1-—22
= — -, 0
€l T (-6) 2 (90)
The solid angle enclosed by H will be
AH) = 211 = V1 =22 2 — 15, (91)
and hence, a second expression for egd) is given by
(Clz) (57) A(H) _ 1- \4 1-— Zz (92)
M| 2|
It satisfies
eldld — £ 4 q (93)

the & sign depending on the sign of z. Hence, both expres-
sions (90) and (93) agree up to a sign and modulo Q.

Equation (77) holds for the present example as the
triple products g and G are constant and, due to (89),
inverses of each other.

In the case of 0 < z < 1, the curve S of our example
generates a closed, convex cone C(S) C R>, analogously
for the dual curve H. Then, it follows that C(7) is the dual
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cone of C(S) and vice versa. Here, the dual cone C’ of a cone
C is defined by

C={xeR’|x-y>0forallye C}, (94)

see, e.g. [26]. In this sense, our definition of dual curves
is compatible with the established notion of dual cones in
R’

Finally, we note that the magnetic field (81) can be
understood as a special case of the Rabi problem with cir-

. . . . _ o 1

cularly polarised driving (23), ifweset F = —z,w = Wirri
and wo = V1 — z2. For this problem, the quasienergy e.

assumes the form
=\ F2+ (wo — w)’,

see [5], (8) and taking into account that the quasienergy
of the classical Rabi problem is twice the quasienergy of
the s = 1/2 quantum Rabi problem modulo w, see also
Proposition 1. In our case, it follows that

(95)

72’
(96)

2
1 ||
€c=1/22+ —\/1—22) =
‘ \/ (\/1—22 1

which agrees with (84) up to a possible sign.

4.2 Example 2

For the second example, we take a case where S is not sim-
ple, but of the form of the figure “8” (lemniscate) with a
self-intersection that is simultaneously a point of inflec-
tion. This example also shows that we need not explicitly
calculate the arc length parameters s of S or r of H but may
work within the initial parametrisation. Let the figure “8”
curve be given by the parametrisation

sin T
1
\/sinz(r) +sin’(27) + 1

sin 2T

s(7) = 97)

where T € [0, 277]. We calculate the dual loop H € S? by

1 ds
h(r) = ‘ % s X ar’ (98)
T

analogously to (59) but without directly using the arc
length parameter s. This and the following expressions
can be easily obtained by a computer algebra software but
are too involved to be displayed here. The loop H is dis-
played in Figure 2. It shows two cusps corresponding to
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/\ 77 X3 %

Figure 2: lllustration of example 2 for duality of loops. The blue
(grey) curve represents the orbit S of a time-dependent spin func-
tion s(1) according to (97); the red (dark) one is the dual loop of H
of magnetic field vectors. If we iterate the construction we obtain for
the bidual the two green dashed curves R that locally coincide with
Sor-—S.

the point of self-intersection of S. These cusps necessarily
occur according to the following reasoning: At the point of
self-intersection corresponding to the values 7 = 0, m of
the parameter, the geodesic curvature g of S changes its
sign (Fig. 3). According to (69), the geodesic curvature G of
‘H must diverge at T = 0, 7, which explains the two cusps.

The curve S can be divided into the parts S; and S,
that have in common only the point of self-intersection.
The corresponding parts of  are denoted by H;, i = 1, 2.
Both parts S; encircle solid angles A(S;) ~ +4.64172 that

9.G, gG

Figure 3: Plot of the geodesic curvature g of S (blue/dark curve), G
of H (orange/grey curve), and the product gG (green dashed lines)
as a function of 7. The data are the same as for Figure 2. According
to (70), the product gG must have the absolute value 1.
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correspond to the length of the 7;. But due to the dif-
ferent signs, the total solid angle and the corresponding
quasienergy vanish.

Interestingly, if we calculate the “bidual” loop R
according to

1 dh
r(r) = ’ i h x ac’ (99)
dr

then, we obtain two disjoint curves that locally coincide
with —S; and S, (Fig. 2), again illustrating that the duality
should be properly defined between +S and +H.

5 Summary and Outlook

We have considered some geometrical aspects of the clas-
sical Rabi problem with arbitrary periodic driving. The
classical equation of motion can be viewed in its own right
as a case where Floquet theory can be applied, without
resort to the underlying Schréodinger equation. In contrast
to the latter, it has always some periodic solutions. This
leads to the definition of the classical quasienergy eled
that has an integral representation in terms of the periodic
solution and possesses a natural splitting into a dynamical
part effl) and a geometrical one e(gd). The latter is essen-
tially a geometrical phase on the Bloch sphere and can
be related to the solid angle swept by the classical spin
during one period via the theorem of Gauss—Bonnet. If we
focus on the loops +S swept by periodic solutions of the
classical Rabi problem without fixing its parametrisation
by the time parameter t, we may assume that +§ is pro-
duced by a pair of loops +H representing time-dependent
magnetic fields of unit length. Upon using the respective
arc length parameters, the role of spin and magnetic field
can be interchanged. We have further analysed this duality
between +S and 4+ that in the case of curves +S with-
out points of inflection even leads to pairs of reciprocal
quasienergies.

It is not straightforward to assess the possible benefits
of the present results for concrete physical problems, also
because of the diversity of such problems. However, as a
rule, the solutions of the equations of motion of the classi-
cal spin can be more directly visualised than the solutions
of the corresponding Schrodinger equation. Although this
advantage is lost in higher-dimensional Hilbert spaces, it
would be instructive to investigate which geometric prop-
erties remain invariant if we pass from the Bloch sphere to
a higher-dimensional projective Hilbert space. The latter
is known to be a Kahler manifold that carries two related
structures, a Riemannian and a symplectic one, which
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can be used to obtain geometric phases in different ways
[27, 28].
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Appendix A: Proof of the Integral
Representation of the Classical
Quasienergy

We use the abbreviation

v =80 -8() = vi=§-8, (100)

and expand the magnetic field with respect to the e frame,
defined in (38-40):

3
h(t) =Y k(e ().

(101)
i=1
The equation
] @ ve?
(Qh X 8§ = (kle(l) + kze(z) + k3e(3)> x el
_ _kze(B) + k3e(2) (102)
immediately implies
k=0, ks=v, (103)
and moreover,
ki=h-s. (104)

We will also expand § with respect to the e frame. First,
we obtain

§$.s=0 = §-§+8§-s=0 = §-s=—v2. (105
Second,
5.e% —3. (e(l) xe(z)) =§- <s>< %s)
= 1s-(éxéi)z g, (106)
v v
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where we have abbreviated the triple product s - (§ x §) by
g. Together with (100), the last two equations yield

_2 e 2 , 8 ©)

§= +ve + 5 e (107)
With this, we can evaluate the t derivatives of the e

frame vectors in the following way:

a2 _ 48 _ v, l.a0n
Tdtv T 2 v

6@ W o) | @ 4 o) ¢@

vel ¢ % e(3), (108)
v

1. .
:—sxs+%e(1) G)
V N~~~ 14

0

g @

=-—=e7.
V2

X e

(109)

The t derivative of s2(¢) can now be calculated in two
different ways:

§09p 50

((h .s) e(l) +v e(B))
X (cos ae? + sina e(3))

—vcosaeV — (h-s)sina e?

+(h-s)sina eG), (110)
and

s @4 — i sinae? + cosa @

+ & cosa e’ +sina e®

=a (—sin ae? + cosa e(B))

+ cos a(—v eV 4 % e(3))
1%

—sina S e?. (111)
v

Comparing the e? components of (110) and (111)
yields the expression for a we are looking for:
_s-(§x39)

d:(h-s)f%:(h-s) (112)

This shows that a(t) can be obtained as an integral
over the right-hand side of (112) that is a function of s(t)
and its first two derivatives:

¢

a(t) = / ((h .s) — w) dt, (113)
0
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using that a(0) = O according to the initial conditions (42).
From this, (46) follows immediately.

Note that we have not used the fact that s(t) would be
T-periodic. These calculations also show that if one solu-
tion s(t) of (4) is given, then the other two solutions with
orthogonal initial conditions can be obtained by means of
certain integrals.
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