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Abstract:We investigate themotion of a classical spin pro-
cessing around a periodic magnetic field using Floquet
theory, as well as elementary differential geometry and
considering a couple of examples. Under certain condi-
tions, the role of spin and magnetic field can be inter-
changed, leading to the notion of “duality of loops” on the
Bloch sphere.
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1 Introduction
The Rabi problemusually refers to the response of an atom
to an applied harmonic electric field, with an applied fre-
quency very close to the atom’s natural frequency [1, 2].
Assuming that the atom can be approximated by a two-
level system, its semiclassical Hamiltonian (in the sense
that the radiation field is treated classically) will be of the
form of a Zeeman term in an s = 1/2 spin system:

H = ω0 Sz + b1(t) Sx + b2(t) Sy + b3(t) Sz , (1)

where the Sx, Sy, Sz are the s = 1/2 spin operators. If ψ(t)
is a solution of the corresponding Schrödinger equation
(� = 1):

i ddt ψ(t) = H ψ(t), (2)

then the projector P(t) = |ψ(t)⟩⟨ψ(t)| can be expanded as
a linear combination of the spin operators:

P(t) =
1
2 + s1(t) Sx + s2(t) Sy + s3(t) Sz . (3)

It follows that s(t) ≡
(︀
s1(t), s2(t), s3(t)

)︀⊤ will be a
unit vector that obeys the same equation of motion

d
dt s(t) = h(t) × s(t) (4)
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as a classical magnetic moment performing a Larmor
precession around the time-dependent periodic mag-
netic field h(t) ≡

(︀
h1(t), h2(t), h3(t)

)︀⊤ ≡
(︀
b1(t), b2(t),

b3(t) + ω0
)︀⊤. The study of this equation will be called

the “classical Rabi problem” in what follows. Interest-
ingly, the problem of a sphere rolling on a curved surface
also leads to a differential equation of the form (4) [3, 4].

To illustrate the preceding remarks, consider the text-
book example of the circularly polarised Rabi problem
with

h(t) =

⎛
⎜⎜⎝
F cos ω t
F sin ω t

ω0

⎞
⎟⎟⎠. (5)

A special solution of the corresponding Schrödinger
equation (2) is the following:

ψ(t) =

(︃
ψ1(t)
ψ2(t)

)︃

=

⎛
⎜⎜⎝
e− 1

2 itω
(︂
cos

(︂
Ωt
2

)︂
− i∆

Ω sin
(︂
Ωt
2

)︂)︂

− iF
Ω e

iωt
2 sin

(︂
Ωt
2

)︂

⎞
⎟⎟⎠, (6)

where ∆ is the “detuning”

∆ ≡ ω0 − ω, (7)

and Ω denotes the “Rabi frequency”

Ω ≡
√︀
F2 + ∆2. (8)

This solution demonstrates thewell-knownRabi oscil-
lations of the occupation numbers of the eigenstates of the
static Hamiltonian according to

|ψ1(t)|2 = 1 − |ψ2(t)|2 =
∆2

Ω2 sin
2
(︂
Ωt
2

)︂
+ cos2

(︂
Ωt
2

)︂
.

(9)

However, the projector P(t) defined in (3) has also
components that are not 2π

Ω -periodic, as is illustrated in
Figure 1.

On the other hand, it can be shown [5, 6] that in
the general case of periodic h(t) there will always exist
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 1: The curve swept by a classical spin vector s(t) that solves
the equation of motion (4) with a circularly polarised magnetic field
according to (5). The z-component of s(t) oscillates with the Rabi fre-
quency Ω. The physical parameters are chosen as F = 0.5, ω = 1
and ω0 = 0.9.

T ≡ 2π
ω -periodic solutions of (4) if the initial conditions are

appropriately chosen. These solutions of the classical Rabi
problem yield solutions of the underlying Schrödinger
equation (2) up to a (time-depending) phase factor. But
it turns out [5] that also this phase factor can be recon-
structed from the periodic solution of (4) by means of cer-
tain integrals. Here we encounter the rare case where a
quantum problem and the corresponding classical prob-
lem are essentially equivalent, due to the mathematical
fact that the Lie groups SO(3) and SU(2) are locally iso-
morphic. This endows the classical Rabi problem with
additional importance concerning quantum applications.
Moreover, there are connections between quantum search
Hamiltonians and exactly solvable time-dependent two-
level quantum systems [7].

We mention in passing that solutions of the classi-
cal Rabi problem also yield solutions of the quantum Rabi
problem for arbitrary spin quantumnumber s. This follows
either from representation theory [5] or by using the Majo-
rana stellar representation [8] of spin states by 2s points of
the Bloch sphere. A third way to look at this is to consider
spin fluctuation tensors, see, e.g. [9].

The differential equation (4) can be explicitly solved
only in a few cases of physical interest. The most

prominent one, already mentioned above, is a constant
field superimposed by a monochromatical, circularly
polarised field perpendicular to the constant one [1]. The
analogous problem with a linearly polarised field com-
ponent is solvable in terms of confluent Heun functions
[10–13] for the corresponding s = 1/2 Schrödinger equa-
tion. In this article, we will shift the problem of finding
solutions of (2) or (4) to the study of geometric relations
between such solutions and to the interplay between Flo-
quet theory, differential geometry of the unit sphere, and
duality of loops. Not all results will be new, but we will
provide new proofs that only use properties of solutions
of the classical Rabi problem that are easier to visualise
and do not resort to the mathematics of the underlying
Schrödinger equation. Obviously, there exist close con-
nections between the present article and the theory of
geometric phases, initiated by M. Berry [14], generalised
by [15], and still a topic of current experimental research
(e.g. [16–19]). However, a detailed account of these con-
nections cannot be given here and must be left for future
publications.

2 Periodic Solutions
We will sketch the essential arguments leading to peri-
odic solutions of the classical Rabi problem and the recon-
struction of the (time-depending) phase factor. First, we
may apply the Floquet theory [20, 21] to the Schrödinger
equation (2) and conclude that it has special solutions
(“Floquet solutions”) of the form

ψ±(t) = u±(t) e−iϵ± t , (10)

such that u±(t)will be T-periodic and the “quasienergies”
ϵ± are real numbers uniquely determined up to integer
multiples of ω. It can be shown that there exist represen-
tatives of quasienergies satisfying

ϵ± = ± ϵ such that ϵ ≥ 0, (11)

and these will be chosen in the sequel. It follows imme-
diately that the projectors P±(t) = |ψ±(t)⟩⟨ψ±(t)| will be
T-periodic functions of t.

Conversely, let a T-periodic solution of (4) be given
and P(t) be the corresponding time-dependent projector
definedby (3). Itmaybewritten as P(t) = |ϕ(t)⟩⟨ϕ(t)|,ϕ(t)
being T-periodic, such that the solution ψ(t) of (2) we are
looking for is of the form

ψ(t) = e−iα(t) ϕ(t). (12)

1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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Figure 1: The curve swept by a classical spin vector s(t) that solves
the equation of motion (4) with a circularly polarised magnetic field
according to (5). The z-component of s(t) oscillates with the Rabi fre-
quency Ω. The physical parameters are chosen as F = 0.5, ω = 1
and ω0 = 0.9.

T ≡ 2π
ω -periodic solutions of (4) if the initial conditions are

appropriately chosen. These solutions of the classical Rabi
problem yield solutions of the underlying Schrödinger
equation (2) up to a (time-depending) phase factor. But
it turns out [5] that also this phase factor can be recon-
structed from the periodic solution of (4) by means of cer-
tain integrals. Here we encounter the rare case where a
quantum problem and the corresponding classical prob-
lem are essentially equivalent, due to the mathematical
fact that the Lie groups SO(3) and SU(2) are locally iso-
morphic. This endows the classical Rabi problem with
additional importance concerning quantum applications.
Moreover, there are connections between quantum search
Hamiltonians and exactly solvable time-dependent two-
level quantum systems [7].

We mention in passing that solutions of the classi-
cal Rabi problem also yield solutions of the quantum Rabi
problem for arbitrary spin quantumnumber s. This follows
either from representation theory [5] or by using the Majo-
rana stellar representation [8] of spin states by 2s points of
the Bloch sphere. A third way to look at this is to consider
spin fluctuation tensors, see, e.g. [9].

The differential equation (4) can be explicitly solved
only in a few cases of physical interest. The most

prominent one, already mentioned above, is a constant
field superimposed by a monochromatical, circularly
polarised field perpendicular to the constant one [1]. The
analogous problem with a linearly polarised field com-
ponent is solvable in terms of confluent Heun functions
[10–13] for the corresponding s = 1/2 Schrödinger equa-
tion. In this article, we will shift the problem of finding
solutions of (2) or (4) to the study of geometric relations
between such solutions and to the interplay between Flo-
quet theory, differential geometry of the unit sphere, and
duality of loops. Not all results will be new, but we will
provide new proofs that only use properties of solutions
of the classical Rabi problem that are easier to visualise
and do not resort to the mathematics of the underlying
Schrödinger equation. Obviously, there exist close con-
nections between the present article and the theory of
geometric phases, initiated by M. Berry [14], generalised
by [15], and still a topic of current experimental research
(e.g. [16–19]). However, a detailed account of these con-
nections cannot be given here and must be left for future
publications.

2 Periodic Solutions
We will sketch the essential arguments leading to peri-
odic solutions of the classical Rabi problem and the recon-
struction of the (time-depending) phase factor. First, we
may apply the Floquet theory [20, 21] to the Schrödinger
equation (2) and conclude that it has special solutions
(“Floquet solutions”) of the form

ψ±(t) = u±(t) e−iϵ± t , (10)

such that u±(t)will be T-periodic and the “quasienergies”
ϵ± are real numbers uniquely determined up to integer
multiples of ω. It can be shown that there exist represen-
tatives of quasienergies satisfying

ϵ± = ± ϵ such that ϵ ≥ 0, (11)

and these will be chosen in the sequel. It follows imme-
diately that the projectors P±(t) = |ψ±(t)⟩⟨ψ±(t)| will be
T-periodic functions of t.

Conversely, let a T-periodic solution of (4) be given
and P(t) be the corresponding time-dependent projector
definedby (3). Itmaybewritten as P(t) = |ϕ(t)⟩⟨ϕ(t)|,ϕ(t)
being T-periodic, such that the solution ψ(t) of (2) we are
looking for is of the form

ψ(t) = e−iα(t) ϕ(t). (12)
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It follows that

0 =
(︂
H − i ∂∂t

)︂
ψ(t) (13)

= e−iα(t)
(︂
H − i ∂∂t

)︂
ϕ(t) − dα

dt e
−iα(t)ϕ(t), (14)

and hence

dα
dt =

⟨
ϕ(t)

⃒⃒
⃒⃒H − i ∂∂t

⃒⃒
⃒⃒ϕ(t)

⟩
(15)

=
∑︁
n∈

an einωt , (16)

where (16) represents the Fourier series of the T-periodic
function (15). The integration of (16) yields

α(t) = a0 t +
∑︁
n ̸=0

an
inω einωt , (17)

and hence, ψ(t) will be a Floquet solution of the form

ψ(t) = ϕ(t) exp

⎛
⎝−i

∑︁
n ̸=0

an
inω einωt

⎞
⎠ e−ia0 t , (18)

with quasienergy ϵ = a0. It is plausible that a0 can be
expressedbyan integral of a functionof the components of
P(t) = |ϕ(t)⟩⟨ϕ(t)| over one period (see [5] for the details).
In the next section, we will derive an alternative integral
representation of the quasienergy.

It will be instructive to consider another argument
leading to a periodic solution of (4). To this end, we con-
sider a 3 × 3 matrix R(t), the columns of which are three
solutions s(i)(t), i = 1, 2, 3, of (4) such that the initial
conditions can be written as

R(0) = , (19)

the latter denoting the 3 × 3 unit matrix. As the equation
of motion (4) leaves scalar products invariant, it follows
that the columns of R(t) will always form a right-handed
orthonormal frame, in other words, that R(t) ∈ SO(3). The
three equations ofmotion (4) for the s(i)(t), i = 1, 2, 3 can
be compactly written in matrix form as

d
dt R(t) = H(t) R(t), (20)

where H(t) is the real, antisymmetric 3 × 3matrix

H(t) =

⎛
⎜⎜⎜⎝

0 −h3(t) h2(t)

h3(t) 0 −h1(t)

−h2(t) h1(t) 0

⎞
⎟⎟⎟⎠, (21)

and the hi(t) are the components of the magnetic field
according to (4). The value of R(t) value after one period
will be the rotational matrix R(T) ∈ SO(3). As any rota-
tional matrix with unit determinant, it will be a rotation
about an axis with an angle δ. Accordingly, R(T)will have
the eigenvalues 1, e±iδ, corresponding to a real eigenvec-
tora and twogenerally complex eigenvectors, respectively.
The eigenvector a satisfying

R(T) a = a (22)

represents the axis of rotation and, after normalisation
‖a‖ = 1, will be unique up to a sign. Let s(t) = R(t) a
be the solution of (4) with initial value s(0) = a, then it
follows that

s(T) = R(T) a = a = s(0), (23)

and hence, s(t) is, up to a possible sign, the T-periodic
solution of (4) that we have constructed above by consid-
ering a Floquet solution of (2).

The angle of rotation δ ≥ 0 corresponding to R(T) is
related to the quasienergy as follows:

Proposition 1:

δ = 2 ϵ T . (24)

Proof. This follows from [5] by the “lift” from s = 1/2
to s = 1. Independently, one may directly prove the
proposition by considering the unitary matrix of Floquet
solutions

U(t) =

⎛
⎝u(t) e−iϵ t −v(t) eiϵ t

v(t) e−iϵ t u(t) eiϵ t

⎞
⎠, (25)

and the superposition

̃︀ψ(t) =
1√
2
U

⎛
⎝1

1

⎞
⎠. (26)

Here

u(t) = u1(t) + i u2(t) (27)

and

v(t) = v1(t) + i v2(t) (28)

are T-periodic functions satisfying

|u(t)|2 + |v(t)|2 = 1 (29)

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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for all t ∈ . The corresponding projector ̃︀P(t) =
|̃︀ψ(t)⟩⟨̃︀ψ(t)| yields a solution ̃︀s(t) of (4) via (3), which is
always orthogonal to the periodic solution s(t) according
to (23). After some straightforward calculations, we obtain

̃︀P11(0) =
1
2

(︁(︀
u1(0) − v1(0)

)︀2 +
(︀
u2(0) + v2(0)

)︀2)︁ (30)

̃︀P12(0) = ̃︀P21(0)

=
1
2

(︁(︀
u1(0) + i u2(0)

)︀2 −
(︀
v1(0) − i v2(0)

)︀2)︁

(31)

̃︀P22(0) =
1
2

(︁(︀
u1(0) + v1(0)

)︀2 +
(︀
u2(0) − v2(0)

)︀2)︁ (32)

and

̃︀P11(T) =
1
2 −

(︀
u2(0)v1(0) + u1(0)v2(0)

)︀
sin(2Tϵ)

+
(︀
u2(0)v2(0) − u1(0)v1(0)

)︀
cos(2Tϵ) (33)

̃︀P12(T) = ̃︀P21(T) =
1
2 e

−2iTϵ

(︁(︀
u1(0) + iu2(0)

)︀2 −
(︀
v1(0) − iv2(0)

)︀2e4iTϵ
)︁

(34)
̃︀P22(T) =

1
2 +

(︀
u2(0)v1(0) + u1(0)v2(0)

)︀
sin(2Tϵ)

+
(︀
u1(0)v1(0) − u2(0)v2(0)

)︀
cos(2Tϵ). (35)

Hence, ̃︀s(t) will in general not be T-periodic but satis-
fies

Tr
(︁̃︀P(0) ̃︀P(T)

)︁
=

1
2

(︀
1 + ̃︀s(0) · ̃︀s(T))︀ =

1
2(1 + cos 2ϵT),

(36)

as can be shown by a straightforward calculation. This
completes the proof of Proposition 1.

In view of Proposition 1, we will define the “classical
quasienergy” by

ϵ(cl) ≡ δ
T

(24)= 2 ϵ. (37)

3 Quasienergy
It has been shown [5] that the quasienergy of the s = 1/2
Schrödinger equation (2) with a periodic magnetic field
can be expressed in terms of integrals using the periodic
solution of the analogous classical Rabi problem. Here we
will rederive this result without employing the reference

to the Schrödinger equation, solely by using the periodic
solution s(t) of (4) considered in Section 2.

To this end, we consider a time-dependent right-
handed orthonormal frame, shortly called “e frame,”
defined by

e(1)(t) ≡ s(t), (38)

e(2)(t) ≡ ṡ(t)
|| ṡ(t) || , (39)

e(3)(t) ≡ e(1)(t) × e(2)(t). (40)

Further, let

S(t) =
(︁
s(1)(t), s(2)(t), s(3)(t)

)︁
∈ SO(3) (41)

be a solution of (20) with initial conditions

s(i)(0) = e(i)(0), i = 1, 2, 3, (42)

and hence

s(1)(t) = e(1)(t) = s(t) (43)

for all t ∈ . It follows that the other two components of
S(t) can be expanded with respect to the e frame in the
form

s(2)(t) = cos(α(t)) e(2)(t) + sin(α(t)) e(3)(t), (44)

s(3)(t) = −sin(α(t)) e(2)(t) + cos(α(t)) e(3)(t), (45)

where α(t) is a smooth function. The differential equation
(20) yields a corresponding one for α(t) that can be solved
in terms of an indefinite integral, see Appendix A. Recall
that δ is the angle between e(2)(T) = s(2)(0) and s(2)(T).
Hence, using the integral representation (113) of α(t), the
classical quasienergy can be written as

ϵ(cl) (37)= δ
T =

1
T

T∫︁

0

(︂
(h · s) − s · (ṡ × s̈)

ṡ · ṡ

)︂
dt. (46)

This result slightly improves the corresponding equa-
tion (62) in [5] in so far as it is manifestly independent of
a coordinate system. The explicit accordance with [5] has
been shown in [6]. We note that the form of (46) suggests
the following splitting of the quasienergy:

ϵ(cl) = ϵ(cl)d + ϵ(cl)g

≡ 1
T

T∫︁

0

h · s dt +
1
T

T∫︁

0

(︂
−s · (ṡ × s̈)

ṡ · ṡ

)︂
dt (47)

1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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for all t ∈ . The corresponding projector ̃︀P(t) =
|̃︀ψ(t)⟩⟨̃︀ψ(t)| yields a solution ̃︀s(t) of (4) via (3), which is
always orthogonal to the periodic solution s(t) according
to (23). After some straightforward calculations, we obtain

̃︀P11(0) =
1
2

(︁(︀
u1(0) − v1(0)

)︀2 +
(︀
u2(0) + v2(0)

)︀2)︁ (30)

̃︀P12(0) = ̃︀P21(0)

=
1
2

(︁(︀
u1(0) + i u2(0)

)︀2 −
(︀
v1(0) − i v2(0)

)︀2)︁

(31)

̃︀P22(0) =
1
2

(︁(︀
u1(0) + v1(0)

)︀2 +
(︀
u2(0) − v2(0)

)︀2)︁ (32)

and

̃︀P11(T) =
1
2 −

(︀
u2(0)v1(0) + u1(0)v2(0)

)︀
sin(2Tϵ)

+
(︀
u2(0)v2(0) − u1(0)v1(0)

)︀
cos(2Tϵ) (33)

̃︀P12(T) = ̃︀P21(T) =
1
2 e

−2iTϵ

(︁(︀
u1(0) + iu2(0)

)︀2 −
(︀
v1(0) − iv2(0)

)︀2e4iTϵ
)︁

(34)
̃︀P22(T) =

1
2 +

(︀
u2(0)v1(0) + u1(0)v2(0)

)︀
sin(2Tϵ)

+
(︀
u1(0)v1(0) − u2(0)v2(0)

)︀
cos(2Tϵ). (35)

Hence, ̃︀s(t) will in general not be T-periodic but satis-
fies

Tr
(︁̃︀P(0) ̃︀P(T)

)︁
=

1
2

(︀
1 + ̃︀s(0) · ̃︀s(T))︀ =

1
2(1 + cos 2ϵT),

(36)

as can be shown by a straightforward calculation. This
completes the proof of Proposition 1.

In view of Proposition 1, we will define the “classical
quasienergy” by

ϵ(cl) ≡ δ
T

(24)= 2 ϵ. (37)

3 Quasienergy
It has been shown [5] that the quasienergy of the s = 1/2
Schrödinger equation (2) with a periodic magnetic field
can be expressed in terms of integrals using the periodic
solution of the analogous classical Rabi problem. Here we
will rederive this result without employing the reference

to the Schrödinger equation, solely by using the periodic
solution s(t) of (4) considered in Section 2.

To this end, we consider a time-dependent right-
handed orthonormal frame, shortly called “e frame,”
defined by

e(1)(t) ≡ s(t), (38)

e(2)(t) ≡ ṡ(t)
|| ṡ(t) || , (39)

e(3)(t) ≡ e(1)(t) × e(2)(t). (40)

Further, let

S(t) =
(︁
s(1)(t), s(2)(t), s(3)(t)

)︁
∈ SO(3) (41)

be a solution of (20) with initial conditions

s(i)(0) = e(i)(0), i = 1, 2, 3, (42)

and hence

s(1)(t) = e(1)(t) = s(t) (43)

for all t ∈ . It follows that the other two components of
S(t) can be expanded with respect to the e frame in the
form

s(2)(t) = cos(α(t)) e(2)(t) + sin(α(t)) e(3)(t), (44)

s(3)(t) = −sin(α(t)) e(2)(t) + cos(α(t)) e(3)(t), (45)

where α(t) is a smooth function. The differential equation
(20) yields a corresponding one for α(t) that can be solved
in terms of an indefinite integral, see Appendix A. Recall
that δ is the angle between e(2)(T) = s(2)(0) and s(2)(T).
Hence, using the integral representation (113) of α(t), the
classical quasienergy can be written as

ϵ(cl) (37)= δ
T =

1
T

T∫︁

0

(︂
(h · s) − s · (ṡ × s̈)

ṡ · ṡ

)︂
dt. (46)

This result slightly improves the corresponding equa-
tion (62) in [5] in so far as it is manifestly independent of
a coordinate system. The explicit accordance with [5] has
been shown in [6]. We note that the form of (46) suggests
the following splitting of the quasienergy:

ϵ(cl) = ϵ(cl)d + ϵ(cl)g

≡ 1
T

T∫︁

0

h · s dt +
1
T

T∫︁

0

(︂
−s · (ṡ × s̈)

ṡ · ṡ

)︂
dt (47)
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into a “dynamical part” ϵ(cl)d and a “geometrical part” ϵ(cl)g .
The dynamical part ϵ(cl)d is obviously the time average of
the energy h · s and depends on the details of the dynam-
ics, not only on the curve 𝒮𝒮 swept by the periodic solution
s(t).

For the geometrical part ϵ(cl)d , we note that the cor-
responding integral

∫︀ T
0 (. . .)dt is invariant under an arbi-

trary parameter transformation t s(t) that leads to a
new period S:

T∫︁

0

(︂
−s · (ṡ × s̈)

ṡ · ṡ

)︂
dt

=

S∫︁

0

(︂
−s · (s′ × s′′)

s′ · s′

)︂
ds, (48)

where we have denoted the s derivative by a prime ′. This
transformation produces a factor

(︁
ds
dt

)︁3
in the numerator

of the integrand of the left-hand side of (48) and a factor(︁
ds
dt

)︁2
in the denominator; after cancelling the remain-

ing factor, ds
dt is used to transform the dt integration into

a ds integration. Equation (48) means that the integral∫︀ T
0 (. . .)dt is independent of the dynamics of the spin pre-
cession and depends only on the geometry of the curve 𝒮𝒮,
thereby justifying the denotation as “geometrical part of
the (classical) quasienergy.” Note, however, that ϵ(cl)g still
depends on the period T according to the prefactor 1

T in
(47). The integral (48) can be identified with the geomet-
ric phase of the Bloch sphere [5, 22], but we will not dwell
upon this aspect in the present article.

Furthermore, for the calculation of ϵ(cl)g , we could
choose any magnetic field h(s) that yields the curve 𝒮𝒮
when solving the corresponding equation of motion.

The following choices considerably simplify the cal-
culations: As a parameter of 𝒮𝒮, we will use the arc length
that will always be denoted by s in what follows. Differen-
tiation with respect to swill again be denoted by a prime ′
without danger of confusion. The length of the curve𝒮𝒮 will
be denoted by |𝒮𝒮𝒮. This has the consequence that

v ≡ ‖s′(s)‖ = 1 and s′(s) · s(s) = 0

for all s ∈ [0, |𝒮𝒮𝒮). (49)

Further, we will choose as a suitable magnetic field

h(s) = s(s) × s′(s), (50)

which will always be of unit length,

|| h(s) ||= 1, (51)

as the vector product of two orthogonal unit vectors. Equa-
tion (48) yields the correct spin curve 𝒮𝒮 as it satisfies

h × s = (s × s′) × s (49)= s′. (52)

Ash·s = 0, the dynamical part ϵ(cl)d of the quasienergy
always vanishes. For reasons that will become clear later,
we call (50) the “dual magnetic field” of the spin vector
function s(s), and the curve ℋ swept by h(s) the “dual
loop” of the loop 𝒮𝒮. With the above choices, the geometric
part of the quasienergy can be written as

ϵ(cl)g =
1
T

|𝒮𝒮𝒮∫︁

0

(−s · (s′ × s′′)) ds. (53)

It is known from elementary differential geometry that
the “geodesic curvature” kg of a curve 𝒮𝒮 on a surface
parametrised by its arc length is defined as the triple
product

kg ≡ s · (s′ × s′′) (54)

measuring the component of the acceleration s′′ in the
tangent plane of the curve (see, e.g. [23]). It can have
positive or negative values and vanishes at the inflection
points of the curve. It follows that the integrand in (53)
can be, up to a sign, interpreted as the geodesic curva-
ture kg of 𝒮𝒮. Inspired by [24], we will apply the theorem of
Gauss–Bonnet [23] for the unit sphere that may be written
as

∫︁

M

K dA +
∫︁

∂M

kg ds = 2π. (55)

Here M denotes a two-dimensional submanifold of
S2 with boundary ∂M and (constant) Gaussian curva-
ture K. In our case, we set ∂M = 𝒮𝒮 and can identify the
surface integral

∫︀
M K dA with the (signed) solid angle

𝒜𝒜(𝒮𝒮) encircled by the loop 𝒮𝒮 and thus rewrite (55) in the
form

|𝒮𝒮𝒮∫︁

0

(−s · (s′ × s′′)) = −
∫︁

𝒮𝒮

kg ds
(55)= 𝒜𝒜(𝒮𝒮) − 2π. (56)

The last term −2π is irrelevant as the quasienergy is
only definedmoduloω = 2π

T . Thus, we have reestablished
the result

ϵ(cl)g =
1
T𝒜𝒜(𝒮𝒮) modω, (57)

that endows ϵ(cl)g with a geometric meaning in accordance
with [5].

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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4 Duality of Loops
Westartwith a loop𝒮𝒮 and its dual loopℋ on theunit Bloch
sphere parametrised by the arc length s of 𝒮𝒮 such that s(s)
and h(s) satisfy

d
ds s = h × s (58)

and

h = s × d
ds s. (59)

(We will avoid the use of primes for derivatives in
this section in order to avoid misunderstandings.) Hence,
the triple

(︁
h, s, d

ds s
)︁
will be a right-handed orthonormal

frame for all values of the parameter s. It follows that

d
dsh

(59)= s × d2

ds2 s (60)

is orthogonal to h and s and hence must be proportional
to d

ds s:

d
dsh(s) = a(s) d

ds s, (61)

where a(s) is a smooth function. Moreover,

d2

ds2 s
(58)= d

ds (h × s) =
(︂
d
dsh

)︂
× s + h ×

(︂
d
ds s

)︂

(58,61)= a
(︂
d
ds s

)︂
× s + h × (h × s)

(59)= −a h − s, (62)

and hence

g ≡
(︂
s × d

ds s
)︂
· d2

ds2 s
(59,62)= −a h · h = −a. (63)

Now (58), (61), and (63) imply

d
dsh = −g d

ds s = (g s) × h ≡ s̃ × h. (64)

The latter equation has the form of (4) and hence can
be interpreted in such away that the “spin vector”hmoves
according to (4) under the influence of the “magnetic
field” s̃. In this sense, the role of classical spin and mag-
netic field is interchanged. However, in general, s̃ will not
be a unit vector, and swill not be the arc length parameter
of the loop ℋ.

The situation will be more symmetric if we addition-
ally pass from s to the arc length parameter of ℋ, denoted

by r. Then, the equation of motion for h(r) assumes the
form

d
drh =

ds
dr

d
dsh

(64)=
(︂
ds
dr g s

)︂
× h ≡ s × h. (65)

Now the new “magnetic field” s has unit length as it is
the vector product of two orthogonal unit vectors:

h × d
drh = h × (s × h) = s h · h⏟ ⏞ 

1

−h s · h⏟ ⏞ 
0

= s. (66)

This means that

‖s‖ =
⃦⃦
⃦⃦ds
dr g s

⃦⃦
⃦⃦ = ‖s‖ = 1, (67)

and hence

ds
dr =

⃒⃒
⃒⃒1
g

⃒⃒
⃒⃒. (68)

Together with (65), this implies

s(r) = ±s(r). (69)

If the role of 𝒮𝒮 and ℋ is interchanged, we obtain

dr
ds = |g| =

⃒⃒
⃒⃒ 1
G

⃒⃒
⃒⃒, (70)

where G is the geodesic curvature of ℋ:

G ≡ h ·
(︃
dh
dr × d2h

dr2

)︃
. (71)

Using (59) and (63), we may rewrite (62) as

d2

ds2 s = −s + g s × d
ds s. (72)

Then, it follows that

d
dsh

(60)= s × d2

ds2 s

(72)= g s ×
(︂
s × d

ds s
)︂

= −g d
ds s, (73)

and hence
⃦⃦
⃦⃦ d
dsh

⃦⃦
⃦⃦ = |g|. (74)

This means that, up to a possible sign, the geodesic
curvature differential g ds of 𝒮𝒮 equals the arc length dif-
ferential dr of ℋ. If g does not change its sign, both differ-
entials can be integrated and yield identical integrals, up
to a possible sign.

1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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4 Duality of Loops
Westartwith a loop𝒮𝒮 and its dual loopℋ on theunit Bloch
sphere parametrised by the arc length s of 𝒮𝒮 such that s(s)
and h(s) satisfy

d
ds s = h × s (58)

and

h = s × d
ds s. (59)

(We will avoid the use of primes for derivatives in
this section in order to avoid misunderstandings.) Hence,
the triple

(︁
h, s, d

ds s
)︁
will be a right-handed orthonormal

frame for all values of the parameter s. It follows that

d
dsh

(59)= s × d2

ds2 s (60)

is orthogonal to h and s and hence must be proportional
to d

ds s:

d
dsh(s) = a(s) d

ds s, (61)

where a(s) is a smooth function. Moreover,

d2

ds2 s
(58)= d

ds (h × s) =
(︂
d
dsh

)︂
× s + h ×

(︂
d
ds s

)︂

(58,61)= a
(︂
d
ds s

)︂
× s + h × (h × s)

(59)= −a h − s, (62)

and hence

g ≡
(︂
s × d

ds s
)︂
· d2

ds2 s
(59,62)= −a h · h = −a. (63)

Now (58), (61), and (63) imply

d
dsh = −g d

ds s = (g s) × h ≡ s̃ × h. (64)

The latter equation has the form of (4) and hence can
be interpreted in such away that the “spin vector”hmoves
according to (4) under the influence of the “magnetic
field” s̃. In this sense, the role of classical spin and mag-
netic field is interchanged. However, in general, s̃ will not
be a unit vector, and swill not be the arc length parameter
of the loop ℋ.

The situation will be more symmetric if we addition-
ally pass from s to the arc length parameter of ℋ, denoted

by r. Then, the equation of motion for h(r) assumes the
form

d
drh =

ds
dr

d
dsh

(64)=
(︂
ds
dr g s

)︂
× h ≡ s × h. (65)

Now the new “magnetic field” s has unit length as it is
the vector product of two orthogonal unit vectors:

h × d
drh = h × (s × h) = s h · h⏟ ⏞ 

1

−h s · h⏟ ⏞ 
0

= s. (66)

This means that

‖s‖ =
⃦⃦
⃦⃦ds
dr g s

⃦⃦
⃦⃦ = ‖s‖ = 1, (67)

and hence

ds
dr =

⃒⃒
⃒⃒1
g

⃒⃒
⃒⃒. (68)

Together with (65), this implies

s(r) = ±s(r). (69)

If the role of 𝒮𝒮 and ℋ is interchanged, we obtain

dr
ds = |g| =

⃒⃒
⃒⃒ 1
G

⃒⃒
⃒⃒, (70)

where G is the geodesic curvature of ℋ:

G ≡ h ·
(︃
dh
dr × d2h

dr2

)︃
. (71)

Using (59) and (63), we may rewrite (62) as

d2

ds2 s = −s + g s × d
ds s. (72)

Then, it follows that

d
dsh

(60)= s × d2

ds2 s

(72)= g s ×
(︂
s × d

ds s
)︂

= −g d
ds s, (73)

and hence
⃦⃦
⃦⃦ d
dsh

⃦⃦
⃦⃦ = |g|. (74)

This means that, up to a possible sign, the geodesic
curvature differential g ds of 𝒮𝒮 equals the arc length dif-
ferential dr of ℋ. If g does not change its sign, both differ-
entials can be integrated and yield identical integrals, up
to a possible sign.
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The curve 𝒮𝒮 will be called simple if its geodesic curva-
ture does not change its sign. In this case, we obtain

|𝒮𝒮𝒮∫︁

0

kg ds = ±|ℋ|, (75)

and, by means of (56) and (57),

ϵ(cl)g = ±|ℋ|
|𝒮𝒮𝒮 modω. (76)

The result (75) reminds of the relationship between the
geometric phase and the contracted length of the system’s
path in projective Hilbert space according to [25].

Summarising, we have two loops 𝒮𝒮 and ℋ on the unit
Bloch sphere that give rise to two different solutions of (4):
Either 𝒮𝒮 consists of spin vectors orℋ consists of magnetic
field vectors, and the time parameter t in (4) is chosen as
the arc length s of 𝒮𝒮. Or,ℋ consists of spin vectors and±𝒮𝒮
of magnetic field vectors, and the time parameter t in (4) is
chosen as the arc length parameter r of ℋ. This symmetry
between 𝒮𝒮 andℋ justifies the denotation as “dual loops.”

For both realisations of solutions of (4), we can cal-
culate the classical quasienergy denoted by ϵ(cl)S and ϵ(cl)H ,
respectively. It consists only of its geometric part as spin
vector and magnetic field will be orthogonal in both real-
isations. For the case of simple spin curves, (76) immedi-
ately implies that there are representatives ϵ(cl)S and ϵ(cl)H
such that

ϵ(cl)S = ± 1
ϵ(cl)H

, (77)

further illustrating the duality between 𝒮𝒮 and ℋ.
We note that there is still a minor asymmetry between

the curves𝒮𝒮 andℋ of a dual pair, insofar the two branches
±𝒮𝒮 occur only at the𝒮𝒮 side. Recall that both branches cor-
respond to physical solutions as (4) is invariant under the
reflection s −s. The introduction of ±ℋ would mean
that we consider both orientations of ±𝒮𝒮 on an equal
footing, as (4) is also invariant under the simultaneous
reflections h −h and t −t. Thus, the completely
symmetric duality would have to be defined between ±𝒮𝒮
and ±ℋ.

Still anotherway of looking at the duality of loops con-
sidered in this section would be based on the observation
that the equation ofmotion (4) canbe viewed as aHamilto-
nian equationwith a two-dimensional phase space S2 and
the time-dependent Hamiltonian

H(s, t) = h(t) · s, (78)

see [5]. In the special case where t is the arc length para-
meter of 𝒮𝒮, it follows that h(t) can be chosen as h(t) ∈ S2.
Due to the symmetry of the scalar product in (77), we
may then swap the role of h(t) and s(t) and regard (77)
as the Hamiltonian depending on the phase space vari-
able h ∈ S2 and the t-depending field s(t). Any solution
of the corresponding Hamiltonian equation can then be
interpreted in two different ways as explained above.

4.1 Example 1

In order to illustrate the notion of duality considered in
this section, we consider two examples. The first one is a
special case of theRabi problemwith circular polarisation.
Let

s(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√︀
1 − z2 cos

(︂
s√

1 − z2

)︂

√︀
1 − z2 sin

(︂
s√

1 − z2

)︂

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (79)

be the arc length parametrisation of a circle 𝒮𝒮 on S2 lying
in the plane z = const. with −1 < z < 1 and z ̸= 0. This
leads to

|𝒮𝒮𝒮 = 2π
√︀
1 − z2 ≡ 2π

ω . (80)

Then, (59) yields the parametrisation of the dual loop
ℋ:

h(s) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−z cos
(︂

s√
1 − z2

)︂

−z sin
(︂

s√
1 − z2

)︂

√
1 − z2

⎞
⎟⎟⎟⎟⎟⎟⎠
, (81)

satisfying

|ℋ| = 2 π |z| ≡ 2π
Ω . (82)

After some elementary calculations, we obtain

g =
(︂
s × d

ds s
)︂
· d2

ds2 s =
z√

1 − z2
, (83)

and hence, the first expression for the classical
quasienergy ϵ(cl)S reads

ϵ(cl1)S
(53)= 1

|𝒮𝒮𝒮

|𝒮𝒮𝒮∫︁

0

(−g) ds = −g = − z√
1 − z2

. (84)

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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The solid angle enclosed by 𝒮𝒮 will be

𝒜𝒜(𝒮𝒮) = 2π (1 − z) (55,75)= 2π ± |ℋ|, (85)

and hence, a second expression for ϵ(cl)S will be

ϵ(cl2)S
(57)= 𝒜𝒜(𝒮𝒮)

|𝒮𝒮𝒮 =
√
1 − z√
1 + z

. (86)

It satisfies

ϵ(cl2)S = ϵ(cl1)S + ω, (87)

and hence, both expressions (84) and (86) agree mod-
ulo ω.

The arc length parameter r corresponding to ℋ is
obtained as

r (68)= g s (83)= z√
1 − z2

s. (88)

After some elementary calculations, we obtain

G ≡
(︂
h × d

drh
)︂
· d2

dr2h =
√
1 − z2
z

(83)= 1
g , (89)

and hence, the first expression for the quasienergy ϵ(cl)H
reads

ϵ(cl1)H
(53)= 1

|ℋ|

|ℋ|∫︁

0

(−G) dr = −G (89)= −
√
1 − z2
z . (90)

The solid angle enclosed by ℋ will be

𝒜𝒜(ℋ) = 2π (1 −
√︀
1 − z2) (55,75)= 2π − |𝒮𝒮𝒮, (91)

and hence, a second expression for ϵ(cl)S is given by

ϵ(cl2)H
(57)= 𝒜𝒜(ℋ)

|ℋ| =
1 −

√
1 − z2

|z| . (92)

It satisfies

ϵ(cl2)H = ±ϵ(cl1)H + Ω, (93)

the± sign depending on the sign of z. Hence, both expres-
sions (90) and (93) agree up to a sign and modulo Ω.

Equation (77) holds for the present example as the
triple products g and G are constant and, due to (89),
inverses of each other.

In the case of 0 < z < 1, the curve 𝒮𝒮 of our example
generates a closed, convex cone 𝒞𝒞(𝒮𝒮) ⊂ 3, analogously
for the dual curveℋ. Then, it follows that 𝒞𝒞(ℋ) is the dual

coneof𝒞𝒞(𝒮𝒮) andvice versa.Here, thedual coneC′of a cone
C is defined by

C′ ≡ {x ∈ 3 | x · y ≥ 0 for all y ∈ C}, (94)

see, e.g. [26]. In this sense, our definition of dual curves
is compatible with the established notion of dual cones in

3.
Finally, we note that the magnetic field (81) can be

understood as a special case of the Rabi problem with cir-
cularly polariseddriving (23), ifwe set F = −z,ω = 1√

1−z2

and ω0 =
√
1 − z2. For this problem, the quasienergy ϵc

assumes the form

ϵc =
√︁
F2 + (ω0 − ω)2, (95)

see [5], (8) and taking into account that the quasienergy
of the classical Rabi problem is twice the quasienergy of
the s = 1/2 quantum Rabi problem modulo ω, see also
Proposition 1. In our case, it follows that

ϵc =

√︃
z2 +

(︂
1√

1 − z2
−

√︀
1 − z2

)︂2
=

|z|√
1 − z2

,

(96)

which agrees with (84) up to a possible sign.

4.2 Example 2

For the second example, we take a casewhere𝒮𝒮 is not sim-
ple, but of the form of the figure “8” (lemniscate) with a
self-intersection that is simultaneously a point of inflec-
tion. This example also shows that we need not explicitly
calculate the arc length parameters s of𝒮𝒮 or r ofℋ butmay
work within the initial parametrisation. Let the figure “8”
curve be given by the parametrisation

s(τ) =
1√︀

sin2(τ) + sin2(2τ) + 1

⎛
⎜⎜⎜⎜⎝

sin τ

sin 2 τ

1

⎞
⎟⎟⎟⎟⎠
, (97)

where τ ∈ [0, 2π]. We calculate the dual loop ℋ ∈ S2 by

h(τ) =
1⃦⃦

⃦ ds
dτ

⃦⃦
⃦
s × ds

dτ , (98)

analogously to (59) but without directly using the arc
length parameter s. This and the following expressions
can be easily obtained by a computer algebra software but
are too involved to be displayed here. The loop ℋ is dis-
played in Figure 2. It shows two cusps corresponding to

1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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The solid angle enclosed by 𝒮𝒮 will be

𝒜𝒜(𝒮𝒮) = 2π (1 − z) (55,75)= 2π ± |ℋ|, (85)

and hence, a second expression for ϵ(cl)S will be

ϵ(cl2)S
(57)= 𝒜𝒜(𝒮𝒮)

|𝒮𝒮𝒮 =
√
1 − z√
1 + z

. (86)

It satisfies

ϵ(cl2)S = ϵ(cl1)S + ω, (87)

and hence, both expressions (84) and (86) agree mod-
ulo ω.

The arc length parameter r corresponding to ℋ is
obtained as

r (68)= g s (83)= z√
1 − z2

s. (88)

After some elementary calculations, we obtain

G ≡
(︂
h × d

drh
)︂
· d2

dr2h =
√
1 − z2
z

(83)= 1
g , (89)

and hence, the first expression for the quasienergy ϵ(cl)H
reads

ϵ(cl1)H
(53)= 1

|ℋ|

|ℋ|∫︁

0

(−G) dr = −G (89)= −
√
1 − z2
z . (90)

The solid angle enclosed by ℋ will be

𝒜𝒜(ℋ) = 2π (1 −
√︀
1 − z2) (55,75)= 2π − |𝒮𝒮𝒮, (91)

and hence, a second expression for ϵ(cl)S is given by

ϵ(cl2)H
(57)= 𝒜𝒜(ℋ)

|ℋ| =
1 −

√
1 − z2

|z| . (92)

It satisfies

ϵ(cl2)H = ±ϵ(cl1)H + Ω, (93)

the± sign depending on the sign of z. Hence, both expres-
sions (90) and (93) agree up to a sign and modulo Ω.

Equation (77) holds for the present example as the
triple products g and G are constant and, due to (89),
inverses of each other.

In the case of 0 < z < 1, the curve 𝒮𝒮 of our example
generates a closed, convex cone 𝒞𝒞(𝒮𝒮) ⊂ 3, analogously
for the dual curveℋ. Then, it follows that 𝒞𝒞(ℋ) is the dual

coneof𝒞𝒞(𝒮𝒮) andvice versa.Here, thedual coneC′of a cone
C is defined by

C′ ≡ {x ∈ 3 | x · y ≥ 0 for all y ∈ C}, (94)

see, e.g. [26]. In this sense, our definition of dual curves
is compatible with the established notion of dual cones in

3.
Finally, we note that the magnetic field (81) can be

understood as a special case of the Rabi problem with cir-
cularly polariseddriving (23), ifwe set F = −z,ω = 1√

1−z2

and ω0 =
√
1 − z2. For this problem, the quasienergy ϵc

assumes the form

ϵc =
√︁
F2 + (ω0 − ω)2, (95)

see [5], (8) and taking into account that the quasienergy
of the classical Rabi problem is twice the quasienergy of
the s = 1/2 quantum Rabi problem modulo ω, see also
Proposition 1. In our case, it follows that

ϵc =

√︃
z2 +

(︂
1√

1 − z2
−

√︀
1 − z2

)︂2
=

|z|√
1 − z2

,

(96)

which agrees with (84) up to a possible sign.

4.2 Example 2

For the second example, we take a casewhere𝒮𝒮 is not sim-
ple, but of the form of the figure “8” (lemniscate) with a
self-intersection that is simultaneously a point of inflec-
tion. This example also shows that we need not explicitly
calculate the arc length parameters s of𝒮𝒮 or r ofℋ butmay
work within the initial parametrisation. Let the figure “8”
curve be given by the parametrisation

s(τ) =
1√︀

sin2(τ) + sin2(2τ) + 1

⎛
⎜⎜⎜⎜⎝

sin τ

sin 2 τ

1

⎞
⎟⎟⎟⎟⎠
, (97)

where τ ∈ [0, 2π]. We calculate the dual loop ℋ ∈ S2 by

h(τ) =
1⃦⃦

⃦ ds
dτ

⃦⃦
⃦
s × ds

dτ , (98)

analogously to (59) but without directly using the arc
length parameter s. This and the following expressions
can be easily obtained by a computer algebra software but
are too involved to be displayed here. The loop ℋ is dis-
played in Figure 2. It shows two cusps corresponding to
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Figure 2: Illustration of example 2 for duality of loops. The blue
(grey) curve represents the orbit 𝒮𝒮 of a time-dependent spin func-
tion s(τ) according to (97); the red (dark) one is the dual loop of ℋ
of magnetic field vectors. If we iterate the construction we obtain for
the bidual the two green dashed curves ℛ that locally coincide with
𝒮𝒮 or −𝒮𝒮.

the point of self-intersection of 𝒮𝒮. These cusps necessarily
occur according to the following reasoning: At the point of
self-intersection corresponding to the values τ = 0, π of
the parameter, the geodesic curvature g of 𝒮𝒮 changes its
sign (Fig. 3). According to (69), the geodesic curvature G of
ℋmust diverge at τ = 0, π, which explains the two cusps.

The curve 𝒮𝒮 can be divided into the parts 𝒮𝒮1 and 𝒮𝒮2
that have in common only the point of self-intersection.
The corresponding parts of ℋ are denoted by ℋi, i = 1, 2.
Both parts 𝒮𝒮i encircle solid angles𝒜𝒜(𝒮𝒮i) ≈ ±4.64172 that

π/2 3 π/2 2ππ

τ

Figure 3: Plot of the geodesic curvature g of 𝒮𝒮 (blue/dark curve), G
of ℋ (orange/grey curve), and the product gG (green dashed lines)
as a function of τ. The data are the same as for Figure 2. According
to (70), the product gGmust have the absolute value 1.

correspond to the length of the ℋi. But due to the dif-
ferent signs, the total solid angle and the corresponding
quasienergy vanish.

Interestingly, if we calculate the “bidual” loop ℛ
according to

r(τ) =
1⃦⃦

⃦ dh
dτ

⃦⃦
⃦
h × dh

dτ , (99)

then, we obtain two disjoint curves that locally coincide
with−𝒮𝒮1 and𝒮𝒮2 (Fig. 2), again illustrating that the duality
should be properly defined between ±𝒮𝒮 and ±ℋ.

5 Summary and Outlook
We have considered some geometrical aspects of the clas-
sical Rabi problem with arbitrary periodic driving. The
classical equation ofmotion can be viewed in its own right
as a case where Floquet theory can be applied, without
resort to the underlying Schrödinger equation. In contrast
to the latter, it has always some periodic solutions. This
leads to the definition of the classical quasienergy ϵ(cl)

that has an integral representation in terms of the periodic
solution andpossesses a natural splitting into a dynamical
part ϵ(cl)d and a geometrical one ϵ(cl)g . The latter is essen-
tially a geometrical phase on the Bloch sphere and can
be related to the solid angle swept by the classical spin
during one period via the theorem of Gauss–Bonnet. If we
focus on the loops ±𝒮𝒮 swept by periodic solutions of the
classical Rabi problem without fixing its parametrisation
by the time parameter t, we may assume that ±𝒮𝒮 is pro-
duced by a pair of loops±ℋ representing time-dependent
magnetic fields of unit length. Upon using the respective
arc length parameters, the role of spin and magnetic field
canbe interchanged.Wehave further analysed this duality
between ±𝒮𝒮 and ±ℋ that in the case of curves ±𝒮𝒮 with-
out points of inflection even leads to pairs of reciprocal
quasienergies.

It is not straightforward to assess the possible benefits
of the present results for concrete physical problems, also
because of the diversity of such problems. However, as a
rule, the solutions of the equations of motion of the classi-
cal spin can be more directly visualised than the solutions
of the corresponding Schrödinger equation. Although this
advantage is lost in higher-dimensional Hilbert spaces, it
would be instructive to investigate which geometric prop-
erties remain invariant if we pass from the Bloch sphere to
a higher-dimensional projective Hilbert space. The latter
is known to be a Kähler manifold that carries two related
structures, a Riemannian and a symplectic one, which

2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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[27, 28].
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Appendix A: Proof of the Integral
Representation of the Classical
Quasienergy
We use the abbreviation

v(t)2 ≡ ṡ(t) · ṡ(t) ⇒ v v̇ = ṡ · s̈, (100)

and expand themagnetic field with respect to the e frame,
defined in (38–40):

h(t) =
3∑︁

i=1
ki(t)e(i)(t). (101)

The equation

ṡ (39)= v e(2)

(4)= h × s =
(︁
k1e(1) + k2e(2) + k3e(3)

)︁
× e(1)

= −k2e(3) + k3e(2) (102)

immediately implies

k2 = 0, k3 = v, (103)

and moreover,

k1 = h · s. (104)

Wewill also expand s̈with respect to thee frame. First,
we obtain

ṡ · s = 0 ⇒ ṡ · ṡ + s̈ · s = 0 ⇒ s̈ · s = −v2. (105)

Second,

s̈ · e(3) = s̈ ·
(︁
e(1) × e(2)

)︁
= s̈ ·

(︂
s × 1

v ṡ
)︂

=
1
v s · (ṡ × s̈) ≡ g

v , (106)

where we have abbreviated the triple product s · (ṡ × s̈) by
g. Together with (100), the last two equations yield

s̈ = −v2 e(1) + v̇ e(2) + g
v e

(3). (107)

With this, we can evaluate the t derivatives of the e
frame vectors in the following way:

ė(2) =
d
dt

ṡ
v = − v̇

v2 ṡ +
1
v s̈

(107)= −v e(1) + g
v2 e

(3), (108)

ė(3) (40)= ė(1) × e(2) + e(1) × ė(2)

=
1
v ṡ × ṡ⏟  ⏞  

0

+
g
v2 e

(1) × e(3)

= − g
v2 e

(2). (109)

The t derivative of s(2)(t) can now be calculated in two
different ways:

ṡ(2) (4)= h × s(2)

=
(︁
(h · s) e(1) + v e(3)

)︁

×
(︁
cos α e(2) + sin α e(3)

)︁

= −v cos α e(1) − (h · s) sin α e(2)

+ (h · s) sin α e(3), (110)

and

ṡ(2) (44)= −α̇ sin α e(2) + cos α ė(2)

+ α̇ cos α e(3) + sin α ė(3)

= α̇
(︁
−sin α e(2) + cos α e(3)

)︁

+ cos α
(︁
−v e(1) + g

v2 e
(3)

)︁

− sin α g
v2 e

(2). (111)

Comparing the e(2) components of (110) and (111)
yields the expression for α̇ we are looking for:

α̇ = (h · s) − g
v2 = (h · s) − s · (ṡ × s̈)

ṡ · ṡ . (112)

This shows that α(t) can be obtained as an integral
over the right-hand side of (112) that is a function of s(t)
and its first two derivatives:

α(t) =

t∫︁

0

(︂
(h · s) − s · (ṡ × s̈)

ṡ · ṡ

)︂
dt′, (113)

1996; Peduzzi et al. 1996; King and Zeng 2001; Harrell 2001; Braitman and Rosenbaum 2002; Cepeda et al.
2003; Vittinghoff and McCulloch 2007). For example, simulations by Peduzzi et al. (1996) illustrated that
estimates could be biased and inference unreliable if the number of outcomes per independent variable in
the regression model was less than 10. The authors also found problems with estimator convergence,
statistical power and the validity of significance tests (i. e. type I error rates and confidence interval
coverage). Harrell et al. (1996) cautioned against over-fitting and encouraged the use of cross-validation
or bootstrapping for model validation. Moreover, King and Zeng (2001) found that standard logistic models
could substantially under-estimate the probability of the outcome and offered a bias correction with
accompanying software.

When dealing with rare events, several researchers have recommended estimators based on the
propensity score, which is the conditional probability of being exposed, given the covariates (Rosenbaum
and Rubin 1983). These methods avoid estimation of the conditional mean outcome and thereby are
expected to perform well when there are very few outcome events (e. g. Joffe and Rosenbaum 1999;
Braitman and Rosenbaum 2002; Patorno et al. 2014). Simulations by Cepeda et al. (2003) suggested that
propensity score methods were less biased and more efficient than logistic regression for the mean
outcome, when the number of events per independent variable in the regression model was less than 8.
The authors also cautioned that the performance of propensity score methods depended on the strength of
the relationship between the covariates and the exposure.

Targeted minimum loss-based estimation (TMLE) is a general methodology for the construction of
semiparametric, efficient substitution estimators (van der Laan and Rubin 2006; van der Laan and Rose
2011). A TMLE for a single time point exposure can be implemented as follows. First, the conditional
expectation of the outcome, given the exposure and covariates, is estimated with parametric regression or
with a more flexible approach, such as SuperLearner (van der Laan et al. 2007). Second, information on the
exposure-covariate relation (i. e. the propensity score) is incorporated to improve this initial estimator. The
propensity score can also be estimated parametrically or with a more flexible approach. Informally, this
“targeting” step helps remove some of the residual bias due to incomplete adjustment for confounding.
More formally, this targeting step serves to solve the efficient score equation. Finally, the targeted predic-
tions of the outcome under the exposure and under no exposure are averaged over the sample and
contrasted on the relevant scale.

Thereby, TMLE requires estimation of both the conditional mean outcome as well as the propensity
score, and achieves a number of desirable asymptotic properties (van der Laan and Rose; 2011). The
standardized estimator is asymptotically normal with mean 0 and variance given by the variance of its
influence curve. The TMLE is also double robust: if either the conditional mean outcome or the
propensity score is consistently estimated, we will have a consistent estimate of the parameter of
interest. If both functions are consistently estimated (at a fast enough rate), the TMLE will be efficient
and achieve the lowest possible asymptotic variance among a large class of estimators. Finally, TMLE is
a substitution estimator, providing robustness in the face of positivity violations (when there is no or
little variability in the exposure within certain covariate strata) and rare outcomes (e. g. Stitelman and
van der Laan 2010; Gruber and van der Laan 2010; Sekhon et al. 2011; Petersen et al. 2012; Gruber and
van der Laan 2013; Lendle et al. 2013). Building on the work of Gruber and van der Laan (2010), this
paper proposes a new TMLE for the semiparametric statistical model m, which imposes bounds on the
conditional mean of the outcome, given the exposure and measured confounders. We focus our
discussion on rare binary outcomes and rare bounded continuous outcomes (e. g. proportions). The
estimation problem and the theoretical motivation for the new TMLE are outlined in Section 2. In
particular, the causal parameter, the corresponding statistical parameter, the statistical model and the
efficient influence curve are discussed. Section 3 presents the rationale and procedure for the rare
outcomes TMLE. Simulations and the applied analysis are given in the Section 4. The article concludes
with a discussion of the advantages and disadvantages of the proposed method as well as areas for
future work.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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can be used to obtain geometric phases in different ways
[27, 28].
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Appendix A: Proof of the Integral
Representation of the Classical
Quasienergy
We use the abbreviation

v(t)2 ≡ ṡ(t) · ṡ(t) ⇒ v v̇ = ṡ · s̈, (100)

and expand themagnetic field with respect to the e frame,
defined in (38–40):

h(t) =
3∑︁

i=1
ki(t)e(i)(t). (101)

The equation

ṡ (39)= v e(2)

(4)= h × s =
(︁
k1e(1) + k2e(2) + k3e(3)

)︁
× e(1)

= −k2e(3) + k3e(2) (102)

immediately implies

k2 = 0, k3 = v, (103)

and moreover,

k1 = h · s. (104)

Wewill also expand s̈with respect to thee frame. First,
we obtain

ṡ · s = 0 ⇒ ṡ · ṡ + s̈ · s = 0 ⇒ s̈ · s = −v2. (105)

Second,

s̈ · e(3) = s̈ ·
(︁
e(1) × e(2)

)︁
= s̈ ·

(︂
s × 1

v ṡ
)︂

=
1
v s · (ṡ × s̈) ≡ g

v , (106)

where we have abbreviated the triple product s · (ṡ × s̈) by
g. Together with (100), the last two equations yield

s̈ = −v2 e(1) + v̇ e(2) + g
v e

(3). (107)

With this, we can evaluate the t derivatives of the e
frame vectors in the following way:

ė(2) =
d
dt

ṡ
v = − v̇

v2 ṡ +
1
v s̈

(107)= −v e(1) + g
v2 e

(3), (108)

ė(3) (40)= ė(1) × e(2) + e(1) × ė(2)

=
1
v ṡ × ṡ⏟  ⏞  

0

+
g
v2 e

(1) × e(3)

= − g
v2 e

(2). (109)

The t derivative of s(2)(t) can now be calculated in two
different ways:

ṡ(2) (4)= h × s(2)

=
(︁
(h · s) e(1) + v e(3)

)︁

×
(︁
cos α e(2) + sin α e(3)

)︁

= −v cos α e(1) − (h · s) sin α e(2)

+ (h · s) sin α e(3), (110)

and

ṡ(2) (44)= −α̇ sin α e(2) + cos α ė(2)

+ α̇ cos α e(3) + sin α ė(3)

= α̇
(︁
−sin α e(2) + cos α e(3)

)︁

+ cos α
(︁
−v e(1) + g

v2 e
(3)

)︁

− sin α g
v2 e

(2). (111)

Comparing the e(2) components of (110) and (111)
yields the expression for α̇ we are looking for:

α̇ = (h · s) − g
v2 = (h · s) − s · (ṡ × s̈)

ṡ · ṡ . (112)

This shows that α(t) can be obtained as an integral
over the right-hand side of (112) that is a function of s(t)
and its first two derivatives:

α(t) =

t∫︁

0

(︂
(h · s) − s · (ṡ × s̈)

ṡ · ṡ

)︂
dt′, (113)
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using that α(0) = 0according to the initial conditions (42).
From this, (46) follows immediately.

Note that we have not used the fact that s(t) would be
T-periodic. These calculations also show that if one solu-
tion s(t) of (4) is given, then the other two solutions with
orthogonal initial conditions can be obtained by means of
certain integrals.
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2 The estimation problem

We are interested in estimating the impact of a binary exposure A on the risk of a rare outcome Y . For
example, Y might be an indicator that the subject develops tuberculosis with an incidence rate of 255/
100,000 per person-year in Sub-Saharan Africa (World Health Organization 2013). Alternatively, Y might be
the one-year cumulative incidence of tuberculosis for a given community. In the latter scenario, the
outcome Y is a proportion bounded between ½0, 1�. Suppose we measure some baseline characteristics W
that are predictors of both the exposure and outcome. In other words, W represents the set of measured
confounders. Let O= ðW,A,YÞ denote the observed data random variable with distribution P0. Throughout,
subscript 0 denotes the true, but unknown distribution.

To translate our scientific question into a causal parameter, let us define Ya as the counterfactual
outcome, if possibly contrary-to-fact, the unit received exposure A= a (Neyman 1923; Rubin 1974; Pearl
2000). We assume these quantities exist for all units both under the exposure ðA= 1Þ and under no exposure
ðA=0Þ. To relate the observed outcomes to the counterfactual outcomes, we need the stable unit treatment
value assumption (SUTVA) (Rubin 1978; 1980): (1) the counterfactual outcomes for one unit must not be
impacted by the treatment assignment of another unit (i. e. no interference), and (2) there must not be
multiple versions of the treatment A= a. Under this assumption, we have

Y =AY1 + ð1−AÞY0.

In words, we only observe the counterfactual outcome corresponding to the observed treatment YA =Y .
Thereby, the observed data can be considered as a time-ordered missing data structure on the full data
XF = ðW,Y1,Y0Þ⁓PX, with the exposure A as the censoring variable (Neyman 1923; Rubin 1974). Throughout
our goal is to estimate and obtain inference for the population average treatment effect:

ΨFðPXÞ=EðY1Þ− EðY0Þ.
This causal parameter is the difference in expected counterfactual outcomes if everyone in the target
population were exposed and if everyone in that target population were unexposed. For a binary outcome,
ΨFðPXÞ corresponds to the causal risk difference: PðY1 = 1Þ− PðY0 = 1Þ.

To express ΨFðPXÞ as a function of the observed data distribution P0, we need several assumptions.
First, there must be no unmeasured confounders of the effect of the exposure on the outcome (Rosenbaum
and Rubin 1983; Robins 1986). Secondly, there must be sufficient variability in the treatment assignment.
In other words, the propensity score P0ðA= 1jWÞ must be bounded away from 0 and 1. This condition is
known as the positivity assumption. Under these assumptions, we can express the causal parameter in
terms of the difference in the conditional mean outcomes, averaged (standardized) with respect to the
covariate distribution (Robins 1986):

ΨðP0Þ=
X
w

E0ðY jA= 1,W =wÞ −E0ðY jA=0,W =wÞ½ �P0ðW =wÞ

= E0
�Q0ð1,WÞ− �Q0ð0,WÞ� �

where the summation generalizes to the integral for continuous covariates and �Q0ðA,WÞ=E0ðY jA,WÞ
denotes the conditional mean outcome, given the exposure and covariates. For a binary outcome ΨðP0Þ
is sometimes called the marginal risk difference.

The challenge, addressed in this paper, is estimation of ΨðP0Þ in the context of extremely rare outcomes
and high dimensional covariates W . This challenge is illuminated by studying the efficient influence curve
(function) of the target parameter Ψ at the true probability distribution P0 (Bickel et al. 1993; van der Laan
and Rose 2011):

D*ðP0ÞðOÞ= IðA= 1Þ
P0ðA= 1jWÞ −

IðA=0Þ
P0ðA=0jWÞ

� �
ðY − �Q0ðA,WÞÞ+ �Q0ð1,WÞ− �Q0ð0,WÞ−ΨðP0Þ (1)
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