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Abstract:We studied the non-isothermal flow of an incom-
pressible viscous fluid through a porous tube. Motivated
by filtration problems, Darcy’s law was incorporated on
the walls of the tube and the flow was pressure driven.
The main goal was to investigate the thermodynamic part
of the system, assuming that the hydrodynamic part is
known. In view of the applications we wanted to model,
the fluid inside the tube was supposed to be cooled (or
heated) by the surrounding medium. Using asymptotic
analysis with respect to the small parameter (being the
ratio between the tube’s thickness and its length), we con-
structed the explicit second-order approximation for the
temperature distribution of the fluid. Numerical examples
are provided to compare the obtained solution with the
one derived for a rigid tube and also to show the correc-
tions due to higher-order terms.

Keywords: Asymptotic Approximation; Darcy’s Law; Heat
Flow; Numerical Examples; Porous Tube.

1 Introduction
Pressure-driven flows through cylindrical domains with
porous walls have raised considerable interest due to their
practical significance. Such flows appear in numerous
applications with filtration systems incorporated, namely
in industrial devices for irrigation,medical devices for arti-
ficial kidney analysis, transpiration cooling systems, etc.
In those systems, the filtration process naturally occurs
when fluid is pumped axially through a tubular mem-
brane, forcing the purified filtrate to exit through themem-
brane while the concentrate exits downstream. Fluid flow
in porous tubes has been extensively studied by many
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researchers, mostly in isothermal regimes where temper-
ature variations of the fluid have been neglected. The goal
of the present study was to investigate the non-isothermal
flow, i.e. to explore the behaviour of the fluid temperature,
in a porous tubular membrane.

Dealing with non-isothermal flows in a tube with
porous walls is very challenging from the analytical point
of view. The problem is described by a complex non-linear
system of partial differential equations in which Navier–
Stokes equations are coupled with heat conduction equa-
tions. Moreover, coupling between the transmembrane
pressure and the velocity should also be taken into con-
sideration. If one aims to analytically address such flows,
certain decoupling in the original systemmust take place.
In view of that, in the present paper we are going to con-
sider only the thermodynamic part of the system, assum-
ing that the velocity distribution is known and given by
the solution proposed by Tilton et al. [1]. This means that
the governing problem is described by the non-steady heat
equation with a given velocity in the convection term (see
Section 2). To be in linewith the above-mentioned applica-
tions, we assume that the tube is plunged in the medium
whose temperature differs from the fluid temperature
inside the tube. We describe this particular heat exchange
process by the Newton cooling condition prescribed on
the permeable walls of the tube. A small parameter ε is
naturally introduced into the problem, denoting the ratio
between the tube’s thickness and its length. Considering
the flow in a tube, which is either very thin or very long, is
reasonable from the point of view of the applications and
allows us to perform asymptotic analysis with respect to ε.
There are a number of papers concerning the derivation
of asymptotic models for fluid flows through a tube with
rigid walls. An asymptotic model for the heat flow through
a thin cooled pipe filled with a micropolar fluid has been
derived in [2]. The effects of strong convection on the cool-
ing process for a long or thin pipe were considered in [3]
and [4], respectively, where the corresponding asymptotic
models have been rigorously derived and justified. Finally,
the rigorous derivation of the models for the heat transfer
in a laminar flow through a helical and a distorted pipe
has been provided in [5] and [6], respectively. Therefore,
starting from the non-dimensional setting and employ-
ing the approach we developed for fluid flows through
tubes with rigid walls in the papers mentioned above, we
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managed to derive a second-order approximation for the
temperature distribution via a two-scale expansion tech-
nique (see Section 3). Being in explicit form, the solution
indicates how the exterior temperature and the coupling
between the transmembrane pressure and velocity affect
the heat flow inside the tube. Those effects can be clearly
visualised as shown in Section 4 containing the numerical
examples.

To the best of our knowledge, analytical results have
been reported only for isothermal regimes in which tem-
perature variations of the fluid inside the tube are not
taken into account. The pioneer results were from Berman
[7] and Regirer [8]. Thereafter, one can find many papers
addressing isothermal flows; we refer the reader to [1, 9–
16]. Allow us to emphasise the paper by Tilton et al. [1],
which directly inspired the current study. In [1], Darcy’s
law, u = km

µh p, has been incorporated on the permeable
surface, and, for the first time, thehigher-order corrections
in the asymptotic solution for the velocity are reported.
Here, km stands for the membrane permeability, h denotes
the membrane thickness, and µ the dynamic viscosity of
the fluid. For the reader’s convenience, we recover this
solution in Appendix and use it as the entering veloc-
ity in our heat conduction problem. Concerning the non-
isothermal regimes of the flow, in the existing literature
one can find only the results based on experiments or
numerical simulations (see, e.g. [17–23]). In view of that,
this is the first attempt to analytically address the heat
transfer in porous tubes and obtain explicit formulae for
the solution, which represents our main contribution. We
strongly believe that the proposed explicit approximation
for the temperature distribution could prove useful in real-
world applications, primarily in the design and optimisa-
tion of filtration systems naturally appearing in industrial
devices for irrigation, medical devices for artificial kidney
analysis, transpiration cooling systems, etc.

2 The Governing Problem
We consider the flow of an incompressible viscous fluid
in a circular tube Ω with permeable walls, length L, and
radius R (see Fig. 1). We introduce the small parameter as
the ratio ε = R

L implying that the considered tube is either
very thin or very long. Next, we take into account the heat
exchange between the surrounding medium and the fluid
inside the tube by prescribing Newton’s cooling condition
on the lateral boundary. Supposing the flow is axisymmet-
ric, our aimwas to study the heat flow in Ω, assuming that
the fluid velocity is known. In view of that, we address the

Figure 1: Flow configuration.

following non-steady convection–diffusion problem in Ω:

ρCp
(︂
∂T
∂t + u ∂T∂r + w∂T

∂z

)︂
= k

(︂
∂2T
∂r2 +

1
r
∂T
∂r +

∂2T
∂z2

)︂
,

(1)

k ∂T∂r = β(G(z, t) − T) for r = R . (2)

Here, T(r, z, t) is the unknown fluid temperature, ρ
is the fluid density, while Cp, k, and β are the positive
constants denoting the specific heat capacity at constant
pressure, the thermal conductivity, and the heat transfer
coefficient, respectively. We assume that the axial w(r, z)
and radial u(r, z) components of the velocity field are
known in the system and given by the solution derived in
[1] (see Appendix).

As mentioned above, in order to describe the cooling
and heating process at the lateral boundary of the circu-
lar tube, we employ the well-known Newton’s cooling law.
The exterior temperature G(z, t) is assumed to be known
in the Robin boundary condition (2), and its relation to the
temperature of the fluid determines whether the process
of heating or cooling will take place. Finally, we prescribe
temperatures at the ends of the tube:

T = θi(t) for z = i, i = 0, L, (3)

and impose the initial condition T(r, z, 0) = T0(r, z). The
prescribing of the temperature at the ends of the tube is
mathematically justified, as it leads to a closure of the
governing problem. Due to the fact that the velocity field
enters into the problem as a known function, the consid-
ered problem is linear, so the existence and uniqueness of
results can be deduced via standard techniques (see, e.g.
[24]). Still, there is no hope to derive the exact solution;
thus, in the sequel, we want to construct the higher-order
asymptotic approximation for temperature distribution.

As usual, we shall work in a non-dimensional setting.
In view of that, we introduce the non-dimensionalised
space variables

ẑ =
z
L , r̂ =

r
R ,
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whereas the time is rescaled as

t̂ =
k

L2Cpρ
t =

ε2k
R2Cpρ

t .

Correspondingly, the functions in non-dimensional
form are given by

û =
u

εw0
, ŵ =

w
w0

, T̂ =
T
Tref

,

where

w0 =
1

πR2

R∫︁
0

2πwrdr =
2
R2

R∫︁
0

wrdr,

is the mean axial velocity at z = 0 and Tref denotes
the characteristic temperature. We also introduce the
Reynolds and Prandtl numbers as

Re =
2Rw0

ν
, Pr =

ρνCp
k , (4)

with ν = µ
ρ being the kinematic viscosity.

It is important to emphasise at this point that, in view
of the applications, the typical range for the Reynolds
number is from 102 for a laminar flow up to 106 for a tur-
bulent flow, while the range of the Prandtl number is from
10−2 for mercury up to 105 for polymer melts. In order to
be consistent with the work presented in [1], the illustra-
tions in Section 4 have been presented for fixed Reynolds
number equal to 150 and Prandtl number equal to 4.8.

We now obtain from (1), after multiplying with R2

k , the
following:

ε2 ∂T̂
∂t̂

+
ερCpRw0

k û ∂T̂∂r̂ +
ρCpR2w0

kL ŵ ∂T̂
∂ẑ

=
∂2T̂
∂r̂2 +

1
r̂
∂T̂
∂r̂ + ε2 ∂

2T̂
∂ẑ2 .

Taking into account (4), we rewrite the above equation
in the following way:

ε2 ∂T̂
∂t̂

+
εPrRe
2

(︃
û ∂T̂∂r̂ + ŵ ∂T̂

∂ẑ

)︃

=
∂2T̂
∂r̂2 +

1
r̂
∂T̂
∂r̂ + ε2 ∂

2T̂
∂ẑ2 . (5)

Similarly, Newton’s cooling condition (2) can be writ-
ten in non-dimensional form as

∂T̂
∂r̂ = εNu(Ĝ(ẑ, t̂) − T̂) for r̂ = 1. (6)

Here, Ĝ = G
Tref , while Nu = βLk−1 stands for the Nus-

selt number. The Nusselt number typically ranges from 1
to 10 for a laminar flow, while for a turbulent flow the
ranges are usually from 102 to 103. Again, in order to be
consistent with the work provided in [1], we present the
illustration in Section 4 for a fixed Nusselt number 4.8.

3 Asymptotic Analysis
We expand the temperature T̂ in powers of ε in the follow-
ing way:

T̂(ẑ, r̂, t̂) = T̂0(ẑ, r̂, t̂) + εT̂1(ẑ, r̂, t̂)

+ ε2T̂2(ẑ, r̂, t̂) + · · · . (7)

Substituting the expansion (7) into the systems (5) and
(6) and collecting the zero-order terms, we obtain

1 : ∂2T̂0
∂r̂2 +

1
r̂
∂T̂0
∂r̂ = 0 ,

1 : ∂T̂0
∂r̂ = 0 for r̂ = 1.

We conclude that T̂0 is independent of r̂, i.e. T̂0 =
T̂0(ẑ, t̂). This means that the heat flow is mostly in the
axial direction, which was to be expected. Nevertheless,
we continue the computation and seek for thehigher-order
terms. The O(ε) terms yield the problem for the first-order
corrector T̂1:

ε : ∂2T̂1
∂r̂2 +

1
r̂
∂T̂1
∂r̂ =

PrRe
2 ŵ0

∂T̂0
∂ẑ ,

ε : ∂T̂1
∂r̂ = Nu(Ĝ − T̂0) for r̂ = 1, (8)

where ŵ0 = −1
4 (1 − r̂2) ∂p̂0∂ẑ is the zero-order approxima-

tion for the axial velocity. Here, the zero-order approxi-
mation for the pressure is given by p̂0(z) = −2 sinh(4ẑ) +
P̂tm cosh(4ẑ), with P̂tm being the non-dimensional trans-
membrane pressure at ẑ = 0 (see Appendix).

The compatibility condition ensuring the existence of
the solution to problem (8) gives⎛⎝−

1∫︁
0

1
4(1 − r̂2)r̂dr̂

⎞⎠PrRe
2

∂p̂0
∂ẑ

∂T̂0
ẑ = Nu(Ĝ − T̂0).

After simple integration, we obtain

− PrRe
2

∂p̂0
∂ẑ

∂T̂0
∂ẑ = 16Nu(Ĝ − T̂0), (9)
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leading to

∂T̂0
∂ẑ = −32Nu(Ĝ − T̂0)

PrRe ∂p̂0∂ẑ

.

In view of that, the system (8) becomes

∂2T̂1
∂r̂2 +

1
r̂
∂T̂1
∂r̂ = 4(1 − r̂2)Nu(Ĝ − T̂0),

∂T̂1
∂r̂ = Nu(Ĝ − T̂0) for r̂ = 1.

It can be solved by taking

T̂1(ẑ, r̂, t̂) =
(︂
r̂2 − r̂4

4

)︂
Nu(Ĝ − T̂0) + Ĉ(ẑ, t̂), (10)

where Ĉ(ẑ, t̂) is anunknown function,whichwedetermine
later from the compatibility condition related to the system
for the second-order corrector T̂2.

Let us now solve (9). Applying the expression for the
pressure

p̂0(ẑ) = −2 sinh(4ẑ) + P̂tm cosh(4ẑ), (11)

into (9), we get

∂T̂0
∂ẑ − 16Nu

PrRe(P̂tm − 2)
e4ẑ

e8ẑ − P̂tm+2
P̂tm−2

T̂0

= − 16Nu
PrRe(P̂tm − 2)

e4ẑ

e8ẑ − P̂tm+2
P̂tm−2

Ĝ(ẑ, t̂).

For fixed t̂ ∈ (0, 1), the above equation can be viewed
as an ordinary differential equation (ODE) for T̂0 with
respect to ẑ ∈ (0, 1). Thus, the solution reads:

T̂0(ẑ, t̂)

= A(t)

⎛⎜⎜⎝ e4ẑ −
√︂

P̂tm+2
P̂tm−2

e4ẑ +
√︂

P̂tm+2
P̂tm−2

⎞⎟⎟⎠
2Nu

PrRe(P̂tm−2)
1√︃

P̂tm+2
P̂tm−2

−

⎛⎜⎜⎝ e4ẑ −
√︂

P̂tm+2
P̂tm−2

e4ẑ +
√︂

P̂tm+2
P̂tm−2

⎞⎟⎟⎠
2Nu

PrRe(P̂tm−2)
1√︃

P̂tm+2
P̂tm−2

ẑ∫︁
0

16Nu
PrRe(P̂tm−2)

Ĝ(ξ , t̂)e4ξ
⎛⎝e4ξ−

√︂
P̂tm+2
P̂tm−2

e4ξ+
√︂

P̂tm+2
P̂tm−2

⎞⎠− 2Nu
PrRe(P̂tm−2)

1√︃
P̂tm+2
P̂tm−2

e8ξ − P̂tm+2
P̂tm+2

dξ .

(12)

To determine A(t), we need only one boundary con-
dition, as (9) is a first-order equation. From the physi-
cal point of view, the natural choice is T̂0(0, t) = θ̂0(t),
where θ̂0 = θ0

Tref [see (3)]. Indeed, the temperature of the
fluid leaving the tube should not be known in advance.
Consequently, we obtain

A(t) = θ̂0

⎛⎜⎜⎝1 +
√︂

P̂tm+2
P̂tm−2

1 −
√︂

P̂tm+2
P̂tm−2

⎞⎟⎟⎠
2Nu

PrRe(P̂tm−2)
1√︃

P̂tm+2
P̂tm−2

. (13)

We note at this point that the comparison of the
expressions for the zero-order temperature approximation
[see (12) and (13)] derived for the porous tube with the
zero-order temperature approximation for the rigid tube
given by (18) will be discussed and numerically illustrated
in Section 4 (see also [2] for the expressions for the zero-
order temperature approximation in a thin circular pipe
with rigid walls filled with micropolar fluid). Now, we try
to construct the second-order corrector T̂2. Plugging the
expansion (7) into (5) and (6) and collecting O(ε2) terms,
we get

ε2 :∂T̂0
∂t̂

+
PrRe
2

(︃
û0

∂T̂1
∂r̂ + ŵ0

∂T̂1
∂ẑ + û1

∂T̂0
∂r̂ + ŵ1

∂T̂0
∂ẑ

)︃

=
∂2T̂2
∂r̂2 +

1
r̂
∂T̂2
∂r̂ +

∂2T̂0
∂ẑ2 ,

ε2 :∂T̂2∂r̂ = −NuT̂1 for r̂ = 1.
(14)

We recall that ∂T̂0
∂r̂ = 0 and employ the expres-

sions derived for the hydrodynamic part [see (19)–(20),
Appendix], namely

û0 =
1
16(2r̂ − r̂3)∂

2p̂0
∂ẑ2 = (2r̂ − r̂3)p̂0(ẑ),

ŵ0 = −1
4(1 − r̂2)∂p̂0∂ẑ ,

û1 =
1
16(2r̂ − r̂3)∂

2p̂1
∂ẑ2 +

1
18432(58r̂ − 36r̂3

+ 6r̂5 − r̂7)Re
(︃(︂

∂2p̂0
∂ẑ2

)︂2

+
∂p̂0
∂ẑ

∂3p̂0
∂ẑ3

)︃
,

ŵ1 = −1
4(1 − r̂2)∂p̂1∂ẑ − 1

4608(29 − 36r̂2

+ 9r̂4 − 2r̂6)Re ∂
2p̂0
∂ẑ2

∂p̂0
∂ẑ

= −1
4(1 − r̂2)∂p̂1∂ẑ − 1

288(29 − 36r̂2

+ 9r̂4 − 2r̂6)Rep̂0
∂p̂0
∂ẑ ,
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p̂0 = −2 sinh(4ẑ) + P̂tm cosh(4ẑ),

p̂1 =
Re
8 (4 + P̂2tm)(cosh(4ẑ) − cosh(8ẑ))

− ReP̂tm
4 (sinh(4ẑ) − 2 sinh(8ẑ)).

The compatibility condition for (14) yields

π ∂T̂0
∂t̂

− π ∂
2T̂0
∂ẑ2 + 2πPrRe2⎛⎝∂2p̂0

∂ẑ2
1
16Nu(Ĝ − T̂0)

1∫︁
0

(2r̂ − r̂3)2 r̂dr̂

⎞⎠

+ 2πPrRe2

⎛⎝−1
4
∂p̂0
∂ẑ Nu

(︃
∂Ĝ
∂ẑ − ∂T̂0

∂ẑ

)︃ 1∫︁
0

(1 − r̂2)

(︂
r̂2 − r̂4

4

)︂
r̂dr̂ − 1

4
∂Ĉ
∂ẑ

∂p̂0
∂ẑ

1∫︁
0

(1 − r̂2)r̂dr̂

⎞⎠

+ 2πPrRe2
∂T̂0
∂ẑ

⎛⎝−1
4
∂p̂1
∂ẑ

1∫︁
0

(1 − r̂2)r̂dr̂

− Re
4608

∂2p̂0
∂ẑ2

∂p̂0
∂ẑ

1∫︁
0

(29 − 36r̂2 + 9r̂4 − 2r̂6)r̂dr̂

⎞⎠
= −2πNu

(︂
3
4Nu(Ĝ − T̂0) + Ĉ

)︂
.

After integration, we obtain

∂T̂0
∂t̂

− ∂2T̂0
∂ẑ2 + PrRe

(︂
11
384

∂2p̂0
∂ẑ2 Nu(Ĝ − T̂0)

− 7
384

∂p̂0
∂ẑ Nu

(︃
∂Ĝ
∂ẑ − ∂T̂0

∂ẑ

)︃
− 1

16
∂p̂0
∂ẑ

∂Ĉ
∂ẑ

)︃

+ PrRe∂T̂0∂ẑ

(︂
− 1
16

∂p̂1
∂ẑ − 3Re

2048
∂2p̂0
∂ẑ2

∂p̂0
∂ẑ

)︂
= −3

2Nu
2(Ĝ − T̂0) − 2NuĈ,

implying

PrRe
16

∂p̂0
∂ẑ

∂Ĉ
∂ẑ − 2NuĈ = D̂(ẑ, t̂), (15)

where

D̂(ẑ, t̂) =
∂T̂0
∂t̂

− ∂2T̂0
∂ẑ2 +

3
2Nu

2(Ĝ − T̂0)

+ PrRe
(︂

11
384

∂2p̂0
∂ẑ2 Nu(Ĝ − T̂0)

)︂

+ PrRe
(︃

− 7
384

∂p̂0
∂ẑ Nu

(︃
∂Ĝ
∂ẑ − ∂T̂0

∂ẑ

)︃

− 1
16

∂p̂1
∂ẑ

∂T̂0
∂ẑ − 3Re

2048
∂2p̂0
∂ẑ2

∂p̂0
∂ẑ

∂T̂0
∂ẑ

)︃
.

In view of (11), we rewrite (15) as

∂Ĉ
∂ẑ − 16Nu

PrRe(P̂tm − 2)
e4ẑ

e8ẑ − P̂tm+2
P̂tm−2

Ĉ = Ê(ẑ, t̂), (16)

with

Ê(ẑ, t̂) =
8

PrRe(P̂tm − 2)
e4ẑ

e8ẑ − P̂tm+2
P̂tm−2

D̂(ẑ, t̂).

For fixed time t̂ ∈ (0, 1), we can solve (16) as an ODE
with respect to z. We obtain

Ĉ(ẑ, t̂) =

⎛⎜⎜⎝ e4ẑ −
√︂

P̂tm+2
P̂tm−2

e4ẑ +
√︂

P̂tm+2
P̂tm−2

⎞⎟⎟⎠
2Nu

PrRe(P̂tm−2)
1√︃

P̂tm+2
P̂tm−2

ẑ∫︁
0

Ê(ξ , t̂)

⎛⎜⎜⎝ e4ẑ −
√︂

P̂tm+2
P̂tm−2

e4ẑ +
√︂

P̂tm+2
P̂tm−2

⎞⎟⎟⎠
− 2Nu

PrRe(P̂tm−2)
1√︃

P̂tm+2
P̂tm−2

dξ ,

where we took Ĉ(0, t̂) = 0. The problem (14) for the
second-order corrector T̂2 now reads

∂2T̂2
∂r̂2 +

1
r̂
∂T̂2
∂r̂

=
∂T̂0
∂t̂

− ∂2T̂0
∂ẑ2

+
PrRe
2 p̂0(2r̂ − r̂3)

2
Nu(Ĝ − T̂0)

− PrReNu
8 (1 − r̂2)

(︂
r̂2 − r̂4

4

)︂
∂p̂0
∂ẑ

(︃
∂Ĝ
∂ẑ − ∂T̂0

∂ẑ

)︃

− PrRe
8 (1 − r̂2)∂p̂0∂ẑ

∂Ĉ
∂ẑ − PrRe

8 (1 − r̂2)∂p̂1∂ẑ
∂T̂0
∂ẑ

− PrRe2

576 (29 − 36r̂2 + 9r̂4 − 2r̂6)p̂0
∂p̂0
∂ẑ

∂T̂0
∂ẑ ,

∂T̂2
∂r̂ = −Nu T̂1 for r̂ = 1.

It can be verified that T̂2 is given by

T̂2(ẑ, r̂, t̂)

=
1
4

(︃
∂T̂0
∂t̂

− ∂2T̂0
∂ẑ2

)︃
r̂2
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+
PrReNu

2 p̂0(Ĝ − T̂0)
(︃
r̂8

64 − r̂6

9 +
r̂4

4

)︃

− PrReNu
8

∂p̂0
∂ẑ

(︃
∂Ĝ
∂ẑ − ∂T̂0

∂ẑ

)︃(︃
r̂8

256 − 5r̂6

144 +
r̂4

16

)︃

− PrRe
8

∂p̂0
∂ẑ

∂Ĉ
∂ẑ

(︂
r̂2

4 − r̂4

16

)︂

− PrRe
8

∂p̂1
∂ẑ

∂T̂0
∂ẑ

(︂
r̂2

4 − r̂4

16

)︂

− PrRe2

576 p̂0
∂p̂0
∂ẑ

∂T̂0
∂ẑ

(︃
29r̂2

4 − 9r̂4

4 +
r̂6

4 − r̂8

32

)︃
.

(17)

This completes the construction of our approximate
solution. To conclude this section, let us denote by T̂por[0] =

T̂0 the zero-order approximation, while we use the follow-
ingnotation for the first- and second-order approximation:

T̂por[1] (ẑ, r̂, t̂) = T̂0(ẑ, t̂) + εT̂1(ẑ, r̂, t̂)

T̂por[2] (ẑ, r̂, t̂) = T̂0(ẑ, t̂) + εT̂1(ẑ, r̂, t̂) + ε2T̂2(ẑ, r̂, t̂).

It should be emphasised that the functions T̂0, T̂1, T̂2
are all provided in explicit form [see (12), (10), and
(17), respectively]. This enables us to directly compare
our results with the corresponding one derived for the
tube with non-permeable, rigid walls. Moreover, we can
observe and notice the corrections coming due to the
higher-order terms in the asymptotic solution. We address
these issues in the forthcoming section by providing
numerical examples.

4 Numerical Examples
Let us first derive the approximation for the tubewith rigid
walls. This essentially means that, instead of

w = 0, u =
km
µh p for r = R,

we consider the no-slip condition for both velocity compo-
nents, namely w = u = 0 for r = R. As a result, we obtain
a classical Poiseuille solution, which, in non-dimensional
form, reads as follows:

ŵrig
0 = ŵrig

0 (r̂) = −1
4(1 − r̂2)

∂p̂rig0
∂ẑ , ûrig0 = 0 .

Here,− ∂p̂rig0
∂ẑ = Q is a positive constant.We nowobtain

from (9)

∂T̂rig0
∂ẑ +

32Nu
PrReQ T̂rig0 =

32Nu
PrReQ Ĝ(ẑ, t̂),

leading to

T̂rig[0](ẑ, t̂) = e− 32Nu
PrReQ ẑ(θ̂0 (̂t)

+
32Nu
PrReQ

ẑ∫︁
0

e
32Nu
PrReQ Ĝ(ξ̂ , t̂)dξ̂ ). (18)

In the followingnumerical examples,we take thepres-
sure drop Q = 41; the external and boundary tempera-
tures are assumed to be constant, namely Ĝ = 10 and
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Figure 2: Comparison of zero-order approximations T̂ rig[0] and T̂
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Figure 3: Comparison of zero-order approximation T̂por[0] and
first-order asymptotic approximation T̂por[1] for fixed r̂ = 0.5.
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Figure 4: Comparison of zero-order approximation T̂por[0] with the
second-order asymptotic approximation T̂por[2] for fixed r̂ = 0.5.

35.2

35

34.8

34.6

34.4

34.2

34

33.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
e
m

p
e

ra
tu

re

ẑ
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Figure 5: Comparison of first-order asymptotic approximation T̂por[1]
with the second-order asymptotic approximation T̂por[2] for fixed
r̂ = 0.5.

θ̂0 = 35 (see, e.g. [2]). The characteristic numbers take
the following values: Nu = 3.66, Pr = 4.8, Re = 150. The
non-dimensional transmembrane pressure at z = 0 is set
to P̂tm = 0.5. The small parameter is taken as ε = 10−3.
It should be mentioned that the small parameter ε is
usually linked with the non-dimensional permeability of
the system σ as ε =

√
σ, so this means that we are con-

sidering the so-called microfiltration systems (see [1] for
details).

Taking into account the above data, we first compare
the zero-order approximations T̂rig[0] and T̂por[0] (see Fig. 2).
Next, we focus solely on the porous tube and plot the first-
order asymptotic approximation T̂por[1] for a fixed parameter
r̂ = 0.5 and compare it with the zero-order approximation
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Figure 6: Comparison of first-order asymptotic approximation T̂por[1]
with the second-order asymptotic approximation T̂por[2] for fixed
ẑ = 0.5.

T̂por[0] (see Fig. 3). Finally, we compare T̂por[0] and T̂por[1] with
the second-order asymptotic approximation T̂por[2] for fixed
parameters r̂ = 0.5 and ẑ = 0.5 (see Figs. 4–6).

5 Conclusions
In Section 3, a second-order asymptotic model describ-
ing the heat transfer in a porous tube has been proposed,
where the zero-order approximation and the first- and
second-order correctors for the temperature have been
explicitly computed. Section 4 is devoted to visualisations
based on our analytical results. Let us mention that we
have taken the small parameter ε = 10−3 and Reynolds
number Re = 150 in order to be consistent with the dis-
cussion provided in [1].

Comparing the zero-order approximations T̂rig[0] and
T̂por[0] derived for the case of a rigid and porous tube, respec-
tively (see Fig. 2), we observe that the temperature drop is
greater in the porous case, as wemove along the tube. The
physical explanation for this far-field behaviour is that,
moving along the tube in the axial direction, there is addi-
tional temperature loss through the porous boundary in
the case of the tube with permeable walls as opposed to
the case with a tube with rigid walls, where this addi-
tional loss of temperature does not take place andwe have
cooling only due to the difference between the exterior
temperature and the temperature of the fluid.

A comparison of the zero-order approximation T̂por[0]
for a porous tube with the first- and second-order asymp-
totic approximations, T̂por[1] and T̂por[2] (for fixed r̂ = 0.5),
clearly indicates the effects of the higher-order terms as ẑ
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increases (see Figs. 3 and 4). As expected, those effects are
more noticeable for the second-order solution T̂[2].

Finally, comparing the first- and second-order asymp-
totic solutions T̂por[1] and T̂

por
[2] for fixed r̂ = 0.5 and ẑ = 0.5,

we see that the second-order approximation T̂por[2] shows a
greater temperature drop as ẑ and r̂ increase (see Figs. 5
and 6).

Again, as we are considering a tube with permeable
walls, the first- and second-order temperature correctors
T̂por1 and T̂por2 give a more precise approximation of the
effects of additional temperature loss due to porosity of the
boundary as we move along the tube and near its lateral
boundary, which was to be expected.

A natural extension of the results presented in this
paper would be to take additional physical effects into
consideration. Analytical studies of the magnetohydrody-
namic natural convection flow occurring about a heated
vertically stretching permeable surface placed in a satu-
rated porous media under the influence of a temperature-
dependent internal heat generation or absorption, as well
as the magnetohydrodynamic slip flow and heat trans-
fer of stagnation point Jeffrey fluid over deformable sur-
faces, were recently considered in [25] and [26]. Taking
these results into account, a possible direction for future
work would be to derive a lower-dimensional model for
the magnetohydrodynamic flow and heat transfer in a
porous tube setting using the two-scale expansion tech-
nique employed in the derivation of the model in this
paper.

Finally, we refer the reader to the work presented in
[2], where an asymptotic model was derived for the heat
flow through a thin cooled pipe with rigid walls filled
with micropolar fluid with numerical illustration pro-
vided, where one can clearly see the effects of enhanced
cooling as the result of themicropolarity of the fluid. Moti-
vated by this result, we can consider the heat flow through
a porous tube filledwithmicropolar fluid and consider the
effects of themicropolarity of the fluid in this setting as an
additional possibility for future work.
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Appendix: Approximation for the
Hydrodynamic Part
In this appendix, for the reader’s convenience, we recover
the results from [1] concerning the hydrodynamic part of
our problem.

A steady, axisymmetric, incompressible fluid flow in
Ω is considered, where the fluid region outside the tube
is maintained at a constant uniform pressure Pref (Pref =
0, without loss of generality). An axial pressure gradient
drives an axial Poiseuille flow w, while the transmem-
brane pressure difference drives radial suction or injection
u. In view of that, the fluid flow equations in cylindrical
coordinates read as follows:

u ∂u∂r + w∂u
∂z +

1
ρ
∂p
∂r

− µ
ρ

(︂
∂2u
∂r2 +

1
r
∂u
∂r − u

r2 +
∂2u
∂z2

)︂
= 0,

u ∂w∂r + w∂w
∂z +

1
ρ
∂p
∂z

− µ
ρ

(︂
∂2w
∂r2 +

1
r
∂w
∂r +

∂2w
∂z2

)︂
= 0,

∂u
∂r +

u
r +

∂w
∂z = 0,

where p is the fluid pressure and µ represents the dynamic
viscosity of the fluid. The boundary conditions on the per-
meable surface are given by the standard no-slip condition
and Darcy’s law:

w = 0, u =
km
µh p for r = R,

where km denotes the permeability of the membrane,
while h represents its thickness. To solve the problem, the
transmembrane pressure andmean axial velocity at z = 0
are prescribed:

Ptm = p|r=R , w0 =
1

πR2

R∫︁
0

2πwrdr for z = 0.

The problem is rewritten in non-dimensional form by
introducing

ẑ =
z
L , r̂ =

r
R , û =

u
εw0

,

ŵ =
w
w0

, p̂ =
εR
µw0

p.
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Linking the small parameter ε = R
L with the non-

dimensional permeability σ = km
hR as ε =

√
σ, we get

ε3û ∂û∂r̂ + ε3ŵ ∂û
∂ẑ +

2
Re

∂p̂
∂r̂

− 2ε2

Re

(︂
∂2û
∂r̂2 +

1
r̂
∂û
∂r̂ − û

r̂2 + ε2 ∂
2û
∂ẑ2

)︂
= 0,

εû ∂ŵ∂r̂ + εŵ ∂ŵ
∂ẑ +

2
Re

∂p̂
∂ẑ

− 2
Re

(︂
∂2ŵ
∂r̂2 +

1
r̂
∂ŵ
∂r̂ + ε2 ∂

2ŵ
∂ẑ2

)︂
= 0,

∂û
∂r̂ +

û
r̂ +

∂ŵ
∂ẑ = 0,

ŵ = 0, û = p̂ for r̂ = 1,

p̂|r̂=1 = P̂tm , ŵ = 1 for ẑ = 0,

where P̂tm = εRPtm
µw0

is the non-dimensional transmem-
brane pressure at ẑ = 0.

Expanding the unknown velocity and pressure as

ŵ(ẑ, r̂) = ŵ0(ẑ, r̂) + εŵ1(ẑ, r̂) + · · · ,

û(ẑ, r̂) = û0(ẑ, r̂) + εû1(ẑ, r̂) + · · · ,

p̂(ẑ) = p̂0(ẑ) + εp̂1(ẑ) + · · · ,

and substituting it into the above system, the zero-order
approximation takes the following form:

ŵ0(ẑ, r̂) = −1
4(1 − r̂2)∂p̂0∂ẑ ,

û0(ẑ, r̂) =
1
16(2r̂ − r̂3)∂

2p̂0
∂ẑ ,

p̂0(ẑ) = −2 sinh(4ẑ) + P̂tm cosh(4ẑ). (19)

Collecting the O(ε) terms yields the first-order correc-
tor:

ŵ1(ẑ, r̂) = −1
4(1 − r̂2)∂p̂1∂ẑ − Re

4608(29 − 36r̂2

+ 9r̂4 − 2r̂6)∂
2p̂0
∂ẑ2

∂p̂0
∂ẑ ,

û1(ẑ, r̂) =
1
16(2r̂ − r̂3)∂

2p̂1
∂ẑ2

+
Re

18432(58r̂ − 36r̂3 + 6r̂5 − r̂7)(︃(︂
∂2p̂0
∂ẑ2

)︂2

+
∂p̂0
∂ẑ

∂3p̂0
∂ẑ3

)︃
,

p̂1(ẑ) =
Re
8 (4 + P̂2tm)(cosh(4ẑ) − cosh(8ẑ))

− ReP̂tm
4 (sinh(4ẑ) − 2 sinh(8ẑ)). (20)

The computation details can be found in [1].

Nomenclature
Ω circular tube with permeable walls
L length of the tube Ω
R radius of the tube Ω
ε ratio of R and L
w axial component of the velocity field
u radial component of the velocity field
p fluid pressure
T fluid temperature
r radius variable
z longitudinal variable
t time variable
km permeability of the membrane
h thickness of the membrane
µ dynamic viscosity
G exterior temperature
w0 mean axial velocity at z = 0
Ptm transmembrane pressure at z = 0
ν kinematic viscosity
Q pressure drop
Cp specific heat capacity
k thermal conductivity
β heat transfer coefficient
ρ fluid density
ŵ non-dimensional axial component of the velocity field
û non-dimensional radial component of the velocity field
p̂ non-dimensional fluid pressure
T̂ non-dimensional fluid temperature
r̂ non-dimensional radius variable
ẑ non-dimensional longitudinal variable
t̂ non-dimensional time variable
Re Reynolds number
Pr Prandtl number
Nu Nusselt number
Ĝ non-dimensional exterior temperature
Tref characteristic temperature
P̂tm non-dimensional transmembrane pressure at ẑ = 0
Tref pressure of the fluid region outside the tube
σ non-dimensional permeability
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