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Abstract: In this paper, a study of the flow of Eyring-Powell
(EP) fluid in an infinite circular longpipeunder the consid-
eration of heat generation and thermal radiation is con-
sidered. It is assumed that the viscosity of the fluid is an
exponential function of the temperature of the fluid. The
flow of fluid depends onmany variables, such as the phys-
ical property of each phase and shape of solid particles. To
convert the given governing equations into dimensionless
form, thedimensionless quantities havebeenusedand the
resultant boundary value problem is solved for the calcu-
lation of velocity and temperature fields. The analytical
solutions of velocity and temperature are calculated with
the help of the perturbation method. The effects of the flu-
idic parameters on velocity and temperature are discussed
in detail. Finite difference method is employed to find
the numerical solutions and compared with the analyti-
cal solution. The magnitude error in velocity and temper-
ature is obtained in each case of the viscosity model and
plotted against the radius of the pipe. Graphs are plotted
to describe the influence of various parameter EP param-
eters, heat generation parameter and thermal radiation
parameters against velocity and temperature profiles. The
fluid temperature has decreasing and increasing trends
with respect to radiation andheat generations parameters,
respectively.
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1 Introduction
The study of non-Newtonian fluids has increased due to
a substantial variety of engineering, industrial and com-
mercial manufacturing applications. The study of Newto-
nian fluids is easy as compared to non-Newtonian fluids
due to simple developed equations which can be handled
numerically or analytically. The reason is that of a linear
relationship between the rate of stress and strain in the
case of Newtonian fluid, but this relation is not any more
linear for non-Newtonian fluids. Various authors showed
the applications of non-Newtonian fluids in their stud-
ies. Some significant examples of non-Newtonian fluids
are cream, plastic melts, soap slurries, wet beach sand,
mayonnaise, paper pulp, etc. [1]. Navier-Stokes equation is
used to describe the flowbehaviour of Newtonian fluid but
there is no single equation to describe the flow behaviour
of the non-Newtonian fluids with all the properties. Due
to this reason, various empirical and semi-empirical non-
Newtonian equations or models have been presented and
used.

Ali et al. [2] studied an Eyring-Powell (EP) fluid under
the effects of temperature-dependent viscosity cases in a
pipe. They first convert their dimensional formsofmomen-
tum and energy equations with boundary conditions into
non-dimensional form, and then discuss Reynolds and
Vogel models for both momentum and energy equations.
In their research work, they solved their equations with
the help of both perturbation and numerical methods that
matchwell. The flow ofmagnetohydrodynamics (MHD) EP
nanofluid over an inclined surface is analysed by Khan
et al. [3]. During their study, they assumed that the flow
of fluid is incompressible and the fluid viscosity is vary-
ing exponentially. They expressed their results in the form
of velocity and temperature profiles along with different
parameters by plotting graphs and also in tabular form.
Ellahi [4] examined the study of non-Newtonian nanofluid
in the pipe and depicted the effects of magnetic and
temperature-dependent viscosity. Akinshilo and Olaye [5]
also analysed the flow of EP fluid in a pipe. They discussed
the internal heat flow and temperature-dependent vis-
cosity in their work. They solved the non-linear ordinary
equation by using perturbation technique and examined
the effect of fluidic parameters on velocity and tempera-
ture profiles. Akinbowale [6] studied the non-Newtonian
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flow of third-grade fluid in the horizontal channel. He
solved an ordinary differential equation byusingAdomian
decomposition method and discussed the Vogel model
for temperature-dependent viscosity and concluded that
velocity distribution increases by decreasing the poros-
ity parameter. Ellahi and Riaz [7] captured the magnetic
effects in the flow of third-grade fluid in a pipe by taking
variable viscosity. To calculate the analytical solution, the
homotopy analysis method (HAM) was used. Aksoy and
Pakdemirli [8] considered the non-Newtonian fluid with a
porous medium between two parallel plates. They calcu-
lated the solutions of the non-linear differential equations
by employing the perturbation technique. Three viscosity
dependent cases were discussed i.e., (a) constant viscosity
case; (b) Reynoldsmodel; and (c)Vogel’smodel. The valid-
ity range of the solution was also provided. Ellahi et al.
[9] examined the third-grade fluid between the concen-
tric cylinders and checked the effect of slip over this fluid.
They discussed two cases, in the first one the outer cylin-
der is stationary and inner cylinder move and the second
one the outer cylinder is moving and the inner cylinder is
at rest position. They calculate the solutions for both con-
ditions (with andwithout slip parameter). The flowof non-
isothermal Poiseuille fluid was also examined by Farooq
et al. [10]. They considered the fluid is flowing between
two heated parallel inclined plates using coupled stress
fluid which was incompressible. Perturbation techniques
were used to calculate analytical solutions. In their paper,
they discussed the Reynold’s model and obtained the
expressions for temperature, velocity, dynamic pressure,
shear stress and volume flow rate. Alharbi et al. [11] eval-
uated the effects of entropy generation in MHD EP fluid.
They assumed that the flow is flowing over an oscillat-
ing porous stretching sheet and further assumed that the
flow is unsteady. They analysed the behaviour of the heat
source and thermal radiation in their study. They captured
the effects of pertinent parameters on entropy generation
rate, temperature, and velocity fields. They solved the gov-
erning equation by using HAM. The radiative effect on
three-dimensional MHD flow of an EP fluid was described
by Hayat et al. [12]. They calculated the series solution by
non-linear analysis and also calculate the exact solution
of the problem. Yurusoy [13] presented the heat transfer
effects of third-grade fluid between two concentric cylin-
ders. During his study, he considered that the fluid temper-
ature is lower than the pipe temperature. He calculated the
solution by using perturbation technique and discussed
Reynolds model. Hayat et al. [14] explored the effect of
porous medium of third-grade fluid. They solved the gov-
erning momentum and energy equations by employing
HAM. They analysed the shear stress and velocity field at

the plate. Massoudi and Christie [15] analysed the viscous
dissipation and variable viscosity effects of third-grade
fluid in a pipe and considered that the temperature of the
fluid is lower than the temperature of the pipe. Huang [16]
studied the heat generation effect of non-Newtonian fluid
over a vertical permeable cone in a porous medium. The
author used the Keller box method to find a solution of his
problem and discussed the physical aspects of the prob-
lem. Analysis of EP nanofluid is selected by Hayat et al.
[17]. They captured the effect of MHD flow over the non-
linear stretching sheet and discussed the results for con-
centration and temperature profiles. Hayat and Nadeem
[18] studied the three-dimensional flowof EP fluid anddis-
cussed the heat flux and mass quantities. They discussed
the behaviour of temperature and Cattaneo-Christov heat
flux theory.

From the above-cited studies, it is noted that there
is no study available in literature to capture the effects
of radiative heat flux and heat generation on EP fluid in
a circular long pipe under various models of the viscosi-
ties. The considered fluid model (EP) is much complex
and is advantageous over a Power-law model due to two
aspects. The first one is that this model is not driven from
an empirical relation like a Power-law model. The second
one is, this fluid model can be reduced into a Newtonian
fluidmodel for the low and high shear rates.Therefore, the
objective of our investigation is to obtain the numerical
and perturbation solutions of the one-dimensional flow of
an EP fluid in a pipe under the combined effects of radia-
tive andheat absorption. As various engineeringprocesses
only happen at moderate temperature, so the considera-
tion of radiative heat flux cannot be ignored in these kind
of processes namely space vehicles, gas turbines, propul-
sion devices, and nuclear plants [19, 20]. Futher, the study
of heat generation (or absorption) in moving fluid is use-
ful in the problems of chemical reaction. The flows in the
porous media have numerious applications like, oil reser-
voir and geothermal [21, 22]. The absolute error in velocity
and temperature will be presented. Three famous models
will discuss which are listed below.
(a) Constant viscosity model
(b) Reynolds model
(c) Vogel’s model

The numerical solution for all above-mentioned vis-
cosity models will be obtained by the finite-difference
method in our study. The effects of various physical
parameters on viscosity and temperature profiles will be
highlighted together with the validity of the perturbation
solution. The current study can be useful to increase the
heat transfer processes in energy conservation, medical
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process, fuel cells and micro-mixing. The applications of
this problem are also beneficial in heat exchangers, film
flow, catalytic reactors, paper production and polymer
solutions. This study will be helpful in future to inves-
tigate the behaviour of velocity and temperature fields
against pertinent prameters,whenever preliminary data of
EP model is given.

2 Formulation of the Problem
Let us consider the one-dimensional, steady-state flow of
non-Newtonian fluid in a pipe with the account of effects
of radiation and heat generation. It is assuming that the
flow is flowing due to applied pressure gradient and the
viscosity is a function of temperature. The systematic flow
behaviour is shown in Figure 1.

The velocity and temperature fields for the present
problem are defined by

V = (0, 0, w(r)) (1)

θ = θ(r), (2)

The Cauchy stress tensor T[23, 24] is

T = −pI + S, (3)

where p is the pressure, I is the identity element. Now for
the current situation, the extra stress tensor S is defined
as

S =

(︃
µ +

1
k2

sinh−1(k3ϑ)
ϑ

)︃
A1, (4)

where

ϑ =

√︂
1
2tra(A1)2, (5)

and

A1 = gradV + grad(V)T , (6)

*
< 0

z

w = 0, θ = 0
w

r

Figure 1: Geometry of the flow problem.
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1
r
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u
r
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1
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dw
dθ
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⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

AsV = [u, v, w] and in our caseV = [0, 0, w(r)], so in
this case, we have

L =

⎛⎜⎜⎝
0 0 0
0 0 0
dw
dr 0 0

⎞⎟⎟⎠, LT =

⎛⎜⎜⎝0 0 dw
dr

0 0 0
0 0 0

⎞⎟⎟⎠ (8)

A1 =

⎛⎜⎜⎜⎝
0 0 dw

dr
0 0 0
dw
dr 0 0

⎞⎟⎟⎟⎠, (A1)2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 0

(︂
dw
dr

)︂2

0 0 0

(︂
dw
dr

)︂2
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(9)

tra
(︁
(A1)2

)︁
= 2

(︂
dw
dr

)︂2
, (10)

ϑ =

√︂
1
2tra(A1)2, (11)

with the help of (10), we get

ϑ =
dw
dr . (12)

Putting these values in (4), (4) takes the following
form:

S =

⎛⎜⎝µ +
1
k2

⎛⎜⎝(︂
dw
dr

)︂ k3 − 1
6 k

3
3

(︁
dw
dr

)︁2(︁
dw
dr

)︁
⎞⎟⎠

⎞⎟⎠A1, (13)

S =

(︃
µ +

k3
k2

− k33

k2
1
6

(︂
dw
dr

)︂2
)︃
A1, (14)

Using X = k3
k2 , Y = k33

k2 in the above (14) becomes

S =

(︃
µ + X − Y

6

(︂
dw
dr

)︂2
)︃
A1, Y ≪ 1 (15)

Now by substituting the value of A1 in (15), we get

S =

(︃
µ + X − Y

6

(︂
dw
dr

)︂2
)︃⎛⎜⎜⎜⎜⎜⎝

0 0 dw
dr

0 0 0

dw
dr 0 0

⎞⎟⎟⎟⎟⎟⎠, (16)
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where S is defined as

S =

⎛⎜⎝srr srθ srz
sθr sθθ sθz
szr szθ szz

⎞⎟⎠, (17)

Now using the value of S in (16)⎛⎝srr srθ srz
sθr sθθ sθz
szr szθ szz

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎝
0 0

(︂
µ + X −

Y
6

(︂
dw
dr

)︂2)︂
dw
dr

0 0 0(︂
µ + X −

Y
6

(︂
dw
dr

)︂2)︂
dw
dr

0 0

⎞⎟⎟⎟⎟⎟⎠,

(18)
From the above (18), only two components of extra

stress are left which are:

srz = szr =

(︃
µ + X − Y

6

(︂
dw
dr

)︂2
)︃(︂

dw
dr

)︂
, (19)

The general form of the equation ofmotion in cylindri-
cal coordinates system is:

ρ
(︂
d
dt + u d

dr +
v
r
d
dθ + w d

dz

)︂
u

= −∂p
∂r +

1
r
∂
∂r (rsrr) +

∂srr
∂z − 1

r sθθ + ρgu , (20)

ρ
(︂
d
dt + u d

dr +
v
r
d
dθ +

uw
r + w d

dz

)︂
v

= −1
r
∂p
∂θ +

1
r2

∂
∂r

(︁
r2srθ

)︁
+

1
r
∂sθθ
∂θ +

∂szθ
∂z

+
1
r (sθr − srθ) + ρgv , (21)

ρ
(︂
d
dt + u d

dr +
v
r
d
dθ + w d

dz

)︂
w

= −∂p
∂z +

1
r
∂
∂r (r srz) +

1
r
∂sθz
∂θ +

∂szz
∂z + ρgw , (22)

Due to steady-state flow, we have

ρ
(︂
u d
dr +

v
r
d
dθ + w d

dz

)︂
u = −∂p

∂r , (23)

ρ
(︂
u d
dr +

v
r
d
dθ +

uw
r + w d

dz

)︂
v = −1

r
∂p
∂θ , (24)

ρ
(︂
u d
dr +

v
r
d
dθ + w d

dz

)︂
w = −∂p

∂z +
1
r
∂
∂r (rsrz), (25)

As the velocity components u = 0 and v = 0 so, left-
hand side of general equations will vanish and only right-
hand side will survive which is given by:

∂p
∂r = 0, ⇒ p ̸= p(r) (26)

1
r
∂p
∂θ = 0, ⇒ p ̸= p(θ) (27)

1
r
d
dr

(︃
rµdwdr + X rdwdr − Y r

6

(︂
dw
dr

)︂3
)︃

=
∂p
∂z , (28)

As, in the current investigation, the flow is flowing
along z-direction only (one dimensional) sowe can use the
simple derivative instead of partial derivative symbols.

µd
2w
dr2 +

µ
r
dw
dr +

dµ
dr

dw
dr + X

(︃
1
r
dw
dr +

d2w
dr2

)︃

− Y
6

(︂
dw
dr

)︂2
(︃
3rd

2w
dr2 +

dw
dr

)︃
= c1, (29)

where ∂p
∂z = c1.

Now for the derivation of the heat equation, first the
general form of the heat equation is considered

ρcp
dθ
dt = tr(S.L) − divq + Q(θ − θw) − dHR

dr , (30)

∴ θ = θ(r) ⇒ dθ
dt = 0

0 = tr(S.L) − divq, (31)

tra(S.L) =

(︃
µ + X − Y

6

(︂
dw
dr

)︂2
)︃(︂

dw
dr

)︂2
, (32)

divq = −k
(︃
d2θ
dr2 +

1
r
dθ
dr

)︃
, (33)

The radiative heat flux HR [25, 26] for the current
situation is defined by

HR =
−4σ*

3kk*
dθ4

dr , (34)

To obtain the values of θ4, we will expand θ4 in the
Taylor series expansion about θw and overlooking upper
order terms, yields

θ4 = θw4 + 4θw3(θ − θw), (35)

dθ4

dr = 4θw3
dθ
dr , (36)

Using the value of θ4 into (34), we have

HR =
−4σ*

3k* · 4θw3
dθ
dr ,
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Use (32), (33) and (34) into (31), we get

µ
(︂
dw
dr

)︂2
+ X

(︂
dw
dr

)︂2
− Y

6

(︂
dw
dr

)︂4

+ k
(︃
d2θ
dr2 +

1
r
dθ
dr

)︃
+ Q(θ − θw)

+
16σ*θw3

3k*
d2θ
dr2 = 0, (37)

The boundary conditions for (29) and (37) are:

w = 0,

θ = θw

⎫⎬⎭ at r = R* and

dw
dr = 0,

dθ
dr = 0

⎫⎪⎪⎬⎪⎪⎭ at r = 0 (38)

Now introducing the dimensionless quantities

a
r =

r
R* ,

a
w =

w
w0

,
a

θ =
θ − θw
θm − θw

,
a
µ =

µ
µ0

(39)

The dimensionless equations are given by:

(1 + R)
d2

a

θ

d
a
r
2 +

1
a
r
d

a

θ
d

a
r

+ δ
a

θ

+ Γ
(︃
d

a
w
d

a
r

)︃2⎡⎣a
µ + M − Λ

(︃
d

a
w
d

a
r

)︃2⎤⎦ = 0, (40)

d
a
µ

d
a
r
d

a
w
d

a
r

+
a
µ
a
r

(︃
d

a
w
d

a
r

+
a
r d

2 a
w

d
a
r
2

)︃
+

M
a
r

(︃
d

a
w
d

a
r

+
a
r d

2 a
w

d
a
r
2

)︃

− Λ
a
r

(︃
d

a
w
d

a
r

)︃2[︃
d

a
w
d

a
r

+ 3
a
r d

2 a
w

d
a
r
2

]︃
= c, (41)

‘
w = 1,
‘

θ = 1

⎫⎬⎭ at r = 1 and

d
‘
w
d

‘
r

= 0,

d
‘

θ
d

‘
r

= 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ at r = 0 (42)

where M = X
µ0 , c = c1R*2

µ0w0
, Γ = µ0w0

2

k(θm−θw) , δ = QR*2

k , R =
16σ*θw3
3k k* and Λ = Y32w0

2

6µ0R*2

The dimensionless equations of motion and energy
based on viscosity models are discussed in the next one.

3 Viscosity Models
Based on the viscosity of the fluid, three different models
are selected. In the first case, viscosity is chosen as a con-
stant i.e., viscosity does not depend on temperature and

in second and third cases, viscosity is a function of fluid
temperature and thesemodels are known as Reynolds and
Vogel’s models. In the last twomodels, viscosity is defined
as an exponent form.
– Constant Viscosity Model

For this case, we set
a
µ = 1, therefore d

a
µ

d
a
r

= 0
The new forms of the equation of motion and heat
equation for the present case are:

1
a
r

(︃
d

a
w
d

a
r

+
a
r d

2 a
w

d
a
r
2

)︃
+

M
a
r

(︃
d

a
w
d

a
r

+
a
r d

2 a
w

d
a
r
2

)︃

− Λ
a
r

(︃
d

a
w
d

a
r

)︃2[︃
d

a
w
d

a
r

+ 3
a
r d

2 a
w

d
a
r
2

]︃
= c, (43)

(1 + R)
d2

a

θ

d
a
r
2 +

1
a
r
d

a

θ
d

a
r

+ δ
a

θ

+ Γ
(︃
d

a
w
d

a
r

)︃2⎡⎣1 + M − Λ
(︃
d

a
w
d

a
r

)︃2⎤⎦ = 0, (44)

a
w = 0 at

a
r = 1,

a

θ = 0 at
a
r = 1, and

d
a
w
d

a
r

= 0 at
a
r = 0, d

a

θ
d

a
r

= 0 at
a
r = 0, (45)

To solve (43)–(45), let us assume to apply perturba-
tion expansion on momentum and energy equation.

a
w ∼=

a
w0 + ε

a
w1,

a

θ ∼=
a

θ0 + ε
a

θ1,

Λ ∼= εσ, δ = εN1, (46)

where ϵ is the perturbation parameter and (0 < ϵ ≤ 1).
By separating each order of we have the following sys-
tems:

System of order (ϵ0) for velocity profile:

a
r d

2 a
w0

d
a
r
2 +

d
a
w0

d
a
r

=
c

a
r

(1 + M)
, (47)

a
w0 = 0 at

a
r = 1, d

a
w0

d
a
r

= 0 at
a
r = 0. (48)

System or order (ϵ1) for velocity profile:

a
r d

2 a
w1

d
a
r
2 +

d
a
w1

d
a
r

=
σ

(1 + M)

(︃
d

a
w0

d
a
r

)︃3

+ 3r
(︃
d

a
w0

d
a
r

)︃2
d2

a
w0

d
a
r
2 , (49)
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a
w1 = 0 at

a
r = 1, d

a
w1

d
a
r

= 0 at
a
r = 0. (50)

System of order (ϵ0) for temperature profile:

(1 + R)
d2

a

θ0

d
a
r
2 +

1
a
r
d

a

θ0
d

a
r

= −Γ(1 + M)

(︃
d

a
w0

d
a
r

)︃2

, (51)

a

θ0 = 0 at
a
r = 1, d

a

θ0
d

a
r

= 0 at
a
r = 0. (52)

System or order (ϵ1) for temperature profile:

(1 + R)
d2

a

θ1

d
a
r
2 +

1
a
r
d

a

θ1
d

a
r

= −2Γ(1 + M)

(︃
d

a
w0

d
a
r

)︃(︃
d

a
w1

d
a
r

)︃

+ Γσ
(︃
d

a
w0

d
a
r

)︃4

− N1
a

θ0, (53)

a

θ1 = 0 at
a
r = 1, d

a

θ1
d

a
r

= 0 at
a
r = 0. (54)

By solving each order of ϵ, we have the following
results for velocity profile:

a
w0 = γ0

(︂
1 −

a
r
2)︂

. (55)

a
w1 = γ1

(︂
1 −

a
r
4)︂

. (56)

Results for temperature profile:

a

θ0 = λ0
(︂
1 −

a
r
4)︂

. (57)

a

θ1 = λ6 σ
(︂
1 −

a
r
6)︂

+ N1

(︂
λ3

a
r
2

+ λ4
a
r
6

+ λ5
)︂
. (58)

The final expressions for temperature and velocity
are:

a
w = γ0

(︂
1 −

a
r
2)︂

+ γ1

(︂
1 −

a
r
4)︂

, (59)

a

θ = λ0
(︂
1 −

a
r
4)︂

+ λ6 Λ
(︂
1 −

a
r
6)︂

+ δ
(︂
λ3

a
r
2

+ λ4
a
r
6

+ λ5
)︂
. (60)

– Reynolds Model
For the case of variable viscosity model i.e., Reynolds
model, we will set the values of viscosity in term of
temperature as:

a
µ = e−L

a

θ ⇒ d
a
µ

d
a
r

= −L e−L
a

θ d
a

θ
d

a
r
. (61)

In view of the above setting, the equation of motion
and heat equation is defined by:

−L
a
r e−L

a

θ d
a

θ
d

a
r
d

a
w
d

a
r

+ e−L
a

θ

(︃
d

a
w
d

a
r

+
a
r d

2 a
w

d
a
r
2

)︃

+ M
(︃
d

a
w
d

a
r

+
a
r d

2 a
w

d
a
r
2

)︃
− Λ

(︃
d

a
w
d

a
r

)︃2[︃
d

a
w
d

a
r

+ 3
a
r d

2 a
w

d
a
r
2

]︃

= c
a
r , (62)

(1 + R)
d2

a

θ

d
a
r
2 +

1
a
r
d

a

θ
d

a
r

+ δ
a

θ

+ Γ
(︃
d

a
w
d

a
r

)︃2⎡⎣e−L
a

θ + M − Λ
(︃
d

a
w
d

a
r

)︃2⎤⎦ = 0, (63)

The perturbation expansions on momentum and
energy equations for this case are as follows:

a
w ∼=

a
w0 + ε

a
w1,

a

θ ∼=
a

θ0 + ε
a

θ1,

Λ ∼= εσ, δ = εN1, L = εl1. (64)

System of order (ϵ0) for velocity profile:

a
r d

2 a
w0

d
a
r
2 +

d
a
w0

d
a
r

=
c

a
r

(1 + M)
, (65)

a
w0 = 0 at

a
r = 1, d

a
w0

d
a
r

= 0 at
a
r = 0. (66)

System or order (ϵ1) for velocity profile:

a
r (1 + M)

d2
a
w1

d
a
r
2 + (1 + M)

d
a
w1

d
a
r

= l1
a

θ0

(︃
d

a
w0

d
a
r

)︃
+ l1

a
r
(︃
d

a
w0

d
a
r

)︃⎛⎝d
a

θ0
d

a
r

⎞⎠
+ l1

a
r

a

θ0

(︃
d2

a
w0

d
a
r
2

)︃

+ σ

⎛⎝(︃
d

a
w0

d
a
r

)︃3

+ 3
a
r
(︃
d

a
w0

d
a
r

)︃2
d2

a
w0

d
a
r
2

⎞⎠ (67)
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a
w1 = 0 at

a
r = 1,

d
a
w1

d
a
r

= 0 at
a
r = 0. (68)

System or order (ϵ0) for temperature profile:

(1 + R)
d2

a

θ0

d
a
r
2 +

1
r
d

a

θ0
d

a
r

= −Γ(1 + M)

(︃
d

a
w0

d
a
r

)︃2

, (69)

a

θ0 = 0 at
a
r = 1, d

a

θ0
d

a
r

= 0 at
a
r = 0. (70)

System or order (ϵ1) for temperature profile:

(1 + R)
d2

a

θ1

d
a
r
2 +

1
r

⎛⎝d
a

θ1
d

a
r

⎞⎠

= −2Γ(1 + M)

(︃
d

a
w0

d
a
r

)︃(︃
d

a
w1

d
a
r

)︃
+ Γσ

(︃
d

a
w0

d
a
r

)︃4

+ l1
a

θ0Γ
(︃
d

a
w0

d
a
r

)︃2

− N1
a

θ0 (71)

a

θ1 = 0 at
a
r = 1, d

a

θ1
d

a
r

= 0 at
a
r = 0. (72)

By solving each order of ϵ, we have the following
results for velocity profile:

a
w0 = γ0

(︂
1 −

a
r
2)︂

. (73)

a
w1 = γ2 l1

(︂
2 − 3

a
r
2

+
a
r
6)︂

+ γ3 σ
(︂
1 −

a
r
4)︂

. (74)

Results for temperature profile are:

a

θ0 = λ0
(︂
1 −

a
r
4)︂

. (75)

a

θ1 = λ7 σ
(︂

−1 +
a
r
6)︂

+ N1

(︂
λ8 + λ9

a
r
2

+ λ10
a
r
6)︂

+ l1
(︂
λ11 + λ12

a
r
4

+ λ13
a
r
8)︂

. (76)

The final expression for temperature and velocity
are:

a
w = γ0

(︂
1 −

a
r
2)︂

+ γ2 L
(︂
2 − 3

a
r
2

+
a
r
6)︂

+ γ3 Λ
(︂
1 −

a
r
4)︂

, (77)

a

θ = λ0
(︂
1 −

a
r
4)︂

+ λ7 Λ
(︂

−1 +
a
r
6)︂

+ δ
(︂
λ8 + λ9

a
r
2

+ λ10
a
r
6)︂

+ L
(︂
λ11 + λ12

a
r
4

+ λ13
a
r
8)︂

. (78)

– Vogel’s Model
For Vogel’s model, we take the values of viscosity as

a
µ = e

(︃
A

B+
a
θ

−
a

θw

)︃
, or

a
µ = e

(︂
A
B −

a

θw

)︂⎛⎝1 − A
a

θ
B2

⎞⎠, and

d
a
µ

d
a
r

= −e

(︂
A
B −

a

θw

)︂ (︂
A
B2

)︂
d

a

θ
d

a
r
.

With the help of the above substitution, we get the
equation of motion and heat equation in the following
form:

(1 + R)
d2

a

θ

d
a
r
2 +

1
a
r
d

a

θ
d

a
r

+ δ
a

θ

+ Γ
(︃
d

a
w
d

a
r

)︃2⎛⎝1
a

⎛⎝1 − A
a

θ
B

⎞⎠ + M − Λ
(︃
d

a
w
d

a
r

)︃2⎞⎠
= 0, (79)

where δ = c1

e

(︃
A
B −

a
θ w

)︃ and a = 1

e

(︃
A
B −

a
θ w

)︃ .
The perturbation expansions for this case are as

follows:

a
w ∼=

a
w0 + ε

a
w1,

a

θ ∼= ε
a

θ0 + ε2
a

θ1,

Λ ∼= εσ, δ ∼= εN1, Γ = ε γ, (80)

System of order (ϵ0) for velocity profile:

a
r d

2 a
w0

d
a
r
2 +

d
a
w0

d
a
r

=
a
r

1 + aM , (81)

a
w0 = 0 at

a
r = 1, d

a
w0

d
a
r

= 0 at
a
r = 0. (82)

System of order (ϵ0) for temperature profile:

(1 + R)
d2

a

θ0

d
a
r
2 +

1
r
d

a

θ0
d

a
r

= −γ

(︂
1
a + M

)︂(︃
d

a
w0

d
a
r

)︃2

, (83)
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a

θ0 = 0 at
a
r = 1, d

a

θ0
d

a
r

= 0 at
a
r = 0. (84)

System or order (ϵ1) for velocity profile:

a
r (1 + Ma)
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a
w1

d
a
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d
a
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d
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⎞⎠, (85)

a
w1 = 0 at

a
r = 1, d

a
w1

d
a
r

= 0 at
a
r = 0. (86)

System or order (ϵ1) for temperature profile:

(1 + R)
d2

a

θ1

d
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1
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r
d

a

θ1
d
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= −N1
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d
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d
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a
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1
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)︂
,

(87)
a

θ1 = 0 at
a
r = 1, d

a

θ1
d

a
r

= 0 at
a
r = 0. (88)

By solving each order of ϵ, we have the following
results for velocity and temperature profiles:

a
w0 = γ4

(︂
1 −

a
r
2)︂

. (89)

a

θ0 = λ14
(︂
1 −

a
r
4)︂

. (90)

a
w1 = γ5A

(︂
2 − 3

a
r
2

+
a
r
6)︂

+ γ6 σ
(︂
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a
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4)︂

. (91)

a

θ1 = λ15
(︂

−4
a
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+
a
r
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(︂
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a
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a
r
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(︂
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a
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+ λ19 + σ λ22
(︂
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a
r
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a
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2

+ λ24
a
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)︂
.

(92)

The final expression for temperature and velocity
are as follows:

a
w = γ4

(︂
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a
r
2)︂

+ γ5A
(︂
2 − 3

a
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2

+
a
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6)︂

+ γ6 Λ
(︂
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a
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4)︂

, (93)

a
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4

a
r
4

−
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(︂
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a
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a
r
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+ δ
(︂
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a
r
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+ λ24
a
r
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+ λ25
)︂
. (94)

4 Numerical Method
The perturbation solution is compared with the explicit
finite difference approximated numerical solution. The
discretisation of the given domain r̂ ∈ [0, 1] can be accom-
plished in following manners

r̂i = r̂1 + (j − 1)h1, for j = 1, 2, 3, . . . ,m, (95)

where h1 = 1/(m − 1), and r̂1 = 0. For the description of
stencils, we put ŷ ≡ ŷ(r̂). The finite difference approxima-
tion of first and second order derivatives, (respectively)
can be written as

ŷ′1 =
[︂
− 1
h1

, 0, 1
h1

]︂⎡⎢⎢⎢⎣
ŷi−1

ŷi

ŷi+1

⎤⎥⎥⎥⎦ + O
(︁
h12

)︁
, (96)

ŷ′′1 =
[︂
− 1
h12

, −2
h12

, 1
h12

]︂⎡⎢⎢⎢⎣
ŷj−1

ŷj

ŷj+1

⎤⎥⎥⎥⎦ + O
(︁
h12

)︁
, (97)

where ŷi = ŷ(ri), ŷ′i = ŷ′(ri), ŷ′′i = ŷ′′(ri) and j =
2, 3, . . . ,m − 1. The boundary conditions can be defined
as

ŷ′
(︀
r̂j

)︀
= 0,

ŷ(r̂m) = 0. (98)
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Stencil for one-sided first-order derivative which is
also second-order accurate is

ŷ′i =
[︂
− 3
(2h1)

, 2
h1

, −1
(2h1)

]︂⎡⎢⎢⎢⎣
ŷ1

ŷ2

ŷ3

⎤⎥⎥⎥⎦ + O
(︁
h12

)︁
. (99)

The boundary condition at r̂1 is given by

−3
2h1

ŷ1 +
2
h1

ŷ2 − 1
2h1

ŷ3 = 0, (100)

or

−3ŷ1 + 4ŷ2 − ŷ3 = 0. (101)

The applications of above finite difference formulas to
(40) and (41) provide the non-linear system of equations.
To find the solution the resultant system, Newton method
[27–35] is used.

5 Comparison with Previous Study
Our explicit finite difference numerical code is validated
with the solution of [2]. For this, we solved the direct
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Figure 2: Velociy and temperature profiles for Vogel’s viscosity
model.

non-dimensional system of equations with boundary con-
ditions of [2] with the help of our numerical code. The
reported the solution of an EP fluid [2] under the account
of constant and variable properties of viscosity in a pipe
without the absence of thermal radiation and heat gen-
eration. The numerical results are presented for Vogel’s
viscosity model which are displayed in Figure 2 in term
of velocity and temperature when R = δ = 0. From these
figures, it can be seen that the solution of [2] and our
solutions are in good agreement with each other.

6 Results and Discussion
The basic purpose of the current section is to explain the
physical aspects of the emerging parameters on the dis-
tributions of velocity and temperature by considering the
flow of EP fluid in a long circular pipe. Three famousmod-
els on the basis of viscosity property i.e., constant viscosity
model, Reynolds model, and Vogel’s model, respectively
are discussed with the help of graphs.

To demonstrate the results of the given study,
Figures 3–8havebeendrawn. Figures 3–5 are related to the
effects of different parameters on the velocity field, and
Figures 6–8 display the effects of different parameters on
the temperature field for all above-mentioned cases. These
graphs exhibited the comparison of results of numerical
solution and perturbation solution which are well agreed
to each other. The results of the perturbation solution are
represented by solid lines while the numerical solution is
represented by a solid circle in each figure.

6.1 Effects of Dimensionless Parameters on
Velocity Profile

First, we discuss plots of velocity for the constant case.
Figure 3a displays the effect of material parameter M on
the velocity profile.Wenoticed that the velocity of the fluid
decreases by increasing the value ofmaterial parameterM.
The physical reason is that when we increase the values of
M, the viscosity of the fluid also increases due to the direct
relation betweenM and µ

(︀
M = µ

X
)︀
as a result the fluid pre-

dicts the shear thickning effects, in this scenario the veloc-
ity of the fluid is decreasing [3]. Figure 3b shows the effect
of parameter c on the velocity profile. The velocity of the
fluid is increased by increasing magnitude of parameter c.
Whenwe increase the pressure of the fluid, the fluid taked
more place in the vicinity of the pipe as a result the veloc-
ity increases. The influence of non-Newtonian parameter
Λ on velocity distribution is shown in Figure 3c. It is noted
that the velocity field predicts the increasing trend via
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Figure 3: Effects of (a) Material parameter (M), (b) Pressure gradient parameter (c) and (c) non-Newtonian parameter (Γ) on velocity profile.
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Figure 4: Effects of (a) Material parameter (M), (b) non-Newtonian parameter (Γ) and (c) Reynolds viscosity index (L) on velocity profile.
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Figure 5: Effects of (a) Wall’s temperature (θw), (b) Vogel’s viscosity index and (c) Material parameter (M) on velocity profile.
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Figure 6: Effects of (a) Radiation parameter (R), (b) Material parameter (M) and (c) Heat generation parameter (δ) on temperature profile.
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Figure 7: Effects of (a) Radiation parameter (R), (b) Heat generation parameter (δ) and (c) Reynolds viscosity index (L) on temperature profile.
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Figure 8: Effects of (a) Radiation parameter (R), Heat generation parameter (δ) and (c) Viscous dissipation parameter (Γ) on temperature
profile.



F. Ahmad et al.: Heat and Mass Transfer of Temperature-Dependent Viscosity Models in a Pipe | 237

Λ due to enhancement in the activation energy. Further,
when Λ → 0, the EP fluid behave as a Newtonian fluid.
Next, we discuss plots of velocity for the case of Reynolds
model. Figure 4a,b represents the effect ofmaterial param-
eterM andnon-Newtoina fluidparameter Λ on the velocity
profile. The velocity of the fluid is maximum at centreline
of the pipe and minium near the walls of the pipe. The
reported velocity profile shows the decreasing behaviour
against the material parameter M. The effects of these
both parameters on velocity profile is similar as we have
explained in the previous case. The height of the velocity
profile is minimum for the present case comparedwith the
previous one. The influence of Reynolds viscosity index
L on velocity is presented in Figure 4c. From this plot,
it is observed, increase in the Reynolds viscosity index L
enhances the velocity of the fluid. It is true, as increase in
the Reynolds viscosity index L means diminishing abso-
lute viscosity of the fluid and as a result the transfer of heat
predicts the melting effects on the fluid which rises the
fluid field. After this, the next three figures have been plot-
ted for Vogel’s viscosity model. The effects of temperature
of the wall (θw) on non-dimensionless velocity is shown in
Figure 5. The velocity is increasing due to temperature of
the wall. The reason is that when we increase the temper-
ature of the boundary, the friction in the fluid is reduced
as a results the velocity of the fluid is rise. The dimen-
sionless velocity is enhance via Vogel’s viscosity index (B)
(see Fig. 5b) and reverse trend is observed via material
parameter (M) as shown in Figure 5c.

6.2 Effects of Dimensionless Parameters on
Temperature Profile

Here, Figures 6–8 are plotted to depict the effect of
pertinent parameters on the temperature profile of all vis-
cosity models. Figure 6a–c highlights the effect of radia-
tion parameter (R), material parameter (M) and heat gen-
eration parameter (δ) for the case of uniform viscosity
case. It is observed that the temperature is maxium at the

centre and decreases towards the walls of the pipe. The
effects of radiation parameter have a decreasing trend on
temperature (see Fig. 6a). Physically, when we increase
the value of R, the absorption parameter diminish which
means that less energy is absorbed by the fluid. The influ-
ence of material parameter on non-dimensional temper-
ature is highlighted in Figure 6b and this figure reported
the inverse relation of temperature and material param-
eter. It is scrutinised that the temperature increases with
heat generation parameter. The physical reason is that the
mechnasim of heat generation produces a hot layer within
the fluid at moderate value of heat generation parameter
as a result the fluid’s temperature enhances via least tem-
perature distribution in an infinite long pipe. The effects
of radiation and heat generation parameters are displayed
in Figures 7a,b and 8a,b. The physical phenomenon is
observed for both paramters as we have discussed in the
previous case of the viscosity model. The exclusion of
radiation and heat generation is described for R → 0 and
δ → 0, respectively. The behaviour of Reynolds viscos-
ity index L is repoted in Figure 7c which demonstrate
that the fluid’s temperature slightly enhance with the
enhancement of L. Physically, to increase the value of L
leads to shear thinning effects as a result the temperature
of the fluid increases. The effects of viscous dissipation
parameter Γ on temperature distribution is highlighted in
Figure 8c. From this figure, it is noted that increase in Γ, the
dimensionless temperature profile increases due to rise in
the kinetic energy within a moving fluid.

7 Error Magnitude
We compare the solutions obtained by the perturbation
method and the explicit finite difference method. The
absolute error in velocity and temperature distribution for
the case of Reynolds viscosity model is listed in Table 1.
From this table, it is noted that, the maximum absolute
error in velocity and temperature is of the order of 10−2.

Table 1: Absolute error between analytical and numerical solutions for the case of Reynolds viscosity modelM = 1, c = −3, L = 1, Λ = 0.5,
Γ = 10.

R δ Perturbation Solution Numerical Solution Absolute Error

wmax θmax wmax θmax wE θE

2 1 0.43652 0.37130 0.49977 0.41889 6.3 × 10−2 4.8 × 10−2

3 1 0.42841 0.27183 0.47282 0.29605 4.4 × 10−2 2.4 × 10−2

4 1 0.42333 0.22923 0.45939 0.21403 3.6 × 10−2 1.5 × 10−2

5 0.4 0.41987 0.17051 0.45012 0.17899 3 × 10−2 8.5 × 10−3

5 0.7 0.41987 0.17344 0.45065 0.18293 3 × 10−2 9.5 × 10−3

5 1 0.41987 0.17637 0.45120 0.18702 3.1 × 10−2 1.0 × 10−2
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This error increases with the increase in values of thermal
radiation and heat generation parameters.

8 Conclusion
In this paper, we studied the combined effects of ther-
mal radiation and heat generation in the one-dimensional
flow of an EP fluid in a pipe. The dimensional govern-
ing momentum and energy equations are transformed
into dimensionless form under the defined dimensionless
quantities. In the present scenario, the viscosity is not only
taken as a constant but it is also considered as a function
of temperature namely Reynolds and Vogel’s models. The
highly non-linear boundary value problem is solved with
the perturbation method as well as the finite difference
method. The perturbation method is used to obtain the
analytical expressions of velocity and temperature in each
case. For the validation of our analytical solution, the emi-
nent finite differencemethod is to pick and solve the direct
dimensionless equations under the prescribed boundary
conditions of each case of viscosity model.

The results of this study reveal the following effects:
– The velocity and temperature are decreasing functions

of material parameterM.
– The influence of c and Λ are same in case of velocity

function.
– The velocity is an increasing function of Vogel’s model

parameter B and θw.
– The temperature profile predcits the decreasing

behaviour via material and radiation parameters and
increment against heat generation parameter δ and
viscous dissipation parameter Γ.

Solution benchmark [2]
Figure 2

Plots for velocity:

Constant case:
Figure 3

Reynolds model
Figure 4

Vogel’s model
Figure 5

Constant case (Temperature graphs)
Figure 6

Reynolds model
Figure 7

Vogel’s model
Figure 8

Nomenclature
R* Radius of pipe
M Material parameter
Λ Non-Newtonian parameter
c Pressure gradient parameter
Q Heat generation constant
θm Bulk means fluid temperature
µ Viscosity of the fluid
S Cauchy’s stress tensor
X, Y Material constants
A1 Rivlin-Ericksen tensor
HR Radiative heat flux
k* Heat absorption parameter
δ Heat genration parameter
ŵ Velocity components along z-direction
r̂ Dimensionless radius
θ Temperature of the fluid
θ̂w Wall’s temperature
k Thermal conductivity
w0 Reference velocity
p Pressure of the fluid
µ̂ Viscosity of the fluid
ϵ Perturbation parameter
Γ Viscous dissipation parameter
A, B Vogel’s viscosity index
L Reynolds viscosity index
R Radiation parameter

Appendix

γ0 =
−c

4(1 + M)
, γ1 =

2σ γ30
1 + M , γ2 =

γ0 λ0
3(1 + M)

,

γ3 =
2γ0

3

1 + M , γ4 =
−k

4(1 + aM)
,

γ5 =
γ4 λ14

3B2(1 + aM)
, γ6 =

2aγ34
1 + aM ,

λ1 = − 8 Γ γ40
18 + 15R , λ2 =

8 (1 + M) Γ γ0γ1
18 + 15R ,

λ3 = − λ0
4 + 2R , λ4 =

λ0
36 + 30R ,

λ5 = (8 + 7R)λ0
3(2 + R)(6 + 5R)

, λ6 = λ1 + λ2,

λ7 =
8 Γγ04

3(6 + 5R)
, λ8 = (8 + 7R)λ0

3(2 + R)(6 + 5R)
,

λ9 = − λ0
4 + 2R , λ10 =

λ0
36 + 30R ,

λ11 =
3(12 + M(12 + 11R))Γγ0γ2

(4 + 3R)(8 + 7R)
,
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λ12 = −6(1 + M)Γγ0γ2
4 + 3R , λ13 =

3(1 + M)Γγ0γ2
8 + 7R ,

λ14 = (1 + aM)γ γ24
a(4 + 3R)

, λ15 =
12A(1 + aM)γ γ4γ5
a(4 + 3R)(8 + 7R)

,

λ16 =
2A γ γ24λ14

aB2(4 + 3R)(8 + 7R)
,

λ17 =
ARγ γ24λ14

2aB2(4 + 3R)(8 + 7R)
,

λ18 =
3A(1 + aM)R γ γ4γ5
a(4 + 3R)(8 + 7R)

,

λ19 =

A(12 + 11R)γγ4

(︃
6B2(1 + aM)
γ5 − γ4λ14

)︃
2aB2(4 + 3R)(8 + 7R)

,

λ20 =
8(1 + aM)γ γ4 γ6

3a(6 + 5R)
, λ21 = − 8 γ σ γ44

3(6 + 5R)
,

λ22 = (λ20 + λ21), λ23 = − λ14
2(2 + R)

,

λ24 =
λ14

6(6 + 5R)
, λ25 = (8 + 7R)λ14

3(2 + R)(6 + 5R)
.
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