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The work “Quantum-phase-field concept of matter: Emer-
gent gravity in the dynamic universe”, published in [1],
outlines a framework to describe physical matter from
the solution of a one-dimensional non-linear wave equa-
tion.Unfortunately, a central result, the presented analytic
form of this solution, (13) in [1] is incorrect. The corrected
form can be found on arXiv [2]. In the present Erratum,
besides the correct solution, some background informa-
tion about these types of non-linear wave equations and
their solutions is added. We start from a functional fDW,
the famous “double-well potential”, according to Landau’s
theory of phase transitions [3] with positive constants r
and u, expanded in temperature T around the critical tem-
perature Tc. ϕ̃ is the “order parameter” in the original
Ginzburg-Landau theory. In this theory the potential func-
tion is expanded to the fourth order, keeping only even
contributions of the order parameter ϕ̃:

f DW = r(T − Tc)ϕ̃2 +
u
2 ϕ̃

4. (1)

The potential has aminimum at ϕ̃ = 0 for T > Tc and
two minima at ϕ̃m = ±

√︁
r(Tc−T)

u for T < Tc. These min-
ima describe the disordered and ordered state of the sys-
tem, respectively. Here only the ordered state T < Tc is
discussed and to be consistent with conventions in the
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phase-field literature the order parameter is normalized to
0 ≤ ϕ ≤ 1, ϕ = 1

2

(︁
ϕ̃

|ϕ̃m| + 1
)︁
, see Figure 1.

f DW =
γ

4ϕ
2(1 − ϕ)2. (2)

Also, we will understand ϕ = ϕ(s, t) as a field vari-
able in space s and time t and define the Hamiltonian H
as an integral over the potential density and the Ginsburg
gradient operators accounting for fluctuations:

H = U
+∞∫︁

−∞

ds
[︃
ϵ
(︂
∂ϕ
∂s

)︂2
+ f DW

]︃
. (3)

U is a constant with dimension of energy, ϵ is a con-
stant with dimension of length and γ an inverse length.

The well-knownminimum solution δ
δϕG = 0 is for the

boundary conditions ϕ(−∞) = 0 and ϕ(+∞) = 1:

ϕ(s, t) =
1
2

[︂
1 + tanh

{︂
3(s + vt)

η

}︂]︂
, (4)

with η =
√︁
72 ϵ

γ
for a traveling wave with speed v. Note

that for v ̸= 0 a symmetry breaking contribution has to
be added to the potential (2), which is omitted here to
keep the focus on the type of potential. Details can be

Figure 1: The “double-well” vs. the “double-obstackle” potential.
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found in appendix of [4]. For the boundary conditions
ϕ(−∞) = ϕ(+∞) = 0wehave, besides the trivial solution
ϕ ≡ 0:

ϕ(s, t) =
1
2

[︂
tanh

{︂
3(s − s1 + vt)

η

}︂

− tanh
{︂
3(s − s2 − vt)

η

}︂]︂
, (5)

where thewaves, peaked at s1 and s2 at t = 0, respectively,
s1 < s2, travel with opposite speed, see Figure 2.

It is also well established that the special form of
the potential (1) or (2) is not fixed from basic princi-
ples, besides that, between the two minima there should
be a potential barrier to separate the minima with a
given activation energy ∝ U. Only close to the critical
point, i.e. where the activation energy U → 0, a rigor-
ous renormalization group treatment may be applied to
show that higher order contributions will become irrele-
vant [5]. Aside from the critical point, no argument exists
to truncate the Landau expansion of the potential to the
fourth order or to select the given form. In the “multi-
phase-field theory” [6] there arises, however, an addi-
tional constraint for the potential. In this theory a set of
fields ϕI , I = 1 . . . N is defined which form junctions by
the condition

∑︀N
I=1 ϕ

I = 1. The functional is replaced by
H =

∑︀N
I=1 H

I where each termHI has the special form (3).
In the center of the junction, where ϕI = ϕJ = 1

N for all I,
J, the maximum of the potential f DWm can be evaluated:

N∑︁
I=1

f DWm =
γ

4N
(︂
1
N

)︂2(︂
1 − 1

N

)︂2
≈ γ

4
1
N

for N ≫ 1, (6)

i.e. for N > 3 the energy of the junction decreases with
the order N and approaches 0 for large N. This must

Figure 2: Traveling wave solution for the double-well and double
obstacle potential. Note, that for the double-obstacle potential the
width η is sharply defined whereas the for the double-well potential
the 95 % decay is evaluated for the width.

be termed “unphysical”, as junctions between objects
loose their penalty and the system would return to the
disordered state. To remedy this problem, the so-called
“double-obstacle potential” is introduced [6]:

f DO =
γ̃

2 |ϕ(1 − ϕ)|. (7)

It has the same topology as (2) (see Fig. 1) but a max-
imum power of 2. Further on it has the advantage that
it defies a linear wave aside from the breakpoints. We
calculate the maximum potential of the junction f DOm :

N∑︁
I=1

f DOm =
γ̃

2N
1
N

(︂
1 − 1

N

)︂
≈ γ̃

2 for N ≫ 1, (8)

i.e. the energy of the junction increases with the order N
and approaches a constant ∝ γ̃ for large N, as it should.
The main drawback of this potential is the non-analytical
form with the absolute signs. The “non-linearity” of (2)
is hidden in the breakpoints at ϕ = 0 and ϕ = 1. Only
a piece-wise solution is possible for the boundary condi-
tions ϕ(−∞) = 0 and ϕ(+∞) = 1, η = π

√︁
ϵ
γ̃
,

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for s < −vt − η
2 ,

1
2 +

1
2 sin

(︂
π(s + vt)

η

)︂
for −vt − η

2 ≤ s < −vt +
η
2 ,

1 for s > −vt +
η
2 .

(9)

For ϕ(−∞) = ϕ(+∞) = 0, one finds (see Fig. 2):

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for s < s1 − vt − η
2 ,

1
2 +

1
2 sin

(︂
π(s − s1 + vt)

η

)︂
for s1 − vt − η

2 ≤ s < s1 − vt +
η
2 ,

1 for s1 − vt +
η
2 ≤ s < s2 + vt − η

2 ,

1
2 −1

2 sin
(︂
π(s − s2 − vt)

η

)︂
for s2 + vt − η

2 ≤ s < s2 + vt +
η
2 ,

0 for s ≥ s2 + vt +
η
2 .

(10)

The last (10) replaces (13) in [1].
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