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Abstract: Effects of Landau quantisation and exchange-
correlation potential on Rayleigh-Taylor instability
(RTI)/gravitational instability are investigated in inhomo-
geneous dense plasmas. Quantum hydrodynamic model
is used for the electrons, while the ions are assumed to
be cold and classical. RTI is modified with the inclusion
of Landau quantisation related to plasma density, ambi-
ent magnetic field, exchange speed, and modified Fermi
speed. Owing to the exchange-correlation effects, gravita-
tional instability increases, whereas the Landau quantisa-
tion effects contribute in the opposite way for quantisation
factor n < 1. Since the exchange-correlation potential is
a function of density, by controlling the number density
and magnetic field one can control RTI.

Keywords: Exchange-Correlation Potential; Gravitational
Instability; Landau Quantization; Quantum Plasmas.

1 Introduction

Plasmas are enriched by heterogeneous phenomena, typ-
ically the challenge of inertial confinement fusion [1],
growth of interface perturbations [2], tunnelling of aero-
dynamic wind [3], launching shock pulses into the foil of
metal [4], material mixing, Doppler broadening of gamma
rays [5], striking the interstellar clouds by blast waves
[6], symmetry-breaking by supernova explosion [7], etc.
These phenomena are rooted in the promising mecha-
nism of Rayleigh—Taylor instability (RTI) or simply mixing
instability. RTI is akin to falling water out of a glass, mix-
ing the vinaigrette on shaking, flapping of the flags, and
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mushroom cloud from atomic explosion [7]. RTI explains
the broad infrared emission of Fe-II, Ni-II, Ar-II, and Co-
II, indicating the mixing from low-velocity to high-velocity
cores. The production of hard X-rays is an indirect proof
of mixing. Hence, understanding RTI helps in explain-
ing the physical mechanism of fundamental research and
technology, for example, nuclear weapons design [8].
There are many factors that may affect RTI, such
as plasma density inhomogeneity [9], thickness scale of
the perturbed interface, mass ablation [10], temperature-
gradient-dependent magnetic field [11], inhomogeneous
magnetic field [12], Weibel instability, resonant absorp-
tion, motion of superthermal electrons [13], stationary
ponderomotive force [14], etc. All these are entirely stud-
ied in classical plasmas, therefore it is a need to introduce
non-ideal effects such as Landau quantisation, exchange
and correlation potential, etc. in quantum plasmas. Quan-
tum plasma has emerged as a rapidly growing research
area. Quantum plasma exists in dense astrophysical envi-
ronments, particularly in the interior of Jupiter, white
dwarfs, and neutron stars, as well as in metals and semi-
conductors. It is well known that quantum plasma has
the properties of high particle number density and low
temperature compared to classical plasmas, and there-
fore are associated with a de Broglie length longer than
the inter-particle distance. Such plasmas are characterised
by the Fermi pressure associated with degeneracy, where
all quantum states are fully occupied below a certain
level, tunnelling potential, exchange-correlation poten-
tial, and Landau quantisation [15, 16]. A recognised fact
of moving either orbital-like gyro or spinning electrons is
the magnetic field induction and the associated moment
along the axis of gyration. Magnetic moment creates mag-
netism in the plasma. The external magnetic field alters
the spinning. There are two magnetic effects due to the
strong magnetic field: first is the Landau quantisation
or Landau diamagnetism, which arises from the quan-
tisation of the orbital-like gyro motion of charged parti-
cles; the second is the Pauli paramagnetism due to the
spin of electrons. Landau quantisation effect and the tun-
nelling potential [17] are of a purely quantum nature.
The external magnetic field enhances the total energy
of the plasma system through Landau quantisation. The
free electrons exhibit Landau diamagnetism at Tr, > Te,
while the fixed electrons produce Pauli paramagnetism.
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Orbital quantisation modifies the thermodynamic proper-
ties of the plasma at equilibrium.

Cao et al. [18] studied RTI using quantum magneto-
hydrodynamic equations and solved the second-order dif-
ferential equation under fixed boundary conditions. They
pointed out that the magnetic field has a stabilizing effect
on RTI in a similar manner as in classical plasmas but
is significantly affected by quantum effects. Ali et al. [19]
investigated the RTI in an inhomogeneous, dense magne-
toplasma and found that the density gradient modifies the
growth rate of RTI. Modestov et al. [20] studied the influ-
ence of magnetic field on RTI in metal quantum plasmas.
They observed that the paramagnetic effects in a quan-
tum plasma make RTI weaker; however, for the case of
ferromagnetic effects with perturbations of long and mod-
erate wavelengths, certain stabilisation always takes place
due to the nonlinear character of quantum plasma mag-
netisation. In 2012, Wang et al. [1] discussed the stabilisa-
tion of the RTI due to density gradients, magnetic fields,
and quantum effects in ideal, incompressible quantum
magnetoplasmas.

In this article, we present the RT wave instability
in a non-uniform quantum magnetoplasma by assum-
ing fluid-streaming due to the diamagnetic drift, gravi-
tational drift, and additional diamagnetic-type drifts due
to exchange-correlation potential under conditions w?;

(w Vol-.k)z, where w.; = eBo/m;c is the ion cyclotron
frequency. Both electrons and ions are magnetised, but
ions are treated as classical whereas quantum effects
are included for electrons in the quantum hydrodynamic
model. It is observed that the growth rate and the real wave
frequency are significantly modified with the Fermi dis-
tribution including the Landau quantisation effects [21].
The Landau quantisation effects stabilise the RTI for the

quantisation factor n. = e < 1, where wce = % isthe
cyclotron frequency and Er, = kgTreq is the Fermi energy
of the plasma species. The rest of the article goes as fol-
lows: In Section 2, we solve the quantum hydrodynamic
fluid equations using the plasma approximation. Plasmas
for which the de Broglie wavelength has influence over the
inter-particle distance are found in stellar and interstel-
lar media. The dispersion of RTI is derived in Section 3.
Section 4 describes the growth rate and numerical results,
and Section 5 presents the discussion. The summary of the

worKk is given in Section 6.

2 Mathematical Model

A dense quantum magnetoplasma consisting of ions
and electrons is assumed. The quasi-neutrality condition
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for equilibrium is given as negp = njop = nog. An exter-
nal uniform magnetic field is applied in the z-direction,
that is, Bo = Bob. At equilibrium, the gravitational field
and the density gradient act in opposite directions: the
density gradient is supposed to be in the negative x-
direction and gravitational field in positive x-direction
i.e. rngi = jrngjR, g = gk. The propagation vector of
the instability wave and the electric field are considered
to be in the y-direction, that is, E; = (0, E}, 0) and k =
(0, ky, 0). As dense magnetoplasma environments have
strong magnetic fields, Landau quantisation effects can-
not be ignored. Whether RTI is increased or squeezed
depends upon the strength of quantisation, that is, the
value of 1, which cannot exceed unity.

To investigate the effects of Landau quantisation
(Landau diamagnetism) due to the quantisation of the
gyro-like orbital motion of the electrons in a strong mag-
netic field on the RTI in a quantum plasma with a density
gradient, the following set of fluid equations is used in the
quantum hydrodynamic (QHD) model:

Momentum equation
0
m;n; a+ vVj. I V;j

Bo /C

2

2
rP,+mng+ —r ron;
j A , j
4m;

= gjn; E + Vj

Vj,xc rn;. (1)

Continuity equation

on;
ail'] +r. (njV]') =0, (2)
where the exchange-correlations potential V. =
0.985¢ ,,1/3 0.034 .1/3 :
e T 1+ an’” In 1+ 18.37agjn; is

included to analyze the complete picture of the quan-
tum plasma [15, 22, 23]. Furthermore, E=E;, n; =
noj + (£.0)ng; + nyj, P; = mjvgn;, and v; = Vo + vyj,
where V; is the fluid streaming due to the diamagnetic
drift, gravitational drift, and diamagnetic-type drift due to
exchange-correlation potential given by

Vo, = ckBij rno | mich g
q;Bo No; q; Bo
CVi,XCb rnoj (3)
qiBo Noj

Here, r.Vo; = 0, 2Vo; = 0, r2ng; = 0,and %% = 0. The

effective Fermi speed modified by Landau quantisation
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, 2 . J— j—
for the j species is v Pg} — % Vlzv]'o 5; + 1572 - TT; " According _to th(? assumed geometry, g = gk, By =
Fjo Bob, rng; = jrngjR, E; = E1b, and k = kb, and viy;
The | coefficients  of i Landau q;iantlsatlon are  and v, are give below:
=0+ 1 g+ 1 g and =
h i - eE; viky ny;
1 12 1/2 _ " 2kgTg Vg = ——2¥  jrty Bl 9
2+ 1 g T+F 1oy vio = T YT wami we noi ©)
is the Fermi speed, kg is the Boltmann constant, and d
23 2, . an
Trjo :% 3n2n0j / Tm 1S the Fermi temperature of
the plasma species [17]. Since electrons have quantum Vi = ie w Voyiky E,
nature, they exhibit Fermi temperature, Bohm potential, : w%,-mi Y
and exchange-correlation potential. However, because of ]
the smaller mass of electrons, gravitational force may Voyi + g 4 viky w ; Voyiky @, (10)
be ignored, and the linearised equation of motion for Wei we Mo
electrons is K
where vn BT' is the thermal motion of ions. Here, a)
Menoe 2 + Voo Vie w ‘/.()yi’.(y ,a.nd VOX? = ;). Now the linearised equ:.atlon
ot of continuity for ions with <21 = 0, and r.Vy; = 0 gives
= enoe(E1 +Ver  Bo/c) i w  Voyiky ni+noitkyvayi Vi ¥xnoij = 0. (11)
enie(Vo. Bo/c) 1rPe Eliminating vq; and vy,; from (9) to (11) by inserting
2 R the values of v,,; and vyy; from (9) to (10), respectively,
+ AMe r rne VexcMnie. (4)  into above equation, we get
L]
The equation of continuity for electrons is e ky w_ Voyiky kni E1
Wcim; Wi Y
anle _ " #
ot + 1. (ngeVie) + r. (n1.Voe) =0 (5) i o+ ky g thky w Voylky V%iky . ny;
Wci wz Wci No;
For the plasma ions, quantum effects can be neglected -0 (12)

while the gravitational force is taken care of:

m;no; +Vo;. 1 vy

ot

=enjE+vi Bo/c)

+enyi(Voi Bo/c) (6)

kgTivni; + min;; 8.
The continuity equation for ions is

anh‘
ot

+ r.(noivy) + r.(n;Vo;) =0 7
Since all

ny; expli(k.r

E; expli(k.r

quantities vary sinusoidally, n;; =
wt)], vi; = vijexplikr  wt)], and E; =
wt)], and then (6) becomes

iwm;ng;vy; + imino;(Vo; . K)vy;

= eng;E1 + eny;Vo; Bo/C + enopivyi

Bo/C (8)

ikgTikny; + miny;g.

where k,; = % is the inverse scale length of inho-
mogeneity due to the density gradient in ions. Rewriting
the equation of motion (see (4)) for electron, after using
the Fourier transformation 3= iw,r= ik for the per-
turbed quantities, we have

inge(w Voe.K)Vie

€Nnoe

= Ei ngevVer DPwece
Mme
. 2
NeWceVoe B iKne1 Vip xcs (13)
— eB 12 ) 2 2 2 2
where wee = 15, Vg xe = Vie ¥ VB + Vexe, Vg = 4m2k
and vﬁ,xc = Ve * - As the drift is along k, using Vge.k =

Voyeky in the above equation, we get

w VOye ky Vie

. e .
= l—E]_ 1Veq bwce
Me

.Nie Neq
i—wceVoe b+ kf VFB xce

noe (14)
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For the given geometry E; =(0,E,,0) and k=
(0, ky, 0), the x- and y-components give the following
expressions for the perturbed velocity components of elec-
trons:

2
e E 1 ., n V
Vee = — y + lky el YV FB,xc (15)
Me Wee Noe Wce
and
e w  Voyeky Nie
Vye =1— ————> Eyl 7V0ye
Mme Wee Noe
Ne1 2 w VOyeky
ky VFB,xc 2 (16)
Noe Wee

SO vye~ MV for w?e w  Voyeky . The
equation of continuity, i.e. (5), for electrons with constant
Voe, K=KkyJ, rnep =  jrxngejRis

iwnye + NoeikyVye + VoelkyNer  VxejxNoej = 0. (17)

On substituting vye from (15) to vye =~
(16), we get

Nie i
Mo VOye into

Me WWce

2 Nie
+kyV —
y VFB,xc 1)
e Kne nOe

Eyl = (18)

where kpe = % isinverse scale length of inhomogene-
ity due to the density gradient in electrons.

3 Dispersion Relation

To calculate the modified dispersion relation of RTI in a
quantum plasma, we eliminate Ey1, ni., and ny; from (17)
to (18) by assuming ni, =~ ny;, and we have

Aw’+Bw C=0, (19)
where A= 5 B= Voi 4 xy L+
T Weikne’ - Oyi Wei M ke
ky V}%B,xc V?‘ ky Kk = k§
7{”@ + a-;ci 0)751 + ]. ) al’ld C _ Volea + Kni
"o Vinse 4 Viky ky,-5- are quadratic coefficients
Wee Wei Y wei :
The quadratic solution is
1
1(V k ky V}%B xe V%ik)’ +( )wci)
w=— i _ = 2 K Kni K —¢
2 Oyilty Wee Wei ne ni ne ky
¥ ¥
g k3 Vig e . Vi
I “Kne§ Wcikne Voyi— +Kypj ——— + —
Wi Wce Wei
(20)
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Equation (20) is further solved for B> 4AC, which
gives the modified dispersion relation of RTI for a quan-
tum plasma including the gradient of magnetic effects.
The quantum effects include Landau quantisation, Fermi
pressure, exchange-correlation potential, and tunnelling
potential.

4 Growth Rate

Let w = w + iy in (20), where y represents the growth rate
of RTI. On comparing the real and imaginary parts in (20),
the RT phase speed becomes

1 ¢ ky V2 2k !
_ Ky VFB,xc , ViiKy
w== Vyik R e
2 Oyiy Wee Wi e
)
Wi
+ (Kn; Kne)Ta (21)
y
and the growth rate is
It '
Y k3 Vig 1%
= Tk Weikne Voyi—L + Kpj =~ —2XC 4 L
Y ne§ ciKne Voyi Wi ni Wee Wei
(22)

. . . i
Equation (22) is valid for g > w,; Voyige + Kni

2 2
VFB,xc + Vi
Wee Wi

5 Results and Discussion

Equation (22) presents the analytical expression for the
growth rate y of RTI for dense plasmas. It is seen that the
quantisation effects have a large impact on the growth rate
of RTL. In this section, a graphical analysis of the growth
rate of instability is presented for typical parameters in

cgs units: Bo = (1 100) 10°G, nge = (1  10%*
1 10%7) em 2, no; = noe, Treo = 3 37°Noe 2/3#;‘3
Te=1 10°K, T;=10*K, k~1 10%cm !, g=~1
102 em/s?, k=1 10 2cm Y kpe=1 10%cm .

Figures 1-5 show a considerable impact over the
normalised growth rate y/wp; (Figs. 1 and 2) and y/w,;
(Figs. 3-5) due to the contribution of Landau quantisa-
tion in quantum plasmas. Figure 1 describes the behaviour
of RTI versus n at different ambient magnetic fields By in
the presence of tunnelling potential, exchange-correlation
potential, and Landau quantised Fermi statistical pres-
sure. The dashed curve describes the instability at small
magnetic field and the solid curve at strong magnetic field.
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Figure 1: Normalised growth rate of RTI versus n. The dashed
curve is for small B = 10(G) and the solid curve is for large
By =11 10" (G).
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Figure 2: Normalised growth rate of RTl versus By (G). The solid

curve is without quantisation and the dashed curve is with Landau
quantisation for n < 1. Both curves meetatn = 1.
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Figure 3: Normalised growth rate of RTI versus k, /k; in the presence
of Landau quantisation at 7 = 0.201 (dotted curve), n = 0.588
(solid curve), and n = 0.934 (dashed curve).

It can be noticed that the behaviour of RTI y/w,,; is mod-
ified by the Landau quantisation effect. The instability is
suppressed at higher magnetic fields in comparison with
that at smaller By for n < 1. Physically, the suppressing
mechanism of the instability can be explained in terms of
the quantisation of energy states on increasing By atn < 1.
The electrons from the excited states are accommodated
in the induced stable states. As a result, the remaining
few particles may contribute to the wave instability. On
the other hand, at small 7, both curves give the maximum
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Figure 4: Normalised growth rate of RTl versus k, /k; with Landau
quantisation (dashed curve) and without Landau quantisation (solid
curve).
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Figure 5: Normalised growth rate of RTl versus nge (cm 3)
with Landau quantisation (dashed curve) and without Landau
quantisation (solid curve).

instability, and on increasing n, both curves, although
at different instability frequencies, decrease in a similar
way so that n approaches unity. In Figure 2, the upper
plot is for the case without quantisation (solid) where
y/wpi decreases with Bo(G) where n < 1. On the other
hand, y/w,; also decreases with the increase of By(G),
that is, with the quantisation effects (dashed curve). The
dashed graph meets the solid graph at = 1, which shows
the absence of Landau quantisation. Comparison of the
graphs shows that y/wp; becomes small with the inclu-
sion of Landau quantisation effects at lager values of By.
This shows the stabilisation of RTI with the inclusion of
quantisation effects.

Figure 3 shows y/w.; against the dimensionless wave
vector k/xk; at different values of 7 (the dotted curve for
n = 0.201, the solid curve for n = 0.588, and the dashed
curve for n = 0.934). For the dotted curve, the instability
is defined over a very small range of wave vectors; how-
ever, a uniform increment of the instability is observed.
For the solid curve, RTI increases for a wide spectrum
wave vectors. The dashed curve describes the widest wave
vector spectrum of increasing RTI. Figure 4 depicts the
variation of y/w.; versus k/x; with Landau quantisation
(dashed curve), while the solid curve is without Landau
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quantisation. On increasing the normalised wave vector,
RTI increases. Both curves intersect at a particular wave
vector, where both scenarios have the same instability.
Overall, without Landau quantisation, the instability spec-
trum is small compared to the Landau quantisation wave
vector spectrum. Figure 5 shows that y/w,; increases with
noe (cm 3) with (dashed curve) and without quantisation
(solid curve). However, there is a significant reduction in
RTI in the presence of Landau quantisation for the whole
range of number densities as compared to the instability
without Landau quantisation. This is mainly due to the
induction of new states due to the quantisation of gyro-
like orbital motion in dense plasmas. The induced states
provide the reason for settling down the charged particles
in lower states, which reduces the instability.

6 Summary

In summary, we studied RTI in quantum plasmas includ-
ing quantum effects from Fermi pressure, Bohm poten-
tial, exchange-correlation potential, and Landau quanti-
sation of the orbital motion of electrons. We found that
the magnetic field By and hence the Landau quantisa-
tion play a role for the stabilisation of RTI for n < 1. The
plasma density and the exchange-correlation potential,
which directly depends on the density nge, increase the
growth rate of instability. Quantisation effects on RTI dis-
appear at = 0, but quantisation has minimum effects at
n = 1, which means the balance of magnetisation energy
~wce and Fermi energy Ep.. Since n depends on both By
and ng., the range of quantisation effects shifts to larger
values of By(or nge) by increasing the values of ng, (or By).
This study provides a sound explanation of the collapse
of a heavy astrophysical body to a more dense body. The
conversion of the Red Giant to the Planetary Nebula and
of the Red Supergiant to Supernova are good examples of
RT/gravitational instability.
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