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Abstract: Effects of Landau quantisation and exchange-
correlation potential on Rayleigh–Taylor instability
(RTI)/gravitational instability are investigated in inhomo-
geneous dense plasmas. Quantum hydrodynamic model
is used for the electrons, while the ions are assumed to
be cold and classical. RTI is modified with the inclusion
of Landau quantisation related to plasma density, ambi-
ent magnetic field, exchange speed, and modified Fermi
speed. Owing to the exchange-correlation effects, gravita-
tional instability increases, whereas the Landau quantisa-
tion effects contribute in the oppositeway for quantisation
factor η < 1. Since the exchange-correlation potential is
a function of density, by controlling the number density
and magnetic field one can control RTI.

Keywords: Exchange-Correlation Potential; Gravitational
Instability; Landau Quantization; Quantum Plasmas.

1 Introduction
Plasmas are enriched by heterogeneous phenomena, typ-
ically the challenge of inertial confinement fusion [1],
growth of interface perturbations [2], tunnelling of aero-
dynamic wind [3], launching shock pulses into the foil of
metal [4], material mixing, Doppler broadening of gamma
rays [5], striking the interstellar clouds by blast waves
[6], symmetry-breaking by supernova explosion [7], etc.
These phenomena are rooted in the promising mecha-
nism of Rayleigh–Taylor instability (RTI) or simply mixing
instability. RTI is akin to falling water out of a glass, mix-
ing the vinaigrette on shaking, flapping of the flags, and
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mushroom cloud from atomic explosion [7]. RTI explains
the broad infrared emission of Fe-II, Ni-II, Ar-II, and Co-
II, indicating themixing from low-velocity to high-velocity
cores. The production of hard X-rays is an indirect proof
of mixing. Hence, understanding RTI helps in explain-
ing the physical mechanism of fundamental research and
technology, for example, nuclear weapons design [8].

There are many factors that may affect RTI, such
as plasma density inhomogeneity [9], thickness scale of
the perturbed interface, mass ablation [10], temperature-
gradient-dependent magnetic field [11], inhomogeneous
magnetic field [12], Weibel instability, resonant absorp-
tion, motion of superthermal electrons [13], stationary
ponderomotive force [14], etc. All these are entirely stud-
ied in classical plasmas, therefore it is a need to introduce
non-ideal effects such as Landau quantisation, exchange
and correlation potential, etc. in quantum plasmas. Quan-
tum plasma has emerged as a rapidly growing research
area. Quantum plasma exists in dense astrophysical envi-
ronments, particularly in the interior of Jupiter, white
dwarfs, and neutron stars, as well as in metals and semi-
conductors. It is well known that quantum plasma has
the properties of high particle number density and low
temperature compared to classical plasmas, and there-
fore are associated with a de Broglie length longer than
the inter-particle distance. Suchplasmas are characterised
by the Fermi pressure associated with degeneracy, where
all quantum states are fully occupied below a certain
level, tunnelling potential, exchange-correlation poten-
tial, and Landau quantisation [15, 16]. A recognised fact
of moving either orbital-like gyro or spinning electrons is
the magnetic field induction and the associated moment
along the axis of gyration. Magnetic moment creates mag-
netism in the plasma. The external magnetic field alters
the spinning. There are two magnetic effects due to the
strong magnetic field: first is the Landau quantisation
or Landau diamagnetism, which arises from the quan-
tisation of the orbital-like gyro motion of charged parti-
cles; the second is the Pauli paramagnetism due to the
spin of electrons. Landau quantisation effect and the tun-
nelling potential [17] are of a purely quantum nature.
The external magnetic field enhances the total energy
of the plasma system through Landau quantisation. The
free electrons exhibit Landau diamagnetism at TFe > Te,
while the fixed electrons produce Pauli paramagnetism.
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Orbital quantisation modifies the thermodynamic proper-
ties of the plasma at equilibrium.

Cao et al. [18] studied RTI using quantum magneto-
hydrodynamic equations and solved the second-order dif-
ferential equation under fixed boundary conditions. They
pointed out that the magnetic field has a stabilizing effect
on RTI in a similar manner as in classical plasmas but
is significantly affected by quantum effects. Ali et al. [19]
investigated the RTI in an inhomogeneous, dense magne-
toplasma and found that the density gradientmodifies the
growth rate of RTI. Modestov et al. [20] studied the influ-
ence of magnetic field on RTI in metal quantum plasmas.
They observed that the paramagnetic effects in a quan-
tum plasma make RTI weaker; however, for the case of
ferromagnetic effects with perturbations of long andmod-
eratewavelengths, certain stabilisation always takes place
due to the nonlinear character of quantum plasma mag-
netisation. In 2012, Wang et al. [1] discussed the stabilisa-
tion of the RTI due to density gradients, magnetic fields,
and quantum effects in ideal, incompressible quantum
magnetoplasmas.

In this article, we present the RT wave instability
in a non-uniform quantum magnetoplasma by assum-
ing fluid-streaming due to the diamagnetic drift, gravi-
tational drift, and additional diamagnetic-type drifts due
to exchange-correlation potential under conditions ω2

ci ≫
(ω − V0i .k)2, where ωci = eB0/mic is the ion cyclotron
frequency. Both electrons and ions are magnetised, but
ions are treated as classical whereas quantum effects
are included for electrons in the quantum hydrodynamic
model. It is observed that the growth rate and the realwave
frequency are significantly modified with the Fermi dis-
tribution including the Landau quantisation effects [21].
The Landau quantisation effects stabilise the RTI for the
quantisation factor ηe = ~ωce

EFe < 1,whereωce = eB0
mec is the

cyclotron frequency and EFe = kBTFe0 is the Fermi energy
of the plasma species. The rest of the article goes as fol-
lows: In Section 2, we solve the quantum hydrodynamic
fluid equations using the plasma approximation. Plasmas
for which the de Broglie wavelength has influence over the
inter-particle distance are found in stellar and interstel-
lar media. The dispersion of RTI is derived in Section 3.
Section 4 describes the growth rate and numerical results,
and Section 5 presents the discussion. The summary of the
work is given in Section 6.

2 Mathematical Model
A dense quantum magnetoplasma consisting of ions
and electrons is assumed. The quasi-neutrality condition

for equilibrium is given as ne0 = ni0 = n0. An exter-
nal uniform magnetic field is applied in the z-direction,
that is, B0 = B0̂︀z. At equilibrium, the gravitational field
and the density gradient act in opposite directions: the
density gradient is supposed to be in the negative x-
direction and gravitational field in positive x-direction
i.e. ∇n0i = −|∇n0i|̂︀x, g = ĝ︀x. The propagation vector of
the instability wave and the electric field are considered
to be in the y-direction, that is, E1 = (0, Ey , 0) and k =
(0, ky , 0). As dense magnetoplasma environments have
strong magnetic fields, Landau quantisation effects can-
not be ignored. Whether RTI is increased or squeezed
depends upon the strength of quantisation, that is, the
value of η, which cannot exceed unity.

To investigate the effects of Landau quantisation
(Landau diamagnetism) due to the quantisation of the
gyro-like orbital motion of the electrons in a strong mag-
netic field on the RTI in a quantum plasma with a density
gradient, the following set of fluid equations is used in the
quantum hydrodynamic (QHD) model:

Momentum equation

mjnj
[︂
∂
∂t +

(︀
vj .∇

)︀]︂
vj

= qjnj
[︀
E +

(︀
vj × B0

)︀
/c

]︀
− ∇Pj + mjnjg +

~2

4mj
∇

(︁
∇2nj

)︁
− Vj,xc∇nj . (1)

Continuity equation

∂nj
∂t + ∇. (njvj) = 0, (2)

where the exchange-correlations potential Vj,xc =
0.985e2

ϵ n1/3j

[︂
1 + 0.034

aBjn1/3j
ln

(︁
1 + 18.37aBjn1/3j

)︁ ]︂
is

included to analyze the complete picture of the quan-
tum plasma [15, 22, 23]. Furthermore, E = E1, nj =
n0j + (r.∇)n0j + n1j, Pj = mjv′2Fjnj, and vj = V0j + v1j,
where V0j is the fluid streaming due to the diamagnetic
drift, gravitational drift, and diamagnetic-type drift due to
exchange-correlation potential given by

V0j = −
ckBTj
qjB0

̂︀z ×
(︂

∇n0j
n0j

)︂
+

mjc
qj

̂︀z × g
B0

−
cVj,xc
qjB0

̂︀z ×
(︂

∇n0j
n0j

)︂
. (3)

Here,∇.V0j = 0, ∂
∂tV0j = 0,∇2n0j = 0, and ∂n0j

∂t = 0. The
effective Fermi speed modified by Landau quantisation
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for the jth species is v′2Fj = 3
5 v

2
Fj0

{︂
δj + 5

12π
2
(︂

T2j
T2Fj0

)︂
γj

}︂
.

The coefficients of Landau quantisation are
δj =

[︁
5ηj
6 + 5ηj

3
(︀
1 − ηj

)︀3/2 +
(︀
1 − ηj

)︀5/2]︁ and γj =[︁
ηj
4 +

(︀
1 − ηj

)︀1/2 + ηj
2

(︀
1 − ηj

)︀−1/2
]︁
. vFj0 =

√︁
2kBTFj0

mj

is the Fermi speed, kB is the Boltmann constant, and
TFj0 = 1

2
(︀
3π2n0j

)︀2/3 ~2

kBmj
is the Fermi temperature of

the plasma species [17]. Since electrons have quantum
nature, they exhibit Fermi temperature, Bohm potential,
and exchange-correlation potential. However, because of
the smaller mass of electrons, gravitational force may
be ignored, and the linearised equation of motion for
electrons is

men0e
(︂
∂
∂t + V0e .∇

)︂
v1e

= −en0e(E1 + ve1 × B0/c)

− en1e(V0e × B0/c) − ∇Pe

+
~2

4me
∇

(︁
∇2n1e

)︁
− Ve,xc∇n1e . (4)

The equation of continuity for electrons is

∂n1e
∂t + ∇. (n0ev1e) + ∇. (n1eV0e) = 0. (5)

For the plasma ions, quantumeffects can be neglected
while the gravitational force is taken care of:

min0i
(︂
∂
∂t + V0i .∇

)︂
vi1

= eni0(E + vi1 × B0/c)

+ en1i(V0i × B0/c) − kBTi∇ni1 + mini1g. (6)

The continuity equation for ions is

∂n1i
∂t + ∇. (n0iv1i) + ∇. (n1iV0i) = 0. (7)

Since all quantities vary sinusoidally, n1i =
n1i exp[i(k.r − ωt)], v1i = v1i exp[i(k.r − ωt)], and E1 =
E1 exp[i(k.r − ωt)], and then (6) becomes

− iωmin0iv1i + imin0i(V0i . k)v1i

= en0iE1 + en1iV0i × B0/c + en0iv1i

× B0/c − ikBTikn1i + min1ig. (8)

According to the assumed geometry, g = ĝ︀x, B0 =
B0̂︀z, ∇n0i = −|∇n0i|̂︀x, E1 = E1̂︀y, and k = kŷ︀y, and v1xi
and v1yi are give below:

v1xi =
eE1y
ωcimi

− i v
2
tiky
ωci

n1i
n0i

(9)

and

v1yi =
−ie

(︀
ω − V0yiky

)︀
ω2
cimi

E1y

−

(︃
V0yi +

g
ωci

+
v2tiky

(︀
ω − V0yiky

)︀
ω2
ci

)︃
n1i
n0i

, (10)

where v2ti = kBTi
mi

is the thermalmotionof ions.Here,ω2
ci ≫(︀

ω − V0yiky
)︀2, and V0xi = 0. Now the linearised equation

of continuity for ions with ∂n0i
∂t = 0, and ∇.V0i = 0 gives

− i
(︀
ω − V0yiky

)︀
n1i + n0i ikyv1yi − v1xi|∇xn0i| = 0. (11)

Eliminating v1xi and v1yi from (9) to (11) by inserting
the values of v1xi and v1yi from (9) to (10), respectively,
into above equation, we get

e
ωcimi

(︃
ky

(︀
ω − V0yiky

)︀
ωci

− κni

)︃
E1y

− i
[︃
ω + ky

g
ωci

+
v2tik2y

(︀
ω − V0yiky

)︀
ω2
ci

− v2tiky
ωci

κni

]︃
n1i
n0i

= 0, (12)

where κni = |∇xn0i|
n0 is the inverse scale length of inho-

mogeneity due to the density gradient in ions. Rewriting
the equation of motion (see (4)) for electron, after using
the Fourier transformation ∂

∂t = −iω, ∇ = ik for the per-
turbed quantities, we have

− in0e(ω − V0e .k)v1e

= − en0e
me

E1 − n0eve1 × ̂︀zωce

− n1eωceV0e × ̂︀z − ikne1V2
FB,xc , (13)

where ωce = eB
mec , V

2
FB,xc = v′2Fe + v2B + v2e,xc, v2B = ~2

4m2
e
k2y ,

and v2e,xc = Ve,xc
me

. As the drift is along k, using V0e .k =
V0yeky in the above equation, we get(︀

ω − V0yeky
)︀
v1e

= −i eme
E1 − ive1 × ̂︀zωce

− i n1en0e
ωceV0e × ̂︀z + kne1n0e

V2
FB,xc . (14)
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For the given geometry E1 = (0, Ey , 0) and k =
(0, ky , 0), the x- and y-components give the following
expressions for the perturbed velocity components of elec-
trons:

vxe =
e
me

Ey1
ωce

+ iky
ne1
n0e

V2
FB,xc
ωce

(15)

and

vye = i eme

(︂
ω − V0yeky

ω2
ce

)︂
Ey1 − n1e

n0e
V0ye

− ky
ne1
n0e

V2
FB,xc

(︂
ω − V0yeky

ω2
ce

)︂
. (16)

So vye ≈ − n1e
n0e V0ye for ω2

ce ≫
(︀
ω − V0yeky

)︀2. The
equation of continuity, i.e. (5), for electrons with constant
V0e, k = ky ŷ, ∇ne0 = −|∇xn0e|̂︀x is

− iωn1e + n0e ikyvye +V0e ikyne1 − vxe|∇xn0e| = 0. (17)

On substituting vxe from (15) to vye ≈ − n1e
n0e V0ye into

(16), we get

Ey1 = −i me
e

(︂
ωωce
κne

+ kyV2
FB,xc

)︂
n1e
n0e

, (18)

where κne = |∇xn0e|
n0 is inverse scale length of inhomogene-

ity due to the density gradient in electrons.

3 Dispersion Relation
To calculate the modified dispersion relation of RTI in a
quantum plasma, we eliminate Ey1, n1e, and n1i from (17)
to (18) by assuming n1e ≈ n1i, and we have

Aω2 + Bω − C = 0, (19)

where A = ky
ωciκne , B =

{︂
−

(︂
V0yi

k2y
ωci

+ κni
)︂

1
κne +(︂

kyV2
FB,xc

ωce
+ v2tiky

ωci

)︂
ky
ωci

+ 1
}︂
, and C =

{︂(︂
V0yi

k2y
ωci

+ κni
)︂

(︂
kyV2

FB,xc
ωce

+ v2tiky
ωci

)︂
− ky g

ωci

}︂
are quadratic coefficients.

The quadratic solution is

ω=
1
2

{︃
V0yiky −

(︃
kyV2

FB,xc
ωce

+
v2tiky
ωci

)︃
κne + (κni − κne)

ωci
ky

}︃

± i

⎯⎸⎸⎷κneg − ωciκne
(︂
V0yi

k2y
ωci

+ κni
)︂(︃

V2
FB,xc
ωce

+
v2ti
ωci

)︃
.

(20)

Equation (20) is further solved for B2 ≪ 4AC, which
gives the modified dispersion relation of RTI for a quan-
tum plasma including the gradient of magnetic effects.
The quantum effects include Landau quantisation, Fermi
pressure, exchange-correlation potential, and tunnelling
potential.

4 Growth Rate
Let ω = ω+ iγ in (20), where γ represents the growth rate
of RTI. On comparing the real and imaginary parts in (20),
the RT phase speed becomes

ω =
1
2

{︃
V0yiky −

(︃
kyV2

FB,xc
ωce

+
v2tiky
ωci

)︃
κne

+ (κni − κne)
ωci
ky

}︃
(21)

and the growth rate is

γ =

⎯⎸⎸⎷κneg − ωciκne
(︂
V0yi

k2y
ωci

+ κni
)︂(︃

V2
FB,xc
ωce

+
v2ti
ωci

)︃
.

(22)

Equation (22) is valid for g > ωci

(︂
V0yi

k2y
ωci

+ κni
)︂

(︂
V2
FB,xc
ωce

+ v2ti
ωci

)︂
.

5 Results and Discussion
Equation (22) presents the analytical expression for the
growth rate γ of RTI for dense plasmas. It is seen that the
quantisation effects have a large impact on the growth rate
of RTI. In this section, a graphical analysis of the growth
rate of instability is presented for typical parameters in
cgs units: B0 = (1 − 100) × 109G, n0e = (1 × 1024 −
1 × 1027) cm−3, n0i = n0e, TFe0 = 1

2
(︀
3π2n0e

)︀2/3 ~2

kBme
>

Te = 1 × 106 K, Ti= 104 K, k ≈ 1 × 108 cm−1, g ≈ 1 ×
1013 cm/s2, κni = 1 × 10−2 cm−1, κne = 1 × 102 cm−1.

Figures 1–5 show a considerable impact over the
normalised growth rate γ/ωpi (Figs. 1 and 2) and γ/ωci
(Figs. 3–5) due to the contribution of Landau quantisa-
tion in quantumplasmas. Figure 1 describes the behaviour
of RTI versus η at different ambient magnetic fields B0 in
the presence of tunnelling potential, exchange-correlation
potential, and Landau quantised Fermi statistical pres-
sure. The dashed curve describes the instability at small
magnetic field and the solid curve at strongmagnetic field.
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Figure 1: Normalised growth rate of RTI versus η. The dashed
curve is for small B0 = 1011(G) and the solid curve is for large
B0 = 1.1 × 1011 (G).
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Figure 2: Normalised growth rate of RTI versus B0 (G). The solid
curve is without quantisation and the dashed curve is with Landau
quantisation for η < 1. Both curves meet at η = 1.
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Figure 3: Normalised growth rate of RTI versus ky/κi in the presence
of Landau quantisation at η = 0.201 (dotted curve), η = 0.588
(solid curve), and η = 0.934 (dashed curve).

It can be noticed that the behaviour of RTI γ/ωpi is mod-
ified by the Landau quantisation effect. The instability is
suppressed at higher magnetic fields in comparison with
that at smaller B0 for η < 1. Physically, the suppressing
mechanism of the instability can be explained in terms of
the quantisationof energy states on increasingB0 at η < 1.
The electrons from the excited states are accommodated
in the induced stable states. As a result, the remaining
few particles may contribute to the wave instability. On
the other hand, at small η, both curves give the maximum
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Figure 4: Normalised growth rate of RTI versus ky/κi with Landau
quantisation (dashed curve) and without Landau quantisation (solid
curve).
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Figure 5: Normalised growth rate of RTI versus n0e (cm−3)
with Landau quantisation (dashed curve) and without Landau
quantisation (solid curve).

instability, and on increasing η, both curves, although
at different instability frequencies, decrease in a similar
way so that η approaches unity. In Figure 2, the upper
plot is for the case without quantisation (solid) where
γ/ωpi decreases with B0(G) where η < 1. On the other
hand, γ/ωpi also decreases with the increase of B0(G),
that is, with the quantisation effects (dashed curve). The
dashed graphmeets the solid graph at η = 1, which shows
the absence of Landau quantisation. Comparison of the
graphs shows that γ/ωpi becomes small with the inclu-
sion of Landau quantisation effects at lager values of B0.
This shows the stabilisation of RTI with the inclusion of
quantisation effects.

Figure 3 shows γ/ωci against the dimensionless wave
vector k/κi at different values of η (the dotted curve for
η = 0.201, the solid curve for η = 0.588, and the dashed
curve for η = 0.934). For the dotted curve, the instability
is defined over a very small range of wave vectors; how-
ever, a uniform increment of the instability is observed.
For the solid curve, RTI increases for a wide spectrum
wave vectors. The dashed curve describes the widest wave
vector spectrum of increasing RTI. Figure 4 depicts the
variation of γ/ωci versus k/κi with Landau quantisation
(dashed curve), while the solid curve is without Landau
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quantisation. On increasing the normalised wave vector,
RTI increases. Both curves intersect at a particular wave
vector, where both scenarios have the same instability.
Overall,without Landauquantisation, the instability spec-
trum is small compared to the Landau quantisation wave
vector spectrum. Figure 5 shows that γ/ωci increases with
n0e (cm−3) with (dashed curve) and without quantisation
(solid curve). However, there is a significant reduction in
RTI in the presence of Landau quantisation for the whole
range of number densities as compared to the instability
without Landau quantisation. This is mainly due to the
induction of new states due to the quantisation of gyro-
like orbital motion in dense plasmas. The induced states
provide the reason for settling down the charged particles
in lower states, which reduces the instability.

6 Summary
In summary, we studied RTI in quantum plasmas includ-
ing quantum effects from Fermi pressure, Bohm poten-
tial, exchange-correlation potential, and Landau quanti-
sation of the orbital motion of electrons. We found that
the magnetic field B0 and hence the Landau quantisa-
tion play a role for the stabilisation of RTI for η < 1. The
plasma density and the exchange-correlation potential,
which directly depends on the density n0e, increase the
growth rate of instability. Quantisation effects on RTI dis-
appear at η = 0, but quantisation has minimum effects at
η = 1, which means the balance of magnetisation energy
~ωce and Fermi energy EFe. Since η depends on both B0
and n0e, the range of quantisation effects shifts to larger
values of B0(or n0e) by increasing the values of n0e (or B0).
This study provides a sound explanation of the collapse
of a heavy astrophysical body to a more dense body. The
conversion of the Red Giant to the Planetary Nebula and
of the Red Supergiant to Supernova are good examples of
RT/gravitational instability.
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