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Abstract: Multistability analysis has received intensive
attention in recently, however, its control in systems with
more than two coexisting attractors are still to be dis-
covered. This paper reports numerically the multistabil-
ity control of five disconnected attractors in a self-excited
simplified hyperchaotic canonical Chua’s oscillator (here-
after referred to as SHCCO) using a linear augmenta-
tion scheme. Such a method is appropriate in the case
where system parameters are inaccessible. The five dis-
tinct attractors are uncovered through the combination of
hysteresis and parallel bifurcation techniques. The effec-
tiveness of the applied control scheme is revealed through
the nonlinear dynamical tools including bifurcation dia-
grams, Lyapunov’s exponent spectrum, phase portraits
and a cross section basin of attractions. The results of
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such numerical investigations revealed that the asymmet-
ric pair of chaotic and periodic attractors which were
coexisting with the symmetric periodic one in the SHCCO
are progressively annihilated as the coupling parameter
is increasing. Monostability is achieved in the system
through three main crises. First, the two asymmetric peri-
odic attractors are annihilated through an interior crisis
after which only three attractors survive in the system.
Then, comes a boundary crisis which leads to the disap-
pearance of the symmetric attractor in the system. Finally,
through a symmetry restoring crisis, a unique symmet-
ric attractor is obtained for higher values of the control
parameter and the system is now monostable.

Keywords: Canonical Chua’s System; Coexistence of
Attractors; Control; Linear Augmentation Scheme;
Numerical Study.

1 Introduction

Multistability or coexistence of attractors refers to the
superposition of several disconnected attractors in a given
system for the same set of parameters, starting from dif-
ferent initial conditions [1]. Premises of multiple behavior
modes and multiple limit cycles in a nonlinear system were
identified in [2] by Ogata and later confirmed in nonlinear
electronic circuits by Arecchi and colleagues [3, 4]. In fact,
Arecchi et al. reported the switches between coexisting
states of low-frequency spectral components in the power
spectrum diagrams induced by noise. Since then, multi-
stability did not stop attracting numerous researchers who
have continued to publish several papers on that topic
[5-21]. In this scope, new terms/expressions like extreme
multistability (i.e. coexistence of an infinite number of
attractors for a fixed set of parameters and by varying
only initial conditions), megastability (i.e. systems with
nested infinite attractors) [22, 23] and hidden attractors
(i.e. its basin of attraction does not intersect with small
neighbourhoods of equilibria [24]) are now famous and
harnessed within existing dynamical systems.
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Multistability offers great flexibility in the system
performance without major parameter changes with the
possibility of switching between different coexisting
states. However, the random jump between different coex-
isting states due to small perturbations may lead to the dis-
astrous performance of the investigated system by spoiling
its reliability and reproducibility. This has been observed,
for instance, in laser systems where multistability-induced
intracavity second harmonic generation leads to the well-
known green problem [25]. Also, multistability can often
create inconvenience in the design of a commercial device
with specific characteristics [26, 27]. Several other exam-
ples showing the disadvantages of multistability in real
life problems and dynamical systems are well discussed
in [28]. All these non-exhaustive drawbacks sufficiently
demonstrate the necessity to control multistability or sta-
bilising the multistable system against noisy environ-
ments [27, 29]. Several techniques exist in the literature
to control multistability (by destroying/annihilating some
attractors) or target a specific attractor. We can mention
the control method by noise selection [28], short pulses
[30], harmonic perturbation [31], pseudo-periodic forcing
[32, 33], and linear augmentation [34-37] just to name a
few. Except for the linear augmentation method, in almost
all the reported methods, the control is applied to one
parameter of the system or the system variable. However, it
may not generally be possible to modify the system para-
meters to remove one of the attractors for all initial con-
ditions. Henceforth, external controls such as the linear
augmentation method would be preferred.

Indeed, as its successful application for the first time
on the stabilisation of fixed-point solution in chaotic sys-
tems was made by Sharma et al. [34], the linear augmen-
tation scheme has been extended later on the control of
bistable chaotic attractors comprising a well-separated
unstable fixed point [29]. More recently, the same author
and colleagues showed the capability of the scheme to
obtain the desired output on a unidirectionally coupled
drive-response system [36]. In opposition to other methods
proposed in the literature on the control of multistabil-
ity, the linear augmentation scheme presents the following
advantages:

— Very simple to implement.

- Based on simple decaying function with a decay param-
eter that can be used to control the time required to
stabilise the system at the desired dynamical behaviour.

- Isexternal and preferred in the case of inaccessibility of
the internal system parameters and/or variables.

Also, the method is suited in the case where one desires to
target a specific attractor among several ones in the case
of coexistence of multiple attractors [29, 35-37]. Clearly,
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the control is a design such that by varying the upward
the coupling strength, some of the attractors are anni-
hilated. As a result, the former studied multistable sys-
tem turns into a monostable one. In this paper, we are
applying the linear augmentation scheme to turn the mul-
tistable simplified hyperchaotic canonical Chua’s system
(marked by the coexistence of five disconnected attrac-
tors) to a monostable one. Although a linear augmentation
scheme has been applied in systems with self-excited and
hidden attractors [29, 34-36, 38, 39], only bistable cases
were investigated. Making the results presented within
this work more general and relevant.

The layout of the paper is as follows: Section 2 intro-
duces the circuit realisation of the simplified hyperchaotic
canonical Chua’s oscillator (SHCCO) and its equivalent
mathematical model. The symmetry property of the model
is also discussed. In Section 3, numerical analysis is per-
formed to highlight the complex dynamical behaviours of
the SHCCO including chaos, hyperchaos, and multistabil-
ity with the coexistence of five disconnected attractors.
Bifurcation diagrams, the graph of maximum Lyapunov
exponent and two-parameter diagrams are exploited to
reveal such complex dynamical behaviours. Coexisting
attractors are discussed using bifurcation diagrams, phase
portraits and basin of attractions as arguments. Brief
description of the linear augmentation scheme is further
presented in Section 4. Basic properties of the controlled
system are also presented. The results and discussions
of the multistability control in the SHCCO are then pre-
sented Section 5. Finally, in the last section, we present our
conclusions and indicate possible further works.

2 Circuit Realisation and its Model

The schematic diagram of the SHCCO is depicted in
Figure 1. It consists of four reservoirs (i.e. capacitors C
and inductors L1,3), a negative impedance converter [41]

L1 Il Id
4115

Figure 1: Schematic diagram of the SHCCO. The Chua’s diode
present in [40] has been replaced with switching antiparallel diodes
of types 1IN4148.
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and antiparallel diodes of type 1N4148 which serve as
the only nonlinear elements of the whole circuit. Let
us remember that the circuit diagram in Figure 1 is a
simplified version of that proposed earlier by Thamil-
maran and co-authors (made of 13 electronic components
within which five are used to implement the piecewise

T. Fonzin Fozin et al.: Multistability Control of Hysteresis and Parallel Bifurcation Branches =— 13

Chua’s nonlinearity) [40] where the nonlinearity has been
replaced with antiparallel diodes and henceforth reduc-
ing the number of off-the-shelf electronic components to
10. It is found that the proposed SHCCO shows the same
scenarios to chaos/hyperchaos as in the work of Thamil-
maran et al. [40] but also experiences (not earlier reported)

the phenomenon of multistability with the coexistence of
three and up to five disconnected attractors in its con-
trol bifurcation region (see Section 3), and thus deserve
dissemination.

Applying Kirchhoff’s laws to the schematic diagram of
Figure 1, a set of four order autonomous differential equa-
tions describing the dynamics of the SHCCO is presented

w in (1)
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Figure 2: Dynamical map presenting in the two parameters space L, % =V,

(a1, €) the demarcation regions of each dynamical behaviors dt
in the SHCCO. Red and yellow colours are associated, respec-
tively, with hyperchaotic and chaotic dynamics while cyan colour
shows regions of regular (periodic and quasiperiodic) dynam-

ics. Line L shows the route to hyperchaos as depicted in Figure 3.
0.8 € 18,2 a1 14andtherestofsystem parameters are
fixed as: a; = 10.64516129 and y = 1.329864674 10 * with
X(0) = (0.5, 1.0, 0.5, 0). (For interpretation of the references to
colour in this figure legend, the reader is referred to the text).

Here, I; (i = 1, 2) denotes the current flowing through
inductors L; and by V; (j =1, 2) denote the voltage
across the capacitors Cj, respectively. For numerical sim-
ulation, we normalise the circuit equations (1) with
appropriate rlgscaling parameters as: t =T L,Cy; k =
1/nVr; p=" Ly/Co; x1 = kVy; x2 = kply; x3 = kVy;
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Figure 3: (a) and (b) show the period doubling route to chaos and quasi-periodic route to hyperchaos along the line L in Figure 2 as a func-
tion of & for a; = 10. The rest of the parameters are those of Figure 2. Period-1 cycle (P;) in black colour for € = 0.9, Period-2 cycle (P,) in
red colour for € = 0.968, Period-4 cycle (P4) in magenta colour for £ = 0.964, Period-8 cycle (Pg) in blue colour for £ = 0.947, asymmetric
chaotic attractor (ASC,) in green colour for € = 1.0, symmetric quasi-periodic attractor (QP) in blue colour for € = 1.033, symmetric chaotic
attractor (SC) in red colour for € = 1.2, asymmetric period-4 cycle (P4) in black colour for € = 1.366, asymmetric chaotic attractor (ASC5) in
magenta colour for .., symmetric hyperchaotic attractor (H) in green colour for ¢ = 1.76.
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X4 = xkply; a1 = C2/Cq; @2 = Ly/L1; € = pG; y = 2xpls.
Consequently, a set of dimensionless/normalised equa-
tions are defined by the following smooth and simple/
elegant nonlinear coupled fourth-order autonomous dif-
ferential equations:

§x1 a; xo ysinh(x;)
X2 =ax(x3  Xx1)
)
§X3 = Xy
X4 = X3

The dimensionless system present in (2) contains only
one nonlinear term (i.e. the sine hyperbolic function) in
which only one state variable x; is involved. Also, in the
mathematical model of system (2), four parameters can
be identified. Except for vy, all other parameters can serve
as bifurcation parameters in other to highlight the com-
plex dynamical behaviour of the SHCCO. Also, system (2) is
symmetric around the origin. Indeed, it is invariant under
any rotation of 180° of the space (x1, x2, x3, X4) around
the origin O(0, 0, 0, 0). So, attractors of the model will
appear in asymmetric pairs in the (x1, x2, x3, X5) plane
to restore the exact symmetry by using a pair of symmet-
ric initial conditions. Otherwise, the attractors generated
will remain symmetric if the exact symmetry of the orbits
has already been restored. This method has been widely
used recently to track coexisting attractors in symmetric
systems [42, 43].

3 Complex Dynamical Behaviours
in the SHCCO

From the general theory of nonlinear dynamics, and by
setting the right-hand side of (2) to zero, it is found
that the origin O(0, 0, 0, 0) is the trivial and the only
equilibrium point of the system. Further analysis using
the Newton-Raphson algorithm for e = 0.9873, a; = 10.0,
ar; = 10.64516129andy = 1.32986467 10 4 revealed
that the equilibrium point origin 0(0, 0, 0, 0) is of unsta-
ble nature as it possesses all the eigenvalues with positive
real parts (A1, = 0.0446  j10.8214; As,4 = 0.4483
j0.8414). This leads to conclude that the SHCCO can gen-
erate self-excited attractors as its basin of attraction is
related to an unstable fixed point in opposition to hidden
attractors where their basin of attractions do not inter-
sect with small neighbourhoods of any equilibrium points
[44, 45].
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The computational method applied hereafter consist
of integrating system (2) using the fourth-order Runge—
Kutta scheme for a sufficiently long time and by discard-
ing a long transient. All the diagrams of bifurcations will
be obtained by superposing hysteresis analysis with par-
allel branches. Clearly, five sets of data will be super-
imposed. Three of them will belong to hysteresis analy-
sis (i.e. upwards and downwards of the control parame-
ter with the continuation method) and the last computed
states are used as initial conditions in the next iteration.
The two other sets of data are associated with parallel
bifurcation schemes. That is, the system is firstly inte-
grated with fixed initial conditions to highlight regions
in the control parameter which predict different bifurca-
tion than that of the hysteresis strategy. Once localised,
continuation strategy (i.e. starting integration now with

(-0.5,0,0,0) (-0.5,0,0,0)

Maxima of x,
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05000  (0.500,0)
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0.98 0.985 0.99 0.995
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Figure 4: (a) Bifurcation diagrams and corresponding (b) maximum
Lyapunov exponents of system (2) showing the superposition of five
sets of data when increasing and decreasing the control parameter
& from the three different initial conditions as specified in the dia-
grams. The bifurcation diagrams in red, magenta and green colours
are obtained using the hysteresis method while those in black and
blue colours are related to parallel branches. The rest of system
parameters are those of Figure 2 with a; = 10.
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the corresponding initial states which lead to such parallel
attractor/branches) is then applied to obtain the whole
parallel bifurcation branches. This strategy was recently
used to uncover up to five, seven and nine disconnected
attractors in several self-excited nonlinear dynamical sys-
tem including neural networks, Jerk/hyperjerk oscillators
and the Moore-Spiegel system just to name few [46-49].
By setting parameters a; = 10.64516129, y =
1.32986467 10 “* and varying upwards parameters
(a1,€) 2 [2,14] [ [0.8,1.8], we have plotted in Figure 2
the two-parameters map showing the different dynamical
behaviours in the SHCCO through different colours using
the reliable algorithm of Wolf et al. [50]. Red and yel-
low colours are associated, respectively, to hyperchaotic
and chaotic dynamics while the cyan colour showsthe
region of regular (periodic and quasiperiodic) dynamics.
From Figure 2, we have shown the scenarios to hyper-
chaos along the line L. This is clearly materialised by the
two-dimensional (2D) phase diagrams in Figure 3 as a
function of € and for a; = 10. One can notice that system

a b

x, (0)
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(2) undergoes from the period doubling route to quasi-
periodic, chaotic and then hyperchaotic attractors (see
Fig. 3). The fact that some attractors are appearing in
asymmetric ways is a signature of coexisting attractors
in the SHCCO [42, 43].

This striking phenomenon is confirmed through
the bifurcation diagrams and the corresponding largest
Lyapunov exponents depicted in Figure 4a,b, respectively.
From these diagrams, five different branches are super-
imposed in other to justify the coexisting bifurcation as
well as the hysteretic dynamic in the SHCCO system. These
coexisting bifurcation diagrams are obtained when mon-
itoring (i.e. upward and downward strategies) parameter
€ in the range [0.98, 0.995] starting from three distinct
initial states while keeping a; = 10, a; = 10.64516129,
vy =1.32986467 10 “. Firstly, the data in red and
magenta colours are obtained by increasing the bifurca-
tion parameter ¢ while integrating the SHCCO from the
initial state x1(0) = 0.5, respectively. Then, the data in
the green colour is produced by integrating system (2) from

x, (0)

Figure 5: Five disconnected attractors as a function of initial conditions x;(0) in the planes (a) (x2(1), x4(1)) and (b) (x1(1), x4(1)), respectively,
and corresponding cross section the basin of attraction showing the demarcation initial conditions regions of each coexisting attractors in
the planes (c) (x1(0), x2(0)) and (d) (x1(0), x3(0)) for € = 0.9873 and all other initial conditions fixed as equal to zero. (For interpretation of
the references to colour in this figure legend, the reader is referred to the text.)
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an initial state x;(0) = 1.5. Finally, the bifurcation dia-
gram in black and blue colours are captured by varying
upward and downward the bifurcation control parameter
€ while integrating the SHCCO from the initial conditions
x1(0) = 0.5, respectively. These later bifurcation dia-
grams were obtained through parallel branches and con-
tinuation techniques [48, 49, 51] while the three formers
(green, red and magenta colours) are associated with hys-
teresis dynamics [16, 52]. The strategy adopted here clearly
highlights the symmetry nature of the SHCCO by revealing
the number of coexisting attractors on the SHCCO when
varying ¢ in the range [0.98, 0.995]. Clearly, it uncovers
a region of dynamics of the SHCCO with the coexistence
of five disconnected attractors (i.e. 0.9866 & 0.9878)
as depicted by the 2D phase portraits for various initial
states in Figure 5a,b. Except from this specified region, the
SHCCO still presents the multistability phenomenon but
only with the coexistence of three disconnected attractors
(i.e. £ 2 [0.98, 0.9866[[10.9878, 0.995]). From Figure 5a,b,
the possibility of five different attractors (an asymmet-
ric pair of a chaotic attractor, an asymmetric pair of a
period-3 cycle, and a symmetric periodic attractor) in the
planes (x1(0), x2(1), x4(1)) and (x1(0), x1 (1), x4(1)) can be
observed. To obtain these stable states, we have fixed
&£ = 0.9873 and we used random initial conditions. That
is, the pair of asymmetric chaotic (resp. period-3 cycle)
attractor in black and red colours (resp. blue and yellow)
are found for x;(0) = 0.5 (resp. x1(0) = 0.1) while the
symmetric period-3 cycle attractor (green) is obtained for
x1(0) = 1.5 with the other initial states set to zero. Demar-
cation regions (i.e. basin boundary) of the initial states
which characterise each of these coexisting solutions are
depicted in Figure 5c¢,d captured in the (x1(0), x»(0)) and
(x1(0), x3(0)) planes. We can clearly remark that the space
magnetisation is characterised by five different colours
which are linked to each of the coexisting attractors (see
Fig. 5).

It ought to be stressed that, to the best of the authors’
knowledge, the striking phenomenon of multiple stabil-
ity involving up to five disconnected coexisting attractors
has not yet been reported in the Chua’s oscillator [53],
and thus represents an enriching contribution related to
the dynamics of Chua’s circuit family in general. However,
such observed flexibility in the dynamics of the SHCCO
system when varying initial states can be harmful in
applications like secure communication and thus deserves
control. This is more important in the sense that all the
control strategies which were reported in the relevant lit-
erature to date were only concerned with the bistable
systems.
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4 Description of the Control
Scheme and Properties of the
Controlled SHCCO

From the theory in [34], the control method of linear
augmentation is through coupling a nonlinear dynamical
system to a linear one (Z) and then varying the coupling
strength to achieve the goal of control. The control system
is defined by (3):

X = F(X) + uZ )
Z= o0Z uX B
where X = F(X) is a general nonlinear dynamical system,
X is an m-dimensional vector of dynamical variables, and
F(X) is its vector field. Parameter u describes the coupling
strength between the nonlinear oscillator and the linear
control system. The vector Z describes the dynamics of the
linear system Z = 0Z, where o is its decay parameter.
In the absence of coupling, i.e. p = 0, the linear system
approaches zero exponentially with the decay rate . The
choice of parameter B is very crucial for effective target-
ing of the desired attractor from the multistable system.
B can be set as a constant value in the vicinity of the
desired state. Usually, invariant characteristics of the sys-
tem such as steady points around which the desired attrac-
tor is located are preferred. In the special case of hidden
attractors in which the the attractors are not located in
the neighbourhood of fixed points, B can be consigered
as the average of the system’s variables (i.e. B= ,X¢)
[29, 38]. Suppose that the uncoupled nonlinear oscillator
possesses for a particular parameter sets two or more coex-
isting attractors which are either periodic or chaotic. These
attractors which are assumed to have originally emerged
from unstable equilibrium points are determined by some
invariants sets: i.e. coexisting attractors and existing fixed
points. The fixed-points are located either in the centre
of the coexisting attractors or lying on the boundary sep-
arating the basins of attraction of the coexisting attrac-
tors. Hence, by choosing the vector B appropriately and
close to the location of one of the unstable fixed points,
one can achieve the disappearance of some of the coex-
isting attractors and subsequently even a merging of some
other fixed points with increasing coupling. For higher val-
ues of the coupling strength, only one targeted attractor
is obtained turning the system for chosen parameter sets
from multistable to a monostable one.

The controlled strategy described is now applied to the
SHCCO. The coupling is introduced along the x3 variable
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Table 1: Fixed point £ = (0, 0, 0, y?B/ 0, uB/ o), eigenvalues and stability of system (5) for different values of coupling strength p.

I Equilibrium point E Eigenvalues Stability of £
0.03 0,0, 0,0.0021, 0.07g 0.0441 j10.8248,0.4435 j0.8443, 0.2998 Unstable
0.3 f0,0,0,0.21,0.79 0.0447 j10.8218,0.4389 0.881, 0.2814 Unstable
1.0 10,0, 0, 2.3333, 2.3333¢g 0.0452 j10.8257,0.3792 j1.2359, 0.163 Unstable
1.5 10, 0,0, 5.25, 3.59 0.046 j10.831,0.3464 j1.6214, 0.099 Unstable

with the coupling strength y as shown in (4).

85(1 =a; x ysinh(xy)
%kz =ax(x3  x1)
X3 =€&x3 Xy X4+ uz (4)
%)’m = X3
“z= o0z ulxs P

with Z =[0,0,2,0]” and B = [0, 0, 8,0]" where T indi-
cates the transpose. The choice of single scalar coupling is
motivated by recent researches on synchronisation where
an optimisation of resources is required [54]. That is, driv-
ing the whole system or state variables dynamics through
a single scalar coupling. The control SHCCO system (4) is
of the fifth order and it is found that it has only one equi-
librium point E = (X1, X», X3, X4, Z) which is a solution of
system (5).

8a1 X, ysinh(x1) =0
%az(iz x1)=0
€X3 X X4+ uz=0 (5)
§23 =0
T oz ukxs P =0

This fixed point is different than the one of the uncou-
pled system (2) (i.e. the origin). By solving system (5),
a unique equilibrium point E = (0, 0, 0, u%B/0, up/o) is
found and depends on the coupling strength u. By select-
ing parameters of the uncoupled system such as those
of Figure 5 and by selecting discrete values of coupling
strength u 2 [0, 1.8], it is found from numerical simu-
lations that the unique equilibrium point E is unstable.
Indeed from Table 1, one can observe a real positive root,
a pair of complex conjugate with positive real parts and
another pair with negative real parts turning the unique
equilibrium point E to be an unstable focus. This shows
that the controlled system (4) remains self-excited and
thus its basin of attraction is related to the unstable focus
point E. In the next section, parameters of the linear sys-
tem are fixed as § = 0.7 and o = 0.3 except if mentioned
otherwise.

5 Results and Discussion of the
Multistability Control in the
SHCCO

Results of implementation of the linear control scheme
on the SHCCO are depicted by the bifurcation diagrams
and corresponding Lyapunov exponents in Figure 6 when
varying the coupling strength u in the range [0, 1.8]. The
parameter € has been fixed to 0.9873 so that the uncou-
pled system will experience the five coexisting attractors
as depicted in Figure 5.

In the bifurcation diagram of Figure 6a, five sets of
data (showing regions of hysteric dynamics and paral-
lel bifurcation) obtained by varying upward the coupling
strength u are superimposed. Those in red and black (resp.
green and yellow) colours are obtained by initialising inte-
gration from the initial state X(0) = ( 0., 0, 0, 0, 0)
(resp. X(0) = ( 0.5, 0, 0, 0, 0)) while the one in blue

Maxima of x,

:/"“ o\ o 1 1
LT :
T |

1.5 1.8

u

Figure 6: Bifurcation diagram (a) showing local maxima of state
variable x; and corresponding spectrum of Lyapunov exponents
(b) versus the control strength y 2 [0, 1.8] of the controlled sys-
tem (4) showing transition from multistability to monostability.
Five sets of data are superimposed when increasing the coupling
strength from five different initial conditions: for red and black
colours x1(0) = 0.1, blue colour x;(0) = 1.5 while for green and
yellow colours x;(0) = 0.5. The rest of the initial conditions are
fixed as x;(0) = 0 fori = 2,3, 4,5and € = 0.9873.
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Figure 7: Some numerical phase portraits and corresponding cross section basin of attractions of the controlled system (4) captured for
different values of coupling strength . (a) Three coexisting attractors [asymmetric pair of chaotic attractor (red and black colours) and
symmetric quasi-periodic one (green colour)] when mu = 0.25; (b) two coexisting attractors in cyan and magenta colours when p = 0.8;

(c) Monostable periodic attractor (in green colour) when g = 1.4. The rest of the system (4) parameters are: € = 0.9873, ¢ = 0.3 and
B=0.7.
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is captured by integrating the system from the initial
condition X(0) = (1.5, 0, 0, O, 0). A very good coinci-
dence can be noted between each bifurcation diagram
and its corresponding maximum Lyapunov exponents in
Figure 6b. From Figure 6, four regions/domains (i.e. I, II,
III and IV) with three frontiers associated with a well-
defined crisis are showing the transition from multista-
bility to monostability in the controlled SHCCO. In region
I (i.e. u 2 [0, 0.0864[), five disconnected attractors are
coexisting (i.e. a pair of asymmetric period-3 cycle, a pair
of asymmetric chaotic attractor and a symmetric period-1
attractor). This is clearly visible in the phase portraits of
Figure 5a and their corresponding basin of attraction in
Figure 5c,d for u = 0. At the critical value u¢, = 0.0864,
the pair of asymmetric period-3 cycle disappear through
an interior crisis. This is clearly confirmed by the brutal
jump which is observed on the graph of the maximum
Lyapunov exponent (in red colour) in Figure 6b. It is also
worth mentioning that the crisis marks also the death
of parallel branches which were associated with period-3
attractors; now, only hysteresis dynamic survives in the
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controlled system. Above the critical value u¢, of the cou-
pling strength, starts region II (i.e. u 2 [0.0864, 0.4554][)
where only three disconnected attractors now survive.
These attractors are plotted in three-dimensional (3D) as
depicted by the diagram of Figure 7al and the related
basin of attraction in Figure 7a2 for y = 0.25. One can
notice that the pair of asymmetric chaotic attractors (red
and black colours in Figure 7a) has survived the crisis
and is coexisting with a symmetric quasi-periodic attrac-
tor (green colour in Fig. 7a). It is worth emphasising here
that the pair of asymmetric chaotic attractors are asso-
ciated with each branch of the bifurcation diagrams in
the yellow and green coluors of Figure 6a. Indeed, after
the interior crisis, the maximum Lyapunov exponent in
red has jumped and its now quasi-perfectly superimposed
with the one in green (see Fig. 6b) while their correspond-
ing bifurcation diagrams are disconnected. That is to say,
they have the same quantitative measure (Lyapunov’s
exponent) but are qualitatively different (the size of the
attractor in the state space). As the coupling strength is
slightly increased, a boundary crisis is observed at the
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Figure 8: Bifurcation diagrams showing local maxima of state variable x4 versus the control parameter a; 2 [0.98, 0.995] for different
values of the coupling strength p. Three sets of data are superimposed to show the effect the linear augmented controller on system (4).

@y =0.250b)y =0.8and(c) y = 1.4.
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critical value p¢, = 0.4554. That boundary crisis is char-
acterised by the disappearance of one of the bifurcation
diagrams (in blue) in Figure 6a which has jumped and
is now perfectly superimposed with the bifurcation dia-
gram in red (see region III of Fig. 6a). Clearly, that cri-
sis has changed the system from a multistable state in
region Il with the coexistence of three disconnected attrac-
tors to bistable one in region III (i.e. 0.4554 < u < 1.107).
Now, the whole state space is covered by two asymmetric
attractors as shown by the phase portraits and correspond-
ing basin of attraction in Figure 7b (cyan and magenta
colours). In region IV, former bistable attractors now col-
lide with a unique symmetric attractor, thanks to another
crisis (symmetry restoring crisis) at pic, ~ 1.107. The two
routes which were existing in region III now collide at pc,
and only a unique symmetric attractor now survives in the
controlled system (see see region IV in Fig. 6a). A phase
portrait (resp. basin of initial conditions) of Figure 7c1
(resp. Fig. 7c2) is testifying to the effectiveness in the
longterm of the linear control for higher values of the cou-
pling strength. Also, with reference to Figure 7c1, when
monostability is achieved in region IV, the surviving sym-
metric attractor has a substantially different structure than
the one before the control has been applied (see phase
portrait in green of Figs. 5a and 7c1, respectively).

By following the same method as described Section 3
to obtain Figure 4a, we have plotted within the coexisting
region of the control parameter € (see Fig. 4a showing the
coexistence of five disconnected attractors when the cou-
pling strength u = 0), several bifurcation diagrams of sys-
tem (4) consider the different values of coupling strength
u. These figures show the transitions of different coex-
isting attractors when the coupling strength is increased.
For each value of the coupling y, three sets of data corre-
sponding to increasing values of the bifurcation parameter
¢ starting from different initial conditions are superim-
posed (see Fig. 8). For u = 0.25 (i.e. selected within region
II of Fig. 6a), one can easily observe that three routes are
still existing in the bifurcation parameter region & (see
Fig. 8a). These routes are linked to three coexisting attrac-
tors as the coupling strength p is selected within region II
of Figure 6a. Indeed, as on can see in Figure 8a, the two
bifurcation branches in red and black colours are display-
ing the same dynamics but with different statistical prop-
erties. This last property is very helpful when tracking the
magnetisation region of each coexisting attractor. When
u is fixed as 0.8 (i.e. selected within region III of Fig. 6a),
only two periodic branches are now observed when vary-
ing € (see Fig. 8b). The former bifurcation diagrams in the
red and black colours of Figure 8a have collided to form
a unique branch. This result is in accordance with the
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bistability obtained in Figure 7b. Finally, the monostability
is confirmed in the coexisting region of control parameter
€ when yu = 1.4 (selected within region IV of Fig. 6a). In
fact, a unique periodic branch is observed in Figure 8c no
matter the chosen initial condition during the numerical
integration of the controlled system. This unique branch
lead to the monostable periodic attractor presented in
Figure 7c1.

6 Conclusion

In this paper, the complex dynamical behaviors of the
SHCCO including hyperchaos and the coexistence of five
disconnected attractors are first discussed. These results
are confirmed through graphs of bifurcation diagrams,
phase portraits, and diagrams of a two parameter map
showing each dynamical behaviour which exists in the
system. Both hysteresis and parallel bifurcation meth-
ods were used to uncover the coexistence of the five dis-
connected attractors (i.e. a pair of asymmetric chaotic
attractors coexisting with a periodic symmetric one were
obtained from hysteresis analysis while an asymmetric
pair of period-3 was located through the parallel bifur-
cation method). Further, a linear augmentation strategy
was implemented in another to drive the SHCCO from a
multistable state to a monostable one. Numerical simula-
tion results showed that for higher values of the coupling
strength, the pair of asymmetric attractors which were
coexisting with the symmetric periodic one were annihi-
lated and only the symmetric one survives. The monos-
table attractor was achieved through three main crises
namely, an interior crisis, a boundary crisis and a symme-
try restoring crisis. After each crisis, the number of coexist-
ing attractors decreased from five to three and then three
to two and finally two to one. The obtained results on the
control of multistability in the SHCCO in this work are more
general than those presented in the literature [34-37, 39]
as we successfully controlled a system with five coexisting
attractors. Indeed, to the best of the authors’ knowledge,
the linear augmentation scheme has been applied so far
only on systems with the coexistence of up to three discon-
nected attractors (with self-excited and hidden attractors).
It is worth emphasising that these results can be
extended to other dynamical systems with self-excited or
hidden attractors which have been reported so far.
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