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Abstract:We formulate a statistical model of two sequen-
tial measurements and prove a so-called J-equation
that leads to various diversifications of the well-known
Jarzynski equation including the Crooks dissipation the-
orem. Moreover, the J-equation entails formulations of the
Second Law going back to Wolfgang Pauli. We illustrate
this by an analytically solvable example of sequential dis-
crete position–momentum measurements accompanied
with the increase of Shannon entropy. The standard form
of the J-equation extends the domain of applications of
the standard quantum Jarzynski equation in two respects:
It includes systems that are initially only in local equi-
librium, and it extends this equation to the cases where
the local equilibrium is described by microcanononical,
canonical, or grand canonical ensembles. Moreover, the
case of a periodically driven quantum system in thermal
contact with a heat bath is shown to be covered by the
theory presented here if the quantum system assumes a
quasi-Boltzmanndistribution. Finally, we shortly consider
the generalised Jarzynski equation in classical statistical
mechanics.

Keywords: Jarzynski Equations; Second Law; Sequential
Measurements.

1 Introduction
The famous Jarzynski equation represents one of the rare
exact results in nonequilibrium statistical mechanics. It is
a statement about the expectation value of the exponen-
tial of the work

⟨
e−β w

⟩
performed on a system that is

initially in thermal equilibrium with inverse temperature
β, but can be far from equilibrium after the work process.
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This equation has been first formulated for classical sys-
tems [1] and subsequently proven to hold for quantum
systems [2–4]. Extensions to systems initially in local ther-
mal equilibrium [3], microcanonical ensembles [5], and
grand canonical ensembles [6–11] have been published.
The literature on the Jarzynski equation and its applica-
tions is abundant; a concise review is given in [12] with the
emphasis on the connection with other fluctuation theo-
rems. The most common approach to the quantum Jarzyn-
ski equation is in terms of sequential measurements. This
approach will also be adopted in the present article. The
“work” that appears in the Jarzynski equation is then
understood in terms of the energy differences according
to two sequential measurements and hence as a random
variable. Although “work” is not an observable [13] in the
sense of a self-adjoint operator giving rise to a projection-
valued measure, it can be viewed as a generalised observ-
able [14] in the sense of a positive operator–valued mea-
sure, see Roncaglia et al. [15], De Chiara et al. [16], and
Section 3.1.

Interestingly one can derive from the Jarzynski equa-
tion certain inequalities that resemble the Second Law,
see, e.g. Campisi andHänggi [17].However, a closer inspec-
tion shows that these inequalities are not exactly state-
ments about the nondecrease of entropy. Only in the limit
casewhere the system is approximately in thermal equilib-
rium also after the work process would this interpretation
be valid. On the other hand there are numerous attempts to
derive a SecondLaw in the sense of nondecreasing entropy
in quantummechanics, startingwith the article ofW. Pauli
[18] “on the H-theorem concerning the increase of entropy
in the view of the new quantum mechanics.” It is the aim
of the present article to unify these two routes of research
and to identify its common roots.

The structure of the article is as follows. In Section 2,
we develop a general framework for sequential mea-
surements and prove a so-called J-equation essentially
based on the assumption of a (modified) doubly stochas-
tic conditional probabilitymatrix. The J-equation depends
on an arbitrary sequence q(j) of hypothetic probabili-
ties, but in this article we will consider only two special
cases, case R (“real probabilities”) and case S (“standard
probabilities”) to be defined in Section 3. In case R, the
J-equation implies, via Jensen’s inequality, an increase
of the (modified) Shannon entropy from the first to the
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second measurement. In Section 3, we specialise the gen-
eral framework of Section 2 to the case of quantum theory
such that the first measurement is of Lüders type satisfy-
ing two more assumptions. Then, we can reformulate the
J-equation for case S where the initial density matrix is
a function 𝒢 of L commuting self-adjoint operators, see
Theorem 1. Special choices for the function 𝒢 and the L
commuting self-adjoint operators lead to various diver-
sifications of the Jarzynski equation: the local equilib-
rium given by N canonical ensembles (Subsection 3.2),
the microcanonical ensemble (Subsection 3.3), and the
grand canonical ensemble case (Subsection 3.4). More-
over, in Subsection 3.5, we consider recently discovered
cases of a periodically driven quantum system that are
in quasi-equilibrium with a heat bath possessing a quasi-
temperature 1/ϑ and show how these cases can also be
covered by the present theory. In all these applications, we
will obtain case S variants of the Second Law–like state-
ments following from the Jarzynski equations via Jensen’s
inequality.

The aforementioned case R variant of the Second Law
also holds in quantum theory. This will be discussed in
some more detail in Section 4 containing further appli-
cations. It will be instructive to consider the analytically
solvable example of two subsequent discrete position–
momentum measurements at a free particle moving in
one dimension and to confirm the mentioned increase
of Shannon entropy, see Subsection 4.2. In the following
Subsection4.3,we showhow to integrate the quantumver-
sion of the Crooks dissipation theorem into our approach.
We briefly discuss how the results hitherto derived can be
transferred to the classical realm in Section 5. We close
with a summary and outlook in Section 6. In order to
make the article more readable, we have shifted most
of the proofs and further mathematical details to two
Appendices.

2 Statistical Model of Sequential
Measurements

2.1 Simple Case

We consider two sequential measurements at the same
physical system at times t0 < t1 with respective outcome
sets ℐ and𝒥 . These sets are assumed to be finite or count-
ably infinite. Hence, the joint outcome of the twomeasure-
ments can be represented by the pair (i, j) ∈ ℐ × 𝒥 . We
define

E ≡ ℐ × 𝒥 (1)

as the set of “elementary events” and describe the proba-
bility of elementary events by a function

P : E → [0, 1] (2)

subject to the natural condition∑︁
(i,j)∈E

P(i, j) = 1 . (3)

As usual, one defines the first and second marginal
probability functions

p : ℐ → [0, 1] (4)

p(i) ≡
∑︁
j∈𝒥

P(i, j) , (5)

and

p̂ : 𝒥 → [0, 1] (6)

p̂(j) ≡
∑︁
i∈ℐ

P(i, j) . (7)

For the sake of simplicity, we will assume

p(i) > 0 for all i ∈ ℐ . (8)

This could be achieved by deleting all outcomes i ∈ ℐ
with p(i) = 0, thereby reducing the set ℐ. Due to (8), the
“conditional probability”

π(j|i) ≡ P(i, j)
p(i) (9)

can be defined for all (i, j) ∈ E. It satisfies∑︁
j∈𝒥

π(j|i) = 1 for all i ∈ ℐ , (10)

and hence can be considered as a stochastic matrix. Note
further that

p̂(j) =
∑︁
i∈ℐ

π(j|i) p(i) . (11)

If additionally π is a “doubly stochastic matrix,” i.e.∑︁
i∈𝒥

π(j|i) = 1 for all j ∈ 𝒥 , (12)

the triple (ℐ ,𝒥 , P) will be called a “statisticalmodel of two
sequential measurements” (SM2).
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In accordance with the usual nomenclature of proba-
bility theory, functions X : E → are also called “random
variables.” Their expectation value is defined as

⟨X⟩ ≡
∑︁
(i,j)∈E

X(i, j) P(i, j) , (13)

if the series converges. Using a sloppy notation, the expec-
tation valuewill be sometimes alsowritten as ⟨X(i, j)⟩ if no
misunderstanding is likely to occur.We have the following
result:

Proposition 1: If (ℐ ,𝒥 , P) is an SM2 and q : 𝒥 → [0, 1] a
sequence satisfying ∑︁

j∈𝒥
q(j) = 1 , (14)

then ⟨
q(j)
p(i)

⟩
= 1 . (15)

Conversely, if (ℐ ,𝒥 , P) satisfies the above conditions,
but not necessarily (12), and (15) holds for all q : 𝒥 → [0, 1]
satisfying (14), then π(j|i) will be doubly stochastic.

The q(j) will also be called “hypothetical probabilities” in
contrast to the “real probabilities” p̂(j). The choice q(j) =
p̂(j) will be referred to as the “case R.” The above propo-
sition essentially says that the J-equation is equivalent to
π(j|i) being doubly stochastic. The proof can be found in
Appendix A.

We will call (15) and its modified form (27) the “J-
equation” as we think that it contains the probabilistic
core of the Jarzynski equation but should be distinguished
from the latter for the sake of clarity. To illustrate this
claim, we note that any sequence p : ℐ → [0, 1] of prob-
abilities satisfying (8) may be written in the form

p(i) = exp(−β(Ei − F)) , (16)

and, analogously,

q(j) = exp
(︀
−β

(︀
E′j − F′

)︀)︀
, (17)

where the β, Ei , E′, F, F′ are certain real parameters, not
uniquely determined by (16) and (17). Then, (15) can be
written as ⟨

e−β w
⟩

= e−β∆F , (18)

wherew : E → is a randomvariable defined byw(i, j) ≡
E′ − Ei and ∆F ≡ F′ − F. Indeed, (18) has the form

of the standard Jarzynski equation, but in general, the
parameters occurring in (18) will not have the physical
meaning of inverse temperature β, work w, and difference
of free energies ∆F, as required for the Jarzynski equation.
Even in the special case where the usual physical interpre-
tation of the parameters β, Ei , E′, F, F′ holds, we have not
yet proven the standard Jarzynski equation, because we
still would have to confirm the conditions of Proposition
1 for this special case.

Let (ℐ ,𝒥 , P) be an SM2 and choose q(j) = p̂(j) for all
j ∈ 𝒥 , that is, replace the hypothetical probabilities by the
real ones. Then, by Proposition 1,⟨

p̂(j)
p(i)

⟩
= 1 . (19)

As the logarithm (with arbitrary basis) is a concave
function, Jensen’s inequality yields

⟨log X⟩ ≤ log ⟨X⟩ (20)

for any random variable X : E → +. If we define the
Shannon entropy [19] as usual by

S(p) ≡ −
∑︁
i
pi log pi , (21)

it follows immediately from (20) that S(p) does not
decrease between two sequential measurements:

Proposition 2:

S(p̂) ≥ S(p) . (22)

The proof can be found in Appendix A.
It is an obvious question under which circumstances

the inequality in (22) will be a strict one. We will answer
this question only for the case of finite ℐ = 𝒥 :

Proposition 3: Let ℐ = 𝒥 and |ℐ| = n. Then, S(p̂) = S(p)
if the conditional probability is of permutational type, i.e. if
π(j|i) = δj,σ(i) for some permutation σ ∈ 𝒮(n).

One may ask which assumption is responsible for the
asymmetry between the two sequential measurements
that appears in (22). Obviously, this is the property (12) of
the conditional probabilitymatrix being doubly stochastic
that is postulated only for the first conditional probabil-
ity π and not for the second one π̂(i|j) ≡ P(i,j)

p̂(j) . It will be
instructive to consider the situation in which both matri-
ces, π and π̂, are doubly stochastic. For the sake of sim-
plicity, we will assume that the outcome sets ℐ and 𝒥
are finite, both containing exactly n elements, and that
P(i, j) > 0 for all i ∈ ℐ and j ∈ 𝒥 . It follows that, inmatrix
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notation, π p = p̂ and π̂ p̂ = p, cf. (11); moreover, the dou-
ble stochasticity may be written as π 1 = π̂ 1 = 1, where 1
denotes the constant vector 1 = (1, 1, . . . , 1). Hence, the
matrix Π ≡ π̂ π has the twopositive invariant distributions
1
n 1 and p. As P(i, j) > 0, the matrix Π is irreducible, and
hence, its positive invariant distribution is unique (Theo-
rem 54 of [20]). Consequently, p(i) = p̂(j) = 1

n for all i ∈ ℐ
and j ∈ 𝒥 . This characterises the constant distribution
with maximal Shannon entropy and hence a completely
symmetric situation.

An equation similar to the J-equation (15) considered
above has been proven in [21]. In our notation, it can be
formulated as⟨

p(i)
π̂(i|j)

⟩
=

⟨
p̂(j)
π(j|i)

⟩
=

⟨
p(i) p̂(j)
P(i, j)

⟩
= 1 . (23)

However, the closer comparison of (23) and (15) shows
that these equations are not equivalent, which is also
clear from the fact that (23) does not presuppose addi-
tional assumptions like the double stochasticity of the
conditional probability.

2.2 Modified Case

Now we will formulate a slightly more general framework
for SM2 that is motivated by applications using quantum
theory in Section 3 and partially follows the account of
Wolfgang Pauli in [18], Ch. I §2.

When defining themodified framework for sequential
measurements, we will again consider the triple (ℐ ,𝒥 , P)
assumed for the simple case and additionally postulate
two nonvanishing functions

d : ℐ → and D : 𝒥 → . (24)

In Section 3, the d(i) andD(j) will be interpreted as the
degeneracies of certain eigenspaces of measured observ-
ables. In Appendix B, wewill derive the following assump-
tion (25) characterising the modified case by coarse grain-
ing of the outcome sets of the simple case. Here, the d(i)
and D(j) play the role of cell sizes of the coarse graining.

The 5-quintuple (ℐ ,𝒥 , P, d, D) will be called a “mod-
ified statistical model of two sequential measurements”
(mSM2), if the condition of π being doubly stochastic is
replaced by the unprimed version of (B9):∑︁

i∈ℐ
π(j|i) d(i) = D(j) for all j ∈ 𝒥 . (25)

We will generally denote a conditional probability
function π : E → [0, 1] satisfying (25) as being of “modi-
fied doubly stochastic” type.

Consequently, we obtain the following variant of
Proposition 1:

Proposition 4: If (ℐ ,𝒥 , P, d, D) is anmSM2 and q : 𝒥 →
[0, 1] a sequence satisfying∑︁

j∈𝒥
q(j) = 1 , (26)

then ⟨
d(i)
D(j)

q(j)
p(i)

⟩
= 1 . (27)

Conversely, if (ℐ ,𝒥 , P, d, D) satisfies the above condi-
tions, but not necessarily (25), and (27) holds for all q : 𝒥 →
[0, 1] satisfying (26), then π(j|i) will be of modified doubly
stochastic type.

The proof is completely analogous to that of Proposi-
tion 1. Analogously, it follows that the modified Shannon
entropy

S′(p) ≡ −
∑︁
i
p(i) log p(i)d(i) (28)

does not decrease in the modified statistical model of two
sequential measurements, i.e.

Proposition 5:

S′(p̂) ≥ S′(p) , (29)

where

S′(p̂) ≡ −
∑︁
j
p̂(j) log p̂(j)D(j) . (30)

This equation is analogous to the statement dS
dt ≥ 0 after

(22) in [18] that has beenprovenbyPauli using the stronger
symmetry condition (in our notation)

π(j|i)
D(j) =

π(i|j)
d(i) , (31)

see (21) in [18], justified by first-order perturbation theory
(“Fermi’s Golden Rule”). We note that in general (31) need
not hold, see Section 4.2 for a counter-example, but there
are also positive examples beyond the Golden Rule, see
Subsection 4.3.

2.3 Symmetric Formulation

In this subsection, we will give a more symmetric and
slightly more formal account of the framework the-
ory for the (modified) statistical model of sequential
measurements that will be used later in Subsection 4.3.
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The basic concepts will be ℐ , 𝒥 , Π, p, q. As in
Section 2.1, ℐ and𝒥 will be finite or countably infinite sets
and

E ≡ ℐ × 𝒥 . (32)

We first postulate

Axiom 1: p is a function p : ℐ → (0, 1) such that the series∑︀
i p(i) converges and has the value

∑︀
i p(i) = 1. Analo-

gously,
q is a function q : 𝒥 → (0, 1) such that the series∑︀

j q(j) converges and has the value
∑︀

j q(j) = 1.

Next, Π will be a function Π : E → + called the “con-
ditional matrix” that has no direct physical meaning.
Its values will be written as Π(j|i). It is subject to the
following.

Axiom 2: Π is a functionΠ : E → + such that the two fol-
lowing series converge for all i ∈ ℐ , j ∈ 𝒥 andhave positive
values:

d(i) ≡
∑︁
j
Π(j|i) > 0, (33)

D(j) ≡
∑︁
i
Π(j|i) > 0 . (34)

As an immediate consequence, the “first conditional prob-
ability”

π(j|i) ≡ Π(j|i)
d(i) (35)

satisfies ∑︁
j
π(j|i) = 1 for all i ∈ ℐ , (36)

and ∑︁
i
π(j|i) d(i) = D(j) for all j ∈ 𝒥 . (37)

Hence, π is a doubly stochastic matrix in the modified
sense. Define

P(i, j) ≡ π(j|i) p(i) for all (i, j) ∈ E , (38)

then ∑︁
(i,j)∈E

P(i, j) = 1 , (39)

and m = (ℐ ,𝒥 , P, d, D) will be an mSM2 in the sense of
Subsection 2.2.

As the axioms 1 and 2 are completely symmetric with
respect to the transpositions ℐ ↔ 𝒥 and p ↔ q, we may

analogously define a second model m̃ = (𝒥 , ℐ , P̃, D, d)
by

π̃(i|j) ≡ Π(j|i)
D(j)

(35)= π(j|i) d(i)
D(j) , (40)

and

P̃(j, i) ≡ π̃︀(i|j) q(j) , (41)

such that ∑︁
j
π̃(i|j) D(j) = d(i) for all i ∈ ℐ , (42)

and ∑︁
(j,i)∈E

P̃(j, i) = 1 . (43)

Hence, m̃ = (𝒥 , ℐ , P̃, D, d) will also be an mSM2 in
the sense of Subsection 2.2 called the “reciprocal model”
with respect tom andwill satisfy a reciprocal J-equation of
the form ⟨

D(j) p(i)
d(i) q(j)

⟩
= 1 . (44)

Let us reconsider the original J-equation (27) and
define the corresponding random variable Y (in a less
sloppy way than above) as

Y(i, j) =
d(i)q(j)
D(j)p(i) for all i ∈ ℐ and j ∈ 𝒥 . (45)

We then rewrite the expectation value of Y in the
following way. For any real number y ∈ , we define

Ey ≡ {(i, j) ∈ E|Y(i, j) = y} . (46)

Let Y ≡ {y ∈ |Ey ̸= ∅}, then

⟨Y⟩ =
∑︁
y∈Y

⎛⎝ ∑︁
(i,j)∈Ey

P(i, j)

⎞⎠y . (47)

The sum in the brackets can be interpreted as the
probability that Y assumes the value y, or, in symbols:

P(Y = y) =
∑︁

(i,j)∈Ey

P(i, j) . (48)

Next, we repeat the above definitions for the recipro-
cal model m̃ = (𝒥 , ℐ , P̃, D, d) setting

Ỹ(j, i) =
D(j)p(i)
d(i)q(j) =

1
Y(i, j) , (49)

Ẽz = {(j, i) ∈ Ẽ
⃒⃒
Ỹ(j, i) = z} , (50)
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for z ∈ and

P̃(Ỹ = 1/y) =
∑︁

(j,i)∈Ẽ1/y

P̃(j, i) . (51)

We note that

(i, j) ∈ Ey ⇔ (j, i) ∈ Ẽ1/y , (52)

and formulate the following “C-equation”:

Proposition 6: For all y ∈ Y, there holds

P(Y = y)
P̃(Ỹ = 1/y)

=
1
y . (53)

The proof can be found in Appendix A.
From the C-equation, we may again derive the J-

equation (27) in the following way:

⟨Y⟩ (47,48)=
∑︁
y∈Y

P(Y = y)y (53)=
∑︁
y∈Y

P̃(Ỹ = 1/y) = 1 . (54)

3 Applications to Quantum Theory

3.1 General Case

Wewill investigate how the (modified) statistical model of
sequential measurements outlined in the preceding sub-
sections can be realised within the framework of quantum
theory. The identification of the respective conceptswill be
facilitated by denoting them with the same letters. Addi-
tionally to a number of usual assumptions, we will use
Assumptions 1 and 2 that are highlighted below.

We consider a quantum systemwith a Hilbert spaceℋ
and a finite number of mutually commuting self-adjoint
operators Ẽ︀1, . . . , Ẽ︀L defined on (suitable domains of) ℋ.
Theyare assumed tohaveapurepoint spectrumandhence
a family of common eigenprojections (P̃︀i)i∈ℐ such that

Ẽ︀λ =
∑︁
i∈ℐ

E(λ)i P̃︀i , λ = 1, . . . , L . (55)

Here ℐ is a finite or countable infinite index set to be
identified with the outcome set of the first measurement
according to Section 2. The P̃︀i are assumed to be of finite
degeneracy,

d(i) ≡ Tr
(︀
P̃︀i)︀ < ∞, for all i ∈ ℐ , (56)

and are chosen as maximal projections in the sense that
i ̸= j implies E(λ)i ̸= E(λ)j for at least one λ = 1, . . . , L. Note
the completeness relation∑︁

i∈ℐ
P̃︀i = . (57)

Physically, the Ẽ︀1, . . . , Ẽ︀L correspond to observables
that can be jointly measured. We assume a (mixed) state
of the system before the time t = t0 described by a den-
sity operator ρ and perform a joint Lüders measurement,
cf. [14] (10.22), of Ẽ︀1, . . . , Ẽ︀L at the time t = t0. The proba-
bility of the outcome i ∈ ℐ will be

p(i) = Tr
(︀
ρ P̃︀i)︀ , (58)

satisfying ∑︁
i∈ℐ

p(i) = 1 . (59)

In accordance with (8), we will make the following
assumption:

Assumption 1:

p(i) > 0 for all i ∈ ℐ . (60)

The validity of this assumption could be achieved by
restricting the Hilbert space ℋ to the subspace spanned
by the eigenspaces of those P̃︀i with p(i) = Tr

(︀
ρ P̃︀i)︀ > 0.

After the first measurement of the Ẽ︀1, . . . , Ẽ︀L, the sys-tem is subject to a further time evolution and a second
measurement of (possibly) other observables. Thus, the
primary preparation together with the first measurement
may be considered as another preparation of a certain
state, in general different from the initial state ρ. If a selec-
tion according to a particular outcome i ∈ ℐ is involved,
this state will be, according to the assumption of a Lüders
measurement, cf. [14] (10.22),

ρi =
P̃︀i ρ P̃︀i
Tr

(︀
ρ P̃︀i)︀ =

P̃︀i ρ P̃︀ip(i) . (61)

If no selection according to a particular outcome is
involved, the state resulting after the first measurement
will rather be the mixed state

ρ1 =
∑︁
i∈ℐ

p(i) ρi
(61)=

∑︁
i∈ℐ

P̃︀i ρ P̃︀i . (62)

In order to apply the results of the preceding section
we will make the following crucial assumption:

Assumption 2:

ρi =
1
d(i)P̃︀i for all i ∈ ℐ . (63)

If P̃︀i is a one-dimensional projection, i.e. if d(i) = 1, the
assumption (63) will be automatically satisfied. In the case
of d(i) > 1, this assumptionmeans that ρ is diagonal with
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respect to any common eigenbasis of the Ẽ︀1, . . . , Ẽ︀L. Animportant case where (63) holds is given if ρ is a function
of the operators Ẽ︀1, . . . , Ẽ︀L, say,

ρ = 𝒢
(︀
Ẽ︀1, . . . , Ẽ︀L)︀ . (64)

This has to be interpreted in the sense of functional
calculus as

ρ =
∑︁
i∈ℐ

𝒢
(︁
Eλi

)︁
P̃︀i , (65)

where Eλi will be the short-hand notation for(︁
E(1)i , . . . , E(L)i

)︁
. It follows that, in accordance with (63),

ρi
(61)=

1
p(i)P̃︀i ρ P̃︀i (6165)=

1
p(i)𝒢

(︁
Eλi

)︁
P̃︀i =

1
d(i)P̃︀i , (66)

as

p(i) (58)= Tr
(︀
ρ P̃︀i)︀ (65)= 𝒢

(︁
Eλi

)︁
Tr P̃︀i (56)= 𝒢

(︁
Eλi

)︁
d(i) . (67)

In what follows, we will refer to the case (64) as the
“standard case” (case S).However,we stress that this is not
themost general case compatiblewithAssumption 2 as the
counter-example of all d(i) = 1 and ρ not commutingwith
the P̃︀i shows.Next, we consider a second set of observables
described by the mutually commuting self-adjoint opera-
tors F̃︀1, . . . , F̃︀L subject to analogous assumptions. Hence,
the following holds:

F̃︀λ =
∑︁
j∈𝒥

F(λ)j Q̃︀ j , λ = 1, . . . , L , (68)

D(j) ≡ Tr
(︁
Q̃︀ j

)︁
< ∞, for all j ∈ 𝒥 , (69)

and ∑︁
j∈𝒥

Q̃︀ j = . (70)

We have chosen another index set𝒥 for the second set
of observables in order to stress that no natural identifica-
tion between both index sets is required in what follows.
Obviously,𝒥 has to be identifiedwith the second outcome
set introduced in Section 2. In general, the Ẽ︀λ will not com-
mute with the F̃︀µ. We assume that a second measurement
of the F̃︀1, . . . , F̃︀L will be performed at the time t = t1 > t0,
not necessarily of Lüders type. Between the two measure-
ments in the time interval (t0, t1), the evolution of the
system can be quite arbitrary and will be described by a
unitary evolution operator U = U(t1, t0).

Next, we will show that the suitably defined “phys-
ical conditional probability” p(j|i) is of modified doubly
stochastic type, and hence, the J-equation (27) also holds
in cases of physical relevance. Recall that the state of the
system immediately after the firstmeasurement at time t =
t0with outcome i ∈ ℐ is assumed to be of the form (63) and
that the time evolution between t = t0 and t = t1 is given
by the unitary evolution operator U. Hence, according to
the rules of quantum theory

p(j|i) = Tr
(︂
Q̃︀ j U P̃︀id(i) U*

)︂
, for all i ∈ ℐ , j ∈ 𝒥 .

(71)
Moreover,

Lemma 1: The physical conditional probability (71) is of
modified doubly stochastic type.

The proof of this Lemma can be found in Appendix A.
Recall that certain “hypothetical probabilities” q(j)

occur in Proposition 3 of Section 2.2. For the quantumcase,
we will always assume that these probabilities are of the
following form:

q(j) = Tr
(︁

𝒢
(︀
F̃︀1, . . . , F̃︀L)︀Q̃︀ j

)︁
= D(j)𝒢

(︁
Fλj

)︁
(72)

for all j ∈ 𝒥 , where the function 𝒢 is chosen to be the
same as in (64). We understand the “standard case S” as
including the condition (72).

Lemma 1 and Proposition 3 immediately entail the
following theorem, referred to as claiming the general
Jarzynski equation, which will be formulated only for the
standard case S:

Theorem 1: Let Ẽ︀1, . . . , Ẽ︀L be a family of mutually com-
muting self-adjoint operators with the spectral decomposi-
tion (55) satisfying (56), likewise F̃︀1, . . . , F̃︀L a second familysatisfying (68) and (69). Further, let ρ = 𝒢

(︀
Ẽ︀1, . . . , Ẽ︀L)︀ bea density operator such that

p(i) = Tr
(︀
ρ P̃︀i)︀ > 0 (73)

holds for all i ∈ ℐ. Further, let U be some unitary time
evolution operator. Then, the following holds⟨𝒢

(︁
Fλj

)︁
𝒢

(︀
Eλi

)︀ ⟩
= 1 , (74)

where the expectation value has been calculated by means
of the physical probability function p(i, j) = p(j|i) p(i) =

Tr
(︁
Q̃︀ j U P̃︀id(i) U*

)︁
p(i).

Wenote inpassing that thephysical probabilitiesp(i, j) can
be written as

p(i, j) = Tr
(︀
ρ F(i, j)

)︀
, (75)
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where the positive operators

F(i, j) ≡ P̃︀i U* Q̃︀ j U P̃︀i ≥ 0 (76)

satisfy

∑︁
(i,j)∈E

F(i, j) =
∑︁
i∈ℐ

P̃︀i U*

⎛⎝∑︁
j∈𝒥

Q̃︀ j
⎞⎠U P̃︀i

(70)=
∑︁
i∈ℐ

P̃︀i (57)= (77)

and hence constitute a “positive operator valued mea-
sure” (POVM) F : E → ℒ(ℋ). Here,ℒ(ℋ) denotes the space
of bounded, linear operators defined on ℋ. (For a more
general definition, see [14]; note that we use a simpli-
fied form of POVM adapted to countably infinite outcome
spaces E.) Hence, the various random variables defined
on E, including “work,” can be viewed as generalised
observables in the sense of [14], albeit generally not “sharp
observables” (i.e. observables described by projection val-
ued measures). This observation puts the statement of
[13] “work is not an observable” into perspective, see also
[15, 16, 22].

For the examples in the following subsections, it suf-
fices to identify the families Ẽ︀1, . . . , Ẽ︀L and F̃︀1, . . . , F̃︀Land the function 𝒢. The conditions of Theorem 1 can be
easily verified by the reader; it remains to evaluate the
general Jarzynski equation (74) for the various examples.
Moreover, as in all examples the convex exponential func-
tion is involved, we may invoke Jensen’s inequality and
obtain special relations that may be viewed as manifesta-
tions of the Second Law for nonequilibrium case S scenar-
ios, but have to be distinguished from case R statement
of nondecreasing modified Shannon entropy in Subsec-
tion 4.1.

3.2 Systems in Local Canonical Equilibrium

We assume that the quantum system consists of N subsys-
tems and consequently ℋ =

⨂︀N
µ=1 ℋµ. For each subsys-

tem, we assume a, possibly time-dependent, Hamiltonian
Hµ(t), where the lift to the total Hilbert space by means
of suitable tensor products with identity operators will be
tacitly understood. Its spectral compositionwill bewritten
as

Hµ(t) =
∑︁
iµ∈ℐµ

E(µ)iµ (t) Piµ (t) . (78)

Then, we set L = N, ℐ = 𝒥 = ℐ1 × . . . × ℐN , and

Ẽ︀µ = Hµ(t0), and F̃︀µ = Hµ(t1), for µ = 1, . . . N .
(79)

These Hamiltonians are not necessarily connected
with the unitary time evolution operator U = U(t1, t0).
Further, we choose

ρ = 𝒢
(︀
H1(t0), . . . , HN(t0)

)︀
=

N∏︁
µ=1

(︀
Tr exp

(︀
−βµ Hµ(t0)

)︀)︀−1 exp
(︀
−βµ Hµ(t0)

)︀
,

(80)
with the usual interpretation of the parameters βµ > 0 as
the inverse temperatures of the subsystems. The gener-
alised Jarzynski equation (74) then assumes the form⟨

exp

⎛⎝−
N∑︁
µ=1

βµ
(︀
wµ − ∆Fµ

)︀⎞⎠⟩
= 1 , (81)

where

wµ(i, j) ≡ E(µ)jµ (t1) − E(µ)iµ (t0), (82)

Zµ(t) ≡ Tr
(︁
e−βµ Hµ(t)

)︁
≡ e−βµ Fµ(t), (83)

∆Fµ ≡ Fµ(t1) − Fµ(t0) , (84)

for all µ = 1, . . . , N. As exp is convex, Jensen’s inequality
yields e⟨x⟩ ≤ ⟨ex⟩, and hence (81) implies

exp
⟨

−
N∑︁
µ=1

βµ
(︀
wµ − ∆Fµ

)︀⟩
≤ 1 , (85)

or, equivalently,

N∑︁
µ=1

βµ
(︀
⟨wµ⟩ − ∆Fµ

)︀
≥ 0 . (86)

Note that the left-hand side of (86) has the form of a
sum of entropy changes in the quasi-static limit and hence
can be viewed as amanifestation of the Second Law for the
present nonequilibrium scenario. For similar results, see
[3] and [23].

3.3 Systems in Microcanonical Equilibrium

We choose L = 1 and a one-parameter family of Hamilto-
nians H(t) with spectral decomposition

H(t) =
∑︁
i∈ℐ

Ei(t) Pi(t) . (87)

The microcanonical ensemble will not be represented
by a characteristic function concentrated on a small
energy interval but in the physically equivalent form

ρ = 𝒢(H(t0)) ≡ 1
W(t0)

exp
(︃

−
(︂
E − H(t0)

w

)︂2
)︃
, (88)
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where

W(t) ≡ Tr exp
[︃

−
(︂
E − H(t)

w

)︂2
]︃

≡ e−f (t) , (89)

and E, w > 0 are parameters. The generalised Jarzynski
equation (74) then assumes the form⟨
exp

[︃
−

(︂
E − Ej(t1)

w

)︂2
+ ∆f +

(︂
E − Ei(t0)

w

)︂2
]︃⟩

= 1 ,

(90)
where ∆f ≡ f (t1)−f (t0). Application of Jensen’s inequality
analogous to that in Section 3.2 yields⟨(︂

E − Ej(t1)
w

)︂2
− ∆f −

(︂
E − Ei(t0)

w

)︂2
⟩

≥ 0 . (91)

The generalisation to systems in local microcanonical
equilibrium analogous to the case treated in Section 3.2 is
straightforward and need not be given here in detail.

3.4 Systems in Grand Canonical Equilibrium

The Hilbert space of the system is chosen as the bosonic or
fermionic Fock space over the one-particle Hilbert space
ℋ:

ℱ±(ℋ) =
∞⨁︁
n=0

𝒮±ℋ⊗n , (92)

where ℋ⊗n denotes the n-fold tensor product and 𝒮±
the projector onto the totally symmetric (+) part or the
totally antisymmetric (−) part of ℋ⊗n. We choose L = 2
and Ẽ︀1 = H(t0), where H(t) is the canonical lift of a time-
dependent one-particle Hamiltonian H1(t) to ℱ±(ℋ). Fur-
ther, we choose Ẽ︀2 = Ñ︀ , the particle number operator in
ℱ±(ℋ). By definition, Ẽ︀1 and Ẽ︀2 commute. Let the respec-
tive spectral decompositions with a common system of
eigenprojections be written as

H(t) =
∑︁
i∈ℐ

Ei(t) Pi(t) , (93)

and

Ñ︀ =
∑︁
i∈ℐ

Ni Pi(t) . (94)

Moreover, we set

ρ = 𝒢
(︀
H(t0), Ñ︀)︀

≡ exp
[︀
β
(︀
Ω(t0) + µ Ñ︀ − H(t0)

)︀]︀
, (95)

where

exp
(︀
−β Ω(t)

)︀
≡ Tr exp

[︀
β
(︀
µ Ñ︀ − H(t)

)︀]︀
, (96)

and β, µ, Ω have the usual physical interpretation as
inverse temperature, chemical potential, and grandpoten-
tial, respectively.

The generalised Jarzynski equation (74) then assumes
the form ⟨︀

exp
[︀
−β

(︀(︀
Ej(t1) − Ei(t0)

)︀
−µ

(︀
Nj − Ni

)︀
− ∆Ω

)︀]︀⟩︀
= 1 , (97)

where ∆Ω ≡ Ω(t1)−Ω(t0). Applicationof Jensen’s inequal-
ity analogous to that in Section 3.2 yields

β⟨(Ej(t1) − Ei(t0)⟩ − µ
⟨︀
Nj − Ni

⟩︀
− ∆Ω) ≥ 0 . (98)

The generalisation to systems in local grand canonical
equilibrium analogous to the case treated in Section 3.2 is
straightforward and need not be given here in detail. For
similar results, see also [6–11].

3.5 Application to Periodic
Thermodynamics

Analogously to Section 3.2, we consider two systems (i.e.
N = 2) and assume that the first system is periodically
driven with a Hamiltonian K1(t) satisfying K1(t + T) =
K1(t). We have chosen the letter “K” as we will have to dis-
tinguish between the Hamiltonian and the (quasi) energy
operator H1(t) and want to conform, as far as possible,
with the notation introduced in the preceding sections.
According to Floquet theory, the general solution of the
corresponding Schrödinger equation will be of the form

ψ(t) =
∑︁
i∈ℐ1

ai ui(t) e−i εi t , (99)

with time-independent coefficients ai. Here, the εi denote
the quasi-energies, unique up to integer multiples of ω ≡
2π
T , and the ui(t) are T-periodic functions of t. We assume
a pure point spectrum of the quasi-energies, and accord-
ingly,ℐ1will be a countably infinite or possibly finite index
set.

Upon choosing a selection of quasi-energies from their
equivalence classes, we may define a quasi-energy opera-
tor

H1(t) =
∑︁
i∈ℐ1

εi P̃︀(1)
i (t) ≡

∑︁
i∈ℐ1

εi |ui(t)⟩⟨ui(t)| . (100)

Hence, Tr P̃︀(1)
i (t) = 1 for all t and∑︁

i∈ℐ1

P̃︀(1)
i (t) = . (101)
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The first system is coupled to a heat bath with Hamil-
tonian

H2 =
∑︁
n∈𝒩

En P̃︀(2)
n , (102)

where the P̃︀(2)
n are assumed to be finite-dimensional

projectors with dimension (degeneracy) d(n) = Tr P̃︀(2)
n .

Without loss of generality, we also assume a pure point
spectrum of the heat bath corresponding to a countably
infinite index set 𝒩 . The outcome sets introduced in
Section 2 can be chosen as ℐ = 𝒥 = ℐ1 × 𝒩 . Note the
completeness relation∑︁

n∈𝒩
P̃︀(2)
n = . (103)

The total Hamilton operator of the system plus bath
will be written as

K(t) = K1(t) ⊗ 2 + 1 ⊗ H2 + H12 , (104)

with some self-adjoint operator H12 defined on the total
Hilbert space ℋ = ℋ1 ⊗ ℋ2 describing the system–bath
interaction. It is assumed to be valid for t < t0. Strictly
speaking, the form of K(t) is irrelevant for the Jarzynski
equation to be formulated below. Its only purpose is to
motivate the following assumptions about the state of the
total system at the time t = t0.

We assume that for times t < t0, the heat bath will be
in a thermal equilibrium state

ρ2 =
1
Z2
e−βH2 , (105)

where, as usual, β is the inverse temperature and the heat
bath partition function is

Z2 = Tr
(︁
e−βH2

)︁
=

∑︁
n∈𝒩

e−βEn d(n) . (106)

The crucial assumption of this subsection will be
that also the system assumes, for times t < t0, a quasi-
stationary distribution ρ1(t) of Floquet states that will be
of Boltzmann type with an inverse quasi-temperature ϑ,
namely

ρ1(t) =
1
Z1
e−ϑH1(t) , (107)

and the corresponding time-independent quasi-partition
function reads

Z1 = Tr
(︁
e−ϑH1(t)

)︁
=

∑︁
i∈ℐ1

e−ϑ εi . (108)

With respect to the conditions of Theorem 1, we thus
may write the initial state as

ρ = ρ1(t0) ⊗ ρ2 = 𝒢
(︀
H1(t0), H2

)︀
=

[︁
Tr

(︁
e−ϑ H1(t0)

)︁
Tr

(︁
e−β H2

)︁]︁−1

exp
(︀
−ϑ H1(t0) − β H2

)︀
. (109)

Whereas the general existence of a quasi-stationary
distribution has beenmade plausible in the literature [24],
the more restrictive assumption of a quasi-Boltzmann dis-
tribution has been demonstrated for only four kinds of
systems:
– For the particular case of a linearly forced harmonic

oscillator, the authors of [24] have shown that the
Floquet-state distribution remains a Boltzmann distri-
butionwith the temperature of the heat bath, i.e. ϑ = β,
see also [25].

– Similarly, the parametrically driven harmonic oscil-
lator assumes a quasi-stationary state with a quasi-
temperature that is, however, generally different from
the bath temperature, see [26].

– A spin s exposed to both a static magnetic field and an
oscillating, circularly polarised magnetic field applied
perpendicular to the static one, as in the classic Rabi
set-up, and coupled to a thermal bath of harmonic oscil-
lators has been shown to approach a quasi-Boltzmann
distribution, see [27],

– And finally, every quasi-stationary distribution of Flo-
quet states of a two-level system, see [25], canbe trivially
viewed as a quasi-Boltzmann distribution.

As in Section 3, wewill assume that at times t = t0 and t =
t1 there will be performed measurements of the observ-
ables corresponding to the commuting (quasi) energy
operators H1(t) and H2. The interaction between the sys-
tem and the heat bath in the time interval (t0, t1) can be
quite arbitrary and will be described by a Hamiltonian
H̃(t). It follows that all mathematical assumptions neces-
sary to prove the general Jarzynski equation (74) are satis-
fied. But note the following difference: Typically, the gen-
eral Jarzynski equation holds in a situation of local ther-
mal equilibrium at the initial time t = t0. In this section,
we will rather apply Theorem 1 to a situation of a quasi-
stationary distribution of Floquet states of a periodically
driven system in contact with a heat bath. This situation
may be far from local thermal equilibrium.

Analogously to Section 3.2, we will set β1 = ϑ, the
inverse quasi-temperature, whereas β2 = β is the ordi-
nary temperature of the heat bath. Consequently, we will
rewrite w1 as the “change of quasi-energy e” and w2 as the
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heat q absorbed by the heat bath. Strictly speaking, this
would exclude a time-dependent Hamiltonian for the heat
bath as otherwise w2 could also be composed of both heat
andwork. Nevertheless, we will stick to this more intuitive
notation.

As noted above, both partition functions Z1 and Z2 are
time-independent. Hence, (74) simplifies to

⟨exp(−ϑ e − β q)⟩ = 1 . (110)

The inequality derivedbymeans of Jensen’s inequality
analogous to (86) hence will read

ϑ ⟨e⟩ + β ⟨q⟩ ≥ 0 , (111)

and can again be viewed as a manifestation of the Second
Law for periodic thermodynamics.

4 Further Applications to Quantum
Theory

4.1 A Second Law–like Statement for the
Nonstandard Case

In the preceding sections, we have formulated a number of
Second Law–like statements, namely (86), (91), (98), and
(111), which follow from the respective Jarzynski equations
in the standard case S. However, these statements are not
special cases of the “Pauli-type” inequalities (22) and (29)
as these are based on the assumption q(j) = p̂(j) for all
j ∈ 𝒥 (case R) and hence do not belong to the standard
case that is characterised by (72). In view of the funda-
mental significance of the Second Law, it will be in order
to add a few remarks on the realisation of (22) and (29) in
quantummechanics.

First, we will reformulate (29) in the context of quan-
tum theory:

Theorem 2: We assume the notations and general
conditions of Section 3, in particular Assumptions 1 and 2.
It follows that the 5-quintuple (ℐ ,𝒥 , p, d, D)will be a mod-
ified statistical model of sequential measurements (mST2)
where the physical probability function p : ℐ × 𝒥 → is
given by

p(i, j) = Tr
(︁
Q̃︀ j U P̃︀i ρ P̃︀i U*

)︁
= p(j|i) p(i) , (112)

and the second marginal probabilities are defined by

p̂j =
∑︁
i
p(i, j) . (113)

Then, the following holds:

S′(p̂) = −
∑︁
j
p̂j log

p̂j
D(j) ≥ S′(p)

= −
∑︁
i
p(i) log p(i)d(i) . (114)

This statement is certainly not new but has a couple
of forerunners albeit formulated in different frameworks
[18, 28, 29]. We note that the modified Shannon entropy
S′(p) can be identified with the von Neumann entropy
−Tr (ρ1 log ρ1) of the mixed state ρ1 after the first mea-
surement according to (62). Indeed,

ρ1
(62)=

∑︁
i
p(i) ρi

(63)=
∑︁
i

p(i)
d(i) Pi (115)

implies

−Tr (ρ1 log ρ1) = −Tr
(︃∑︁

i

p(i)
d(i) log

p(i)
d(i) Pi

)︃

= −
∑︁
i
p(i) log p(i)d(i) = S′(p) . (116)

For the modified Shannon entropy S′(p̂), this identifi-
cation is not possible in general. Even if we additionally
assume that the second measurement will be of Lüders
type, it is not clear whether an assumption analogous
to (63) would hold. Below we will consider a simplified
scenariowhere this identification is nevertheless possible.

Next, we note that the Second Law–like statement
(114) holds for closed systems irrespective of their size
and is in this respect more general than the usual for-
mulations of the Second Law for large systems includ-
ing small systems coupled to a heat bath. Moreover, (114)
is not restricted to sequential energy measurements and
e.g. would also hold for (discretised) position measure-
ments, thereby describing the spreading of wave pack-
ets, see the example of the following Subsection 4.2.
In this context, it might be instructive to discuss the
well-known Umkehreinwand (reversibility paradox) of
Loschmidt. There exist solutions ψ(t) of, say, the 1-particle
Schrödinger equations that are time reflections of spread-
ing wave packets and hence concentrate on smaller and
smaller regions. These solutions do not lead to a violation
of (114) as after the first measurement this special solution
ψ(0) is transformed into a mixed state ρ1 that again will
spread with increasing time. The delicate phase relations
of ψ(0) needed for the inverse spreading are destroyed by
the first measurement.
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Similarly, the relatedWiederkehreinwand (recurrence
paradox) of Poincaré and Zermelo that would be particu-
larly serious for small systems with short recurrence times
can be rebutted. It may happen that the modified Shan-
non entropy S′(p̂) will be a periodic function s(s) of the
time difference t ≡ t1 − t0 between the two measure-
ments, but this doesnot injure the validity of (114). The rea-
son is simply that the latter inequality reads s(t) ≥ S′(p)
and not s(ta) ≥ s(tb) for all ta > tb. Physically speaking,
the Wiederkehreinwand does not apply as in quantum
mechanics the entropy difference is not a definite quan-
tity defined for all times t but rather shouldbe construedas
themean value of entropy differences overmanymeasure-
ments of a pair of observables performed at a fixed time
difference t.

As (114) is a fundamental inequality that is valid for a
large class of sequential measurements, it will be interest-
ing to investigate its possible geometrical meaning.

To this end, we generalise our considerations to a
finite number of L sequential Lüders measurements but
restricted to the case of a finite n-dimensional Hilbert
space ℋ and nondegenerate projections Pi, Qj. This corre-
sponds to Subsection 2.1 dealingwith the “simple case.” In
particular, Assumption 2, see (63), will be satisfied for the
corresponding state before each measurement. Consider
first the simplest case of an n = 2-dimensional Hilbert
space where all mixed states correspond to the points of
a unit ball with centre C ∼= 1

2 . The boundary of the unit
ball is usually denoted as the “Bloch sphere.” Two orthog-
onal projections P1 and P2 are represented by antipodal
pairs of points of the Bloch sphere, and the first Lüders
operation ρ ρ1 is just the projection onto the line join-
ing P1 and P2. Upon this projection, the distance d of the
state to the centre C decreases (or remains constant); i.e.
the Lüders operation is contractive. This distance can be
expressed in terms of the scalar product (A, B) Tr A* B
for A, B ∈ ℒ(ℋ). The unitary time evolution between the
first and the second measurements corresponds to a rota-
tion of the Bloch sphere and can be discarded as far as
only geometric relations are considered. Then, the sec-
ond measurement with orthogonal projections Q1 and Q2
again yields a projection thatmaps ρ1 onto, say, ρ2 and fur-
ther decreases the distance to the centre C. In this way,
the L sequential Lüders measurements yield a sequence
ρ, ρ1, ρ2, . . . , ρL of mixed states represented by points
inside the Bloch spherewith nonincreasing distance to the
centre C, see Figure 1.

Beforewe connect this geometric picture to theSecond
Law–like statement (114),wewill sketch the generalisation
to finite n > 2, although the corresponding geometry can-
not be visualised in a likewise simple manner. The unit

Figure 1: Geometric interpretation of the Lüders operation ρ1 ρ2
as a projection of points inside the Bloch sphere onto the line
joining two orthogonal projections Q1 and Q2.

ball in the case of n = 2 has to be replaced by the con-
vex set K of mixed states such that the pure states are
the extremal points of K. The centre C now corresponds
to the maximally mixed state C ∼= 1

n . A family of nmutu-
ally orthogonal 1-dimensional projections Pi spans an n-
simplex Σ of extremal points of K consisting of all mixed
states that commutewith all Pi , i = 1, . . . , n. The centre C
is always contained in the simplex Σ. The Lüders operation
ρ ρ1 is the projection onto the affine subspace spanned
by the Pi , i = 1, . . . , n. Again, by subsequent projections,
we obtain a sequence ρ, ρ1, ρ2, . . . , ρL of mixed states
such that the distance d to the centre C is nonincreasing.

In passing, we note that the squared distance
d2 =

⃦⃦
ρ − 1

n
⃦⃦2 is related to the (dimensionless) Tsallis

entropy [30]

Sq =
1

q − 1

(︃
1 −

n∑︁
i=1

pqi

)︃
(117)

by

d2 =
n − 1
n − S2 . (118)

The connection to the Second Law–like statement
(114) will be first discussed for the special case of n = 2.
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Let p, 1 − p be the eigenvalues of a general statistical
operator ρ. Then

S(ρ) = −p log(p) − (1 − p) log(1 − p) , (119)

and

d2(ρ) = 2
(︂
p − 1

2

)︂2
, (120)

where d(ρ) denotes, as above, the Euclidean distance of
ρ to the maximally mixed state 1

2 . Obviously, (116) can
be solved for a monotonically decreasing function S(d2),
namely

S(d2) =
1
2

(︁
log(4) +

(︁
−1 +

√
2d

)︁
log

(︁
1 −

√
2d

)︁
−

(︁
1 +

√
2d

)︁
log

(︁
1 +

√
2d

)︁)︁
(121)

see also Figure 2, left panel.
For the general case of n = dimℋ > 2, the von Neu-

mann entropy S(ρ) is no longer a function of the distance
d(ρ) to the centre C, see Figure 2, left panel. This means
that there are cases of density matrices ρ, ρ1 such that
d(ρ1) < d(ρ), but there is no Lüders operation ρ ρ1
because S(ρ1) < S(ρ). In this sense, the Second Law–like
statement (114) goes beyond the contractivity of the Lüders
operation.

4.2 An Analytically Solvable Example

As a nontrivial example, we consider a particle in one
dimension and a free time evolution between the twomea-
surements described by the Schrödinger equation

i~ ∂
∂t ψ(x, t) = − ~2

2m
∂2

∂x2ψ(x, t) (122)

with self-explaining notation. The two measurements
are unsharp position–momentum measurements. More

specifically, the projections P̃︀i , i ∈ ℐ considered in
Section 3 are one-dimensional and of the form P̃︀i = |i⟩⟨i|
where

|i⟩ = |ν, n⟩ ≡ χ[ν∆,(ν+1)∆]
1√
∆
exp

(︂
2πi n x

∆

)︂
,

ν, n ∈ . (123)

Here, χ[ν∆,(ν+1)∆] denotes the characteristic function of
the interval [ν∆, (ν+1)∆]. Thus, the first measurement is a
discretised joint measurement of position qν and momen-
tum pn = 2 π ~ n

∆ . Analogous definitions hold for the sec-
ond measurement with projections Q̃︀ j = |j⟩⟨j| and |j⟩ =

|µ,m⟩ such that ℐ = 𝒥 = 2.
We choose the physical units such that ∆ = m = ~ =

1 and an initial pure state given by the Gaussian

ψ(x) =
1

π1/4σ
exp

(︂
− x2

2σ2

)︂
. (124)

After the first (Lüders) measurement, the particle is in
one of the pure states |ν, n⟩ with probability

p(i) = p(ν, n) = |⟨ν, n|ψ⟩|2 , (125)

where

⟨ν, n|ψ⟩

=

ν+1∫︁
ν

ψ(x) exp(−2πi n x) dx

=
4
√
π√
2

√
σe−2π2n2σ2

(︂
erf

(︂
ν + 1 + 2πinσ2√

2σ

)︂
− erf

(︂
ν + 2πinσ2√

2σ

)︂)︂
.

(126)
After the time t = t1 − t0, the state |ν, n⟩ evolves

into |ν, n, t⟩. To calculate the latter, we have integrated
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Figure 2: The von Neumann entropy S versus the squared distance d2 to the maximally mixed state. Left panel: In the case of Hilbert space
dimension dim = 2, S will be a monotonically decreasing function (121) of d2. Right panel: In the case of Hilbert space dimension dim > 2,
S will no longer be a function of d2. We show the case of dim = 3 and 2000 randomly chosen density matrices.
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the free propagator over one-unit interval and thereafter
performed a Galilean boost with the result

|ν, n, t⟩ =
i
2 e

−2πin(πnt−x){︂
erfi

(︂
1 + i
2

√
t
(ν + 2πnt − x)

)︂
− erfi

(︂
1 + i
2

√
t
(ν + 1 + 2πnt − x)

)︂}︂
. (127)

Here, erfi(z) denotes the imaginary error function
erf(iz)

i . The second (Lüders) measurement yields the result
j = (µ,m) with conditional probability

p(j|i) = p(µ,m|ν, n) = |⟨µ,m|ν, n, t⟩|2 . (128)

If m ̸= n, the corresponding amplitudes are obtained
as

⟨µ,m|ν, n, t⟩ =
e−4iπ2 t(m2−2mn+2n2)

4π(m − n){︁
e2iπ

2 t(m−2n)2 (−2R(m, µ, ν)

+R(m, µ, ν + 1) + R(m, µ + 1, ν))

− e2iπ
2 t(2m2−4mn+3n2)(−2R(n, µ, ν)

+ R(n, µ, ν + 1) + R(n, µ + 1, ν))
}︁
,

(129)
where the abbreviation

R(k, µ, ν) ≡ erfi
(︂
(1 + i)(2kπt − µ + ν)

2
√
t

)︂
(130)

has been used. In the case m = n, we have

⟨µ, n|ν, n, t⟩ =
e−2iπ2n2 t

2
√
π

(︂
(1 + i)

√
t
(︂
e

i(µ−ν−2πnt+1)2
2t

− 2e
i(−µ+ν+2πnt)2

2t + e
i(−µ+ν+2πnt+1)2

2t

)︂
− i

√
π

(︀
−2(−µ + ν + 2πnt)R(n, µ, ν)

+ (−µ + ν + 2πnt + 1)R(n, µ, ν + 1)
+ (−µ + ν + 2πnt − 1)R(n, µ + 1, ν)

)︀)︀
.

(131)
We have noted in Subsection 2.2 that in general the

p(j|i) need not be symmetric. Indeed, for our example,
we find, e.g. that for t = σ = 1 we have p(1, 1|0, 0) =
0.00483946, but p(0, 0|1, 1) = 0.00258997.

The equations (125–131) yield the second marginal
probabilities p̂(j) =

∑︀
i p(j|i) p(i) in the form of a doubly

infinite series of terms given by analytical expressions.
Hence, the p̂(j) can be numerically calculated by a suitable

truncation of the infinite series. Moreover, the Shannon
entropies S(p) and S(p̂) can be numerically calculated, and
the Second Law–like statement (114) can be tested, see
Figure 3. Due to the localisation of the particle by the first
measurement, an additional spreading of the momenta is
generated that leads to a stronger increase of the Shannon
entropy than the increase that is solely produced by the
spreading of the Gaussian wave packet (124) in the course
of time.

4.3 Crooks Fluctuation Theorems

In the literature, the Jarzynski equation is sometimes
derived from so-called Crooks fluctuation theorems, see
[12]. The notation refers to [31] where G. E. Crooks proved a
classical work fluctuation theorem. Quantum versions of
the Crooks fluctuation theorem have first been considered
in [2] and [3]. One may ask whether the quantum version
of a Crooks fluctuation theorem has a counterpart in the
(modified) statistical model of sequential measurements
and whether one would need additional assumptions to
prove it.

We adopt the notation of Subsection 2.3 and again
consider a modified model m = (ℐ ,𝒥 , P, d, D) of sequen-
tial measurements as well as a its “reciprocal model”
(𝒥 , ℐ , P̃, D, d). It remains to show that the C-equation (53)
indeed entails the Crooks fluctuation theorem in the case
of quantummechanics. To this end, we assume the case of
Subsection 3.2 with N = 1 such that

Y(i, j) = exp
(︀
−β

(︀
W(i, j) − ∆F

)︀)︀
, (132)

S(p)

S(p, t)
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Figure 3: Illustration of the increase of the Shannon entropies,
S(p) < S(p̂, t), in the case of two sequential Lüders measurements.
t denotes the time difference between the two measurements
and assumes the dimensionless values 10−4 , . . . , 10−1; the
parameter σ in (124) is chosen as σ = 1. The entropy after the first
measurement is S(p) = 1.3654 (dashed red line).
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where we have denoted the random variable “work” by a
capital letterW, and hence, writing y = exp(−β(w − ∆F)),

P(Y = y) = P(W = w) . (133)

Analogously,

P̃(Ỹ = 1/y) = P̃(W̃ = −w) , (134)

and the Crooks fluctuation theorem assumes its familiar
form

P(W = w)
P̃(W̃ = −w)

= exp(β(w − ∆F)) . (135)

Next, we will investigate the question how the recip-
rocal model (𝒥 , ℐ , P̃, D, d) can be realised in quantum
theory. We consider its conditional probability

π̃(i|j) (40)= π(j|i) d(i)D(j)
(71)= Tr

(︃
Q̃︀ j U

P̃︀id(i) U
*
)︃

d(i)
D(j)

= Tr
(︃
P̃︀i U*

Q̃︀ jD(j) U
)︃
, (136)

where the last equation was obtained by cyclic permuta-
tion of the operators inside the trace. This suggests the
following realisation: We prepare a state described by a
statistical operator ρ̃ such that

q(j) = Tr
(︁
ρ̃ Q̃︀ j

)︁
, (137)

and the assumption

Q̃︀ j ρ̃ Q̃︀ j =
q(j)
D(j)Q̃︀ j for all j ∈ 𝒥 , (138)

analogous to (63) is satisfied. Then, at the time t = t0, we
measure the set of observables described by the mutually
commuting self-adjoint operators F̃︀1, . . . , F̃︀L with com-
mon eigenprojections Q̃︀ j , j ∈ 𝒥 , the measurement being
of Lüders type. Thereafter, a unitary time evolution Ũ ≡
U* takes place until t = t1 where a second measurement
of Ẽ︀1, . . . , Ẽ︀L with common eigenprojections P̃︀i , i ∈ ℐ is
performed. The corresponding conditional probabilities of
the sequential measurements are then given by (136).

In an experiment, it might be difficult to realise the
adjoint time evolution Ũ ≡ U*. As a more practical alter-
native, we briefly recapitulate the time evolution consid-
ered in [12], Section IV A, using our own notation. Let the
time evolution U(t, t1) for t ∈ [t0, t1] of the original model
be given as the solution of the differential equation

∂
∂t U(t, t1) = −iH(t)U(t, t1) , (139)

with “initial” value U(t1, t1) = . Then, consider the
Hamiltonian

Ȟ(t) ≡ H(t1 + t0 − t) (140)

according to a “time-reversed protocol” and the corre-
sponding evolution operator Ǔ(t, t1) satisfying

∂
∂t Ǔ(t, t1) = −i Ȟ(t) Ǔ(t, t1) , (141)

with initial value Ǔ(t1, t1) = . Upon the transformation
t t1 + t0 − t, (141) assumes the form

∂
∂t Ǔ(t1 + t0 − t, t0)

= i Ȟ(t1 + t0 − t) Ǔ(t1 + t0 − t, t0)
(140)= iH(t) Ǔ(t1 + t0 − t, t0) . (142)

Now assume “microreversibility,” i.e. the existence of
an antiunitary operator Θ commuting with all H(H):

Θ* H(t) Θ = H(t) for all t ∈ [t0, t1] , (143)

and further

Θ* Q̃︀ j Θ = Q̃︀ j and Θ* P̃︀i Θ = P̃︀i , (144)

for all j ∈ 𝒥 and i ∈ ℐ. The latter assumption already fol-
lows from (143) if the P̃︀i are the eigenprojections of H(t0)and the Q̃︀ j the eigenprojections of H(t1). Our assumption
of microreversibility is somewhat weaker than the usual
formulation in so far as it only requires that there exists
some basis such that H(t) is real for all t, see [32] for a
similar approach.

Accordingly, (142) implies

∂
∂tΘ

* Ǔ(t1 + t0 − t, t0) Θ

= −iH(t) Θ* Ǔ(t1 + t0 − t, t0) Θ . (145)

Comparison with (139) together with the initial condi-
tions yields

U(t, t1) = Θ* Ǔ(t1 + t0 − t, t0) Θ , (146)

cp. (40) in [12], especially

U* = U(t1, t0)* = U(t0, t1) = Θ* Ǔ(t1, t0) Θ . (147)

Inserting this result into (136) and using (144) give

π̃(i|j) = Tr
(︃
P̃︀i Ǔ(t1, t0)

Q̃︀ j
D(j) Ǔ(t1, t0)

*
)︃
, (148)
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and thus show that the time-reversed protocol correctly
realises the reciprocal model. But we stress that the
assumptions of microreversibility are convenient but not
necessary for the validity of the Crooks fluctuation theo-
rem in contrast to the impression generated by [12].

As a special case, we mention the situation where
H(t) = Ȟ(t) = H(t1 + t0 − t) and Q̃︀ i = P̃︀i for all i ∈ ℐ =
𝒥 , but all preceding assumptions still hold, in partic-
ular (143) and (144). This includes the case where H is
time-independent. Then, it follows that U* = Θ* U Θ and
hence

π(j|i) d(i) = Tr
(︁
P̃︀j U P̃︀i U*

)︁
= Tr

(︁
P̃︀i Θ* U Θ P̃︀j Θ* U* Θ

)︁
= Tr

(︁
P̃︀i U P̃︀j U*

)︁
= π(i|j) d(j) . (149)

This means that the symmetry condition (31) consid-
ered by W. Pauli will be exactly satisfied, not only in the
GoldenRule approximation. In the counter-example to (31)
in Subsection 4.2, the condition (144) is violated as the
momentum pn is inverted under time reflections.

5 Applications to Classical
Theory

In classical statisticalmechanics, all observables have def-
inite values for each individual system.Hence, it is not nec-
essary to adopt the scenario of sequential measurements
in the context of Jarzynski equations. Nevertheless, the
statistical model of sequential measurements introduced
in Section 2 can be useful if suitably reinterpreted. To this
end, we set ℐ = 𝒥 = 𝒳 , where 𝒳 is the 2N-dimensional
phase space of the system under consideration. Summa-
tions over ℐ or 𝒥 will be replaced by integrations using
the canonical volume form dx = dp1 . . . dpN dq1 . . . dqN
on 𝒳 . At the time t = t0, the state of the system will be
described by a probability distribution p : 𝒳 → + satis-
fying

p(x) > 0 for all x ∈ 𝒳 (150)

and ∫︁
𝒳

p(x) dx = 1 . (151)

The time evolution between t = t0 and t = t1 is deter-
ministic and will be described by a volume preserving
map

U : 𝒳 → 𝒳 . (152)

Let A : 𝒳 ×𝒳 → be a random variable. Its expecta-
tion value will be defined by

⟨A⟩ ≡
∫︁

𝒳 ×𝒳

dx dy p(x) δ(y, U(x)) A(x, y)

=
∫︁
𝒳

dx p(x) A(x, U(x)) . (153)

In the special case of A(x, y) = q(y)
p(x) , where q : 𝒳 →

+ is assumed to satisfy∫︁
𝒳

q(y) dy = 1 , (154)

we conclude⟨
q(y)
p(x)

⟩
(153)=

∫︁
𝒳

dx p(x) q(U(x))p(x) (155)

=
∫︁
𝒳

dx q(U(x)) (156)

=
∫︁
𝒳

dy q(y) (153154)= 1 , (157)

using that U is volume preserving in (157). Hence, (74) has
a classical counterpart and the general Jarzynski equa-
tion also holds classically, in particular for the examples
treated in Subsections 3.2 to 3.4.

6 Summary and Outlook
The usual formulation of the quantum Jarzynski equa-
tion applies to closed systems that are initially in ther-
mal equilibrium, described by the canonical ensemble,
and then subject to two sequential energy measurements.
Between the two measurements, the system may be arbi-
trarily disturbed under the influence of a time-dependent
Hamiltonian. The present work can be understood as a
gradual generalisation of this situation. Some of these
generalisations have already been considered in the lit-
erature, see [3, 5–11], but now they appear in a coherent
way as results of a unified approach. First, we allow for
equilibrium scenarios that are rather described by micro-
canonical or grand canonical ensembles. In the next step,
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we also consider local equilibria, i.e. N subsystems that
have initially different temperatures. This case is treated
in the present article for the case of local canonical ensem-
bles, but the extension to the case of local microcanonical
or grand canonical ensembles is straightforward. More-
over, it turns out that for the general quantum Jarzyn-
ski equation the restriction to energy measurements is
no longer necessary. The only essential assumptions are
those postulating that the first measurement is of Lüders
type and, additionally, that the state resulting after this
measurement is diagonal in the eigenbasis of the mea-
sured observables (Assumption 2). An example,where this
more general point of view is crucial, is the sequential
measurement of the “quasi-energy” in the case of periodic
thermodynamics. This example is briefly touched in our
article but could be expanded with respect to the results
on the dissipated heat obtained in [27] and [26].

At this point, a further natural generalisation suggests
itself, namely the replacement of the two sequential (pro-
jective) measurements by more general ones described
by POVMs and involving more general state transforma-
tions than those of Lüders type, see [23, 28, 33] for related
approaches. It turns out that the simple form of the gen-
eral Jarzynski equation and of the resulting Second Law–
like statements will be lost upon this generalisation. In
the article at hand, we have followed a different route of
generalisation by analysing the probabilistic core of the
general Jarzynski equation. The result is what we have
called a “statistical model of sequential measurements”
that does not explicitly presuppose quantum mechanics
and includes the “J-equation,” cf. Prop. 3, as a progeni-
tor of the general quantum Jarzynski equation. Another
benefit of the abstract statistical model is to make clear
that the J-equation will exactly hold even if the correct
quantum time evolution is replaced by an approximation,
e.g. the Golden Rule approximation, as far as the mod-
ified doubly stochasticity is retained. The mathematical
clue to prove the J-equation is the assumption of a mod-
ified doubly stochastic transition probability that is sat-
isfied in quantum theory and breaks the time-reflection
symmetry of the model. Consequently, a Second Law–like
statement follows that is different from those mentioned
above and joins the theory to previous approaches to the
Second Law going back to W. Pauli and G. D. Birkhoff.
We have illustrated this result by an example involving
discrete position–momentummeasurements and describ-
ing the spreading of an initial Gaussian wave packet. The
arrow of time remainsmysterious, but the two arrows aris-
ing in thermodynamics andquantummeasurement theory
point into the same direction.

Appendix A: Proofs of Some
Propositions
Proof of Proposition 1. The first part of the proposition fol-
lows from ⟨

q(j)
p(i)

⟩
(13)=

∑︁
i,j

q(j)
p(i) P(i, j) (A1)

(9)=
∑︁
j
q(j)

∑︁
i
π(j|i) (A2)

(12)=
∑︁
j
q(j) (1391214)= 1 . (A3)

For the converse statement, choose j′ ∈ 𝒥 arbitrarily
and let q(j) = δj,j′. Then

1 =
⟨
q(j)
p(i)

⟩
=

∑︁
i,j
q(j) π(j|i)

=
∑︁
i,j
δj,j′ π(j|i) =

∑︁
i
π(j′|i) , (A4)

which means that π(j|i) will be doubly stochastic.

Proof of Proposition 2. It follows that

0 = log 1 (19)= log
⟨
p̂(j)
p(i)

⟩
(A5)

(20)
≥

⟨
log p̂(j)

p(i)

⟩
(A6)

= ⟨log p̂(j)⟩ − ⟨log p(i)⟩ (A7)
=

∑︁
j∈𝒥

p̂(j) log p̂(j) −
∑︁
i∈ℐ

p(i) log p(i) . (A8)

Proof of Proposition 3. The if part follows as the sum (21)
is invariant under permutations. For the only-if part, we
invoke the theorem of Birkhoff-von Neumann [34] saying
that any doubly stochastic matrix is the convex sum of
permutational matrices. Assume that π is not of permuta-
tional type, and hence, the convex sum will be a proper
one. This means that π can be written in the form

π =
M∑︁
µ=1

λµ σ̂µ , (A9)

such that λµ > 0 for all µ = 1, . . . ,M,M > 1,
∑︀

µ λµ = 1,
and

σ̂µ(j|i) = δj,σµ(i) for some σµ ∈ 𝒮(n) . (A10)
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Recall that the function f (x) ≡ −x log x is strictly con-
cave for x ∈ [0, 1]. Then, we obtain

S(p̂) =
∑︁
j
f (p̂(j)) (A11)

(11,A9)=
∑︁
j
f

⎛⎝∑︁
µ
λµ

∑︁
i
σ̂µ(j|i)p(i)

⎞⎠ (A12)

>
∑︁
j

∑︁
µ
λµ f

(︃∑︁
i
σ̂µ(j|i)p(i)

)︃
(A13)

(A10)=
∑︁
j

∑︁
µ
λµ f

(︃∑︁
i
δj,σµ(i)p(i)

)︃
(A14)

=
∑︁
j

∑︁
µ
λµ f

(︁
p

(︁
σ−1
µ (j)

)︁)︁
(A15)

=

⎛⎝∑︁
µ
λµ

⎞⎠(︃∑︁
i
f (p(i))

)︃
(A16)

= S(p) , (A17)

where in (A13) we have applied Jensen’s inequality using
that f is strictly concave and the convex sum (A9) is a
proper one. Summarising, S(p̂) > S(p) if π is not of per-
mutational type, which completes the proof of Proposi-
tion 3.

Proof of Proposition 6. We consider

P̃(Ỹ = 1/y) (51)=
∑︁

(j,i)∈Ẽ1/y

P̃(j, i) (A18)

(40,41,52)=
∑︁

(i,j)∈Ey

π(j|i)d(i)q(j)D(j) (A19)

(45,46)=
∑︁

(i,j)∈Ey

π(j|i)p(i) y (A20)

(9)=

⎛⎝ ∑︁
(i,j)∈Ey

P(i, j)

⎞⎠ y (A21)

(48)= P(Y = y) y . (A22)

From this, the proposition follows immediately.

Proof of Lemma 1. First, we will show that p(j|i) is a
stochastic matrix. This follows from

∑︁
j∈𝒥

p(j|i) (71)= Tr

⎛⎝⎛⎝∑︁
j∈𝒥

Q̃︀ j
⎞⎠U P̃︀id(i) U

*

⎞⎠
(70)= Tr

(︃
U

P̃︀id(i) U*
)︃

= Tr
(︃ P̃︀id(i)

)︃
(56)= 1 , (A23)

for all i ∈ ℐ.

Next, according to the definition of “modified doubly
stochastic type,” we have to confirm that (25) holds

∑︁
i∈ℐ

p(j|i) d(i) (71)= Tr
(︃
Q̃︀ j U

(︃∑︁
i∈ℐ

P̃︀i
)︃
U*

)︃

(57)= Tr
(︂
Q̃︀ j U U*

)︂
= Tr

(︂
Q̃︀ j

)︂
(69)= D(j) , (A24)

for all j ∈ 𝒥 . This completes the proof of the Lemma.

Appendix B: Derivation of the
Modified Statistical Model of
Sequential Measurements
We assume that the outcome sets ℐ and 𝒥 are divided
into disjoint cells (“Elementarbereiche” in [18]) such that
the probability P(i, j) is constant over the cells. The con-
struction is similar to the operation of “coarse graining”
in physical theories, but in those cases, the probabilitywill
typically not be constant over the cells, and the following
considerations will be at most approximately valid. The
mentioned cells will be written as the inverse images of
suitable maps

Πℐ : ℐ → ℐ′ and Π𝒥 : 𝒥 → 𝒥 ′ , (B1)

and are assumed to be finite. ℐ′ and 𝒥 ′ can hence be
viewed as the respective sets of cells. We define the cell
sizes

d : ℐ′ → , d(i′) ≡
⃒⃒⃒
Π−1

ℐ (i′)
⃒⃒⃒
, (B2)

D : 𝒥 ′ → , D(j′) ≡
⃒⃒⃒
Π−1

𝒥 (j′)
⃒⃒⃒
. (B3)

As mentioned above, the probability is assumed to
be constant over cells and hence gives rise to a modified
probability function P′ : ℐ′ × 𝒥 ′ → [0, 1] via

P′(i′, j′) ≡ d(i′) D(j′) P(i, j),

if Πℐ (i) = i′ and Π𝒥 (j) = j′ . (B4)
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We note that

1 (3)=
∑︁

i∈ℐ ,j∈𝒥
P(i, j)

=
∑︁

i′∈ℐ′,j′∈𝒥 ′

∑︁
i∈Π−1

ℐ (i′)

∑︁
j∈Π−1

𝒥 (j′)

P(i, j) (B5)

=
∑︁

i′∈ℐ′,j′∈𝒥 ′
d(i′) D(j′)P(i, j)

(B4)=
∑︁

i′∈ℐ′,j′∈𝒥 ′
P′(i′, j′) , (B6)

as it must hold for a probability function. Here, and in
what follows, the index i within a sum over i′ denotes
an arbitrary element of the cell Π−1

ℐ (i′), analogous for
j. As in Subsection 2.1, we define the modified marginal
probability and obtain

p′(i′) ≡
∑︁
j′
P(i′, j′) (B4)=

∑︁
j′
P(i, j) d(i′) D(j′)

=
∑︁
j
P(i, j) d(i′) (5)= p(i) d(i′) . (B7)

Analogously for the modified conditional probability,

π′(j′|i′) ≡ P′(i′, j′)
p′(i′)

(B4,B7)=
P(i, j)d(i′)D(j′)

p(i)d(i′)

(9)= π(j|i) D(j′) . (B8)

The condition of π being doubly stochastic entails the
following property of π′:

∑︁
i′
π′(j′|i′) d(i′) (B4)=

∑︁
i′
π(j|i) D(j′) d(i′)

=
∑︁
i
π(j|i) D(j′) (18912)= D(j′) . (B9)

Next, we express the Shannon entropy in terms of the
modified probabilities:

S(p) (21)= −
∑︁
i
p(i) log p(i) (B7)= −

∑︁
i

p′(i′)
d(i′) log

p′(i′)
d(i′)

= −
∑︁
i′
p′(i′) log p′(i′)d(i′) ≡ S′(p′) ,

(B10)
cp. (17) of [18] or the “observational entropy” according to
(15) of [35].
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