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Abstract: We formulate a statistical model of two sequen-
tial measurements and prove a so-called J-equation
that leads to various diversifications of the well-known
Jarzynski equation including the Crooks dissipation the-
orem. Moreover, the J-equation entails formulations of the
Second Law going back to Wolfgang Pauli. We illustrate
this by an analytically solvable example of sequential dis-
crete position-momentum measurements accompanied
with the increase of Shannon entropy. The standard form
of the J-equation extends the domain of applications of
the standard quantum Jarzynski equation in two respects:
It includes systems that are initially only in local equi-
librium, and it extends this equation to the cases where
the local equilibrium is described by microcanononical,
canonical, or grand canonical ensembles. Moreover, the
case of a periodically driven quantum system in thermal
contact with a heat bath is shown to be covered by the
theory presented here if the quantum system assumes a
quasi-Boltzmann distribution. Finally, we shortly consider
the generalised Jarzynski equation in classical statistical
mechanics.

Keywords: Jarzynski Equations; Second Law; Sequential
Measurements.

1 Introduction

The famous Jarzynski equation represents one of the rare
exact results in nonequilibrium statistical mechanics. It is
a statement aboyy the egpectation value of the exponen-
tial of the work e #% performed on a system that is
initially in thermal equilibrium with inverse temperature
B, but can be far from equilibrium after the work process.
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This equation has been first formulated for classical sys-
tems [1] and subsequently proven to hold for quantum
systems [2-4]. Extensions to systems initially in local ther-
mal equilibrium [3], microcanonical ensembles [5], and
grand canonical ensembles [6-11] have been published.
The literature on the Jarzynski equation and its applica-
tions is abundant; a concise review is given in [12] with the
emphasis on the connection with other fluctuation theo-
rems. The most common approach to the quantum Jarzyn-
ski equation is in terms of sequential measurements. This
approach will also be adopted in the present article. The
“work” that appears in the Jarzynski equation is then
understood in terms of the energy differences according
to two sequential measurements and hence as a random
variable. Although “work” is not an observable [13] in the
sense of a self-adjoint operator giving rise to a projection-
valued measure, it can be viewed as a generalised observ-
able [14] in the sense of a positive operator—-valued mea-
sure, see Roncaglia et al. [15], De Chiara et al. [16], and
Section 3.1.

Interestingly one can derive from the Jarzynski equa-
tion certain inequalities that resemble the Second Law,
see, e.g. Campisi and Hanggi [17]. However, a closer inspec-
tion shows that these inequalities are not exactly state-
ments about the nondecrease of entropy. Only in the limit
case where the system is approximately in thermal equilib-
rium also after the work process would this interpretation
be valid. On the other hand there are numerous attempts to
derive a Second Law in the sense of nondecreasing entropy
in quantum mechanics, starting with the article of W. Pauli
[18] “on the H-theorem concerning the increase of entropy
in the view of the new quantum mechanics.” It is the aim
of the present article to unify these two routes of research
and to identify its common roots.

The structure of the article is as follows. In Section 2,
we develop a general framework for sequential mea-
surements and prove a so-called J-equation essentially
based on the assumption of a (modified) doubly stochas-
tic conditional probability matrix. The J-equation depends
on an arbitrary sequence ¢(j) of hypothetic probabili-
ties, but in this article we will consider only two special
cases, case R (“real probabilities”) and case S (“standard
probabilities”) to be defined in Section 3. In case R, the
J-equation implies, via Jensen’s inequality, an increase
of the (modified) Shannon entropy from the first to the
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second measurement. In Section 3, we specialise the gen-
eral framework of Section 2 to the case of quantum theory
such that the first measurement is of Liiders type satisfy-
ing two more assumptions. Then, we can reformulate the
J-equation for case S where the initial density matrix is
a function G of L commuting self-adjoint operators, see
Theorem 1. Special choices for the function G and the L
commuting self-adjoint operators lead to various diver-
sifications of the Jarzynski equation: the local equilib-
rium given by N canonical ensembles (Subsection 3.2),
the microcanonical ensemble (Subsection 3.3), and the
grand canonical ensemble case (Subsection 3.4). More-
over, in Subsection 3.5, we consider recently discovered
cases of a periodically driven quantum system that are
in quasi-equilibrium with a heat bath possessing a quasi-
temperature 1/9 and show how these cases can also be
covered by the present theory. In all these applications, we
will obtain case S variants of the Second Law-like state-
ments following from the Jarzynski equations via Jensen’s
inequality.

The aforementioned case R variant of the Second Law
also holds in quantum theory. This will be discussed in
some more detail in Section 4 containing further appli-
cations. It will be instructive to consider the analytically
solvable example of two subsequent discrete position—
momentum measurements at a free particle moving in
one dimension and to confirm the mentioned increase
of Shannon entropy, see Subsection 4.2. In the following
Subsection 4.3, we show how to integrate the quantum ver-
sion of the Crooks dissipation theorem into our approach.
We briefly discuss how the results hitherto derived can be
transferred to the classical realm in Section 5. We close
with a summary and outlook in Section 6. In order to
make the article more readable, we have shifted most
of the proofs and further mathematical details to two
Appendices.

2 Statistical Model of Sequential
Measurements

2.1 Simple Case

We consider two sequential measurements at the same
physical system at times ¢, < t; with respective outcome
sets I and J . These sets are assumed to be finite or count-
ably infinite. Hence, the joint outcome of the two measure-
ments can be represented by the pair (i,j) 21 J.We
define

E 1 J o)
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as the set of “elementary events” and describe the proba-
bility of elementary events by a function

P:E ¥ [0,1] @
subject to the natural condition

P,j)=1. 3
(i.)2E

As usual, one defines the first and second marginal
probability functions

p:1 1 [0,1] (@)
p(D) PG, j), 5

j23

and

p:J 1[0,1] (6)

>
p() P(i, ) . @

i2l

For the sake of simplicity, we will assume
p@)>0foralli221l. (8)
This could be achieved by deleting all outcomesi 2 |

with p(i) = 0, thereby reducing the set I. Due to (8), the
“conditional probability”

P, j)

(i . 9
(i) o0 ©)

can be defined for all (i, j) 2 E. It satisfies
a(jji)=1 forall i2 1, (10)

j23

and hence can be considered as a stochastic matrix. Note
further that

>
pG) =

i2l

(i) p(@) . )

If additionally 7 is a “doubly stochastic matrix,” i.e.

a(ji)=1 forall j2J ,
i2J

(12)

the triple (I, J, P) will be called a “statistical model of two
sequential measurements” (SM?).
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In accordance with the usual nomenclature of proba-
bility theory, functions X : E ¥ R are also called “random
variables.” Their expectation value is defined as

hXi X(,j) PG, j , (13)

(i.)2E

if the series converges. Using a sloppy notation, the expec-
tation value will be sometimes also written as hX(i, j)i if no
misunderstanding is likely to occur. We have the following
result:

Proposition 1: If(1,J,P)isanSM?>andq:J " [0,1]a
sequence satisfying

>
ap=1, (14)
j23
then
q() _
PO 1 (15)

Conversely, if (1, J, P) satisfies the above conditions,
but not necessarily (12), and (15) holds forallq : 3 ¥ [0, 1]
satisfying (14), then ni(jji) will be doubly stochastic.

The g(j) will also be called “hypothetical probabilities” in
contrast to the “real probabilities” p(j). The choice q(j) =
P(j) will be referred to as the “case R.” The above propo-
sition essentially says that the J-equation is equivalent to
n1(jji) being doubly stochastic. The proof can be found in
Appendix A.

We will call (15) and its modified form (27) the “J-
equation” as we think that it contains the probabilistic
core of the Jarzynski equation but should be distinguished
from the latter for the sake of clarity. To illustrate this
claim, we note that any sequence p : I ¥ [0, 1] of prob-
abilities satisfying (8) may be written in the form

p(i) =exp( B(E; F), (16)
and, analogously,
q() =exp B E F (17)

where the B, E;, E’, F, F’ are certain real parameters, not
uniquely determined by (16) and (17). Then, (15) can be
written as

BAF (18)

wherew : E ¥ R isarandom variable defined by w(i, j)
E’ E;j and AF F’ F. Indeed, (18) has the form
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of the standard Jarzynski equation, but in general, the
parameters occurring in (18) will not have the physical
meaning of inverse temperature 8, work w, and difference
of free energies AF, as required for the Jarzynski equation.
Even in the special case where the usual physical interpre-
tation of the parameters 3, E;, E’, F, F’ holds, we have not
yet proven the standard Jarzynski equation, because we
still would have to confirm the conditions of Proposition
1 for this special case.
Let (1, J, P) be an SM? and choose ¢(j) = p(j) for all

j 2 J,thatis, replace the hypothetical probabilities by the
real ones. Then, by Proposition 1,

p—(].) =1. (19)

p@)

As the logarithm (with arbitrary basis) is a concave
function, Jensen’s inequality yields
hlog Xi loghXi (20)
for any random variable X : E ¥ R. If we define the
Shannon entropy [19] as usual by
X
pi logpi,

i

S(p) @1

it follows immediately from (20) that S(p) does not
decrease between two sequential measurements:

Proposition 2:

s®@)  Sk). (22)
The proof can be found in Appendix A.

It is an obvious question under which circumstances
the inequality in (22) will be a strict one. We will answer

this question only for the case of finite | = J:

Proposition3: Let | = J and jlj = n. Then, S(p) = S(p)
if the conditional probability is of permutational type, i.e. if
n(jji) = 6 4(;) for some permutation o 2 S(n).

One may ask which assumption is responsible for the
asymmetry between the two sequential measurements
that appears in (22). Obviously, this is the property (12) of
the conditional probability matrix being doubly stochastic
that is postulated only for the first conditional probabil-
ity 7 and not for the second one 7i(ijj) I;(é;.;). It will be
instructive to consider the situation in which both matri-
ces, m and 7, are doubly stochastic. For the sake of sim-
plicity, we will assume that the outcome sets I and J
are finite, both containing exactly n elements, and that
P(i,j) > Oforalli 2 1 andj 2 J.It follows that, in matrix
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notation, 7 p = p and 7i p = p, cf. (11); moreover, the dou-
ble stochasticity may be written as 711 = 771 = 1, where 1
denotes the constant vector 1 = (1,1, ..., 1). Hence, the
matrix I 7 7 has the two positive invariant distributions
%1 and p. As P(i, j) > 0, the matrix II is irreducible, and
hence, its positive invariant distribution is unique (Theo-
rem 54 of [20]). Consequently, p(i) = p(j) = 1 foralli 2 |
and j 2 J. This characterises the constant distribution
with maximal Shannon entropy and hence a completely
symmetric situation.

An equation similar to the J-equation (15) considered
above has been proven in [21]. In our notation, it can be
formulated as
00))
n(jji)

However, the closer comparison of (23) and (15) shows
that these equations are not equivalent, which is also
clear from the fact that (23) does not presuppose addi-
tional assumptions like the double stochasticity of the
conditional probability.

p()p()
P(i, j)

p@)

s =1.
7(ijj)

(23)

2.2 Modified Case

Now we will formulate a slightly more general framework
for SM? that is motivated by applications using quantum
theory in Section 3 and partially follows the account of
Wolfgang Pauli in [18], Ch. I §2.

When defining the modified framework for sequential
measurements, we will again consider the triple (1, J, P)
assumed for the simple case and additionally postulate
two nonvanishing functions

d:1 ¥ Nand D:J

IN. (24)

In Section 3, the d(i) and D(j) will be interpreted as the
degeneracies of certain eigenspaces of measured observ-
ables. In Appendix B, we will derive the following assump-
tion (25) characterising the modified case by coarse grain-
ing of the outcome sets of the simple case. Here, the d(i)
and D(j) play the role of cell sizes of the coarse graining.

The 5-quintuple (I, J, P, d, D) will be called a “mod-
ified statistical model of two sequential measurements”
(mSM?), if the condition of 7 being doubly stochastic is
replaced by the unprimed version of (B9):

n(jji) d(i) = D(j) forall j 2 J .
i21

(25)

We will generally denote a conditional probability
function 7 : E ¥ [0, 1] satisfying (25) as being of “modi-
fied doubly stochastic” type.
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Consequently, we obtain the following variant of
Proposition 1:

Proposition 4: If(1,J,P,d,D)isanmSM? andq : J ¥
[0, 1] a sequence satisfying

q() =1, (26)
j23
then
d(i) q(j)
D—(j) m 27

Conversely, if (1,3, P, d, D) satisfies the above condi-
tions, but not necessarily (25), and (27) holds forallg : J 1
[0, 1] satisfying (26), then n(jji) will be of modified doubly
stochastic type.

The proof is completely analogous to that of Proposi-
tion 1. Analogously, it follows that the modified Shannon
entropy

p@@)

X .
p(i)log ==

16 (28)

S'(p)
i
does not decrease in the modified statistical model of two
sequential measurements, i.e.

Proposition 5:
s'® S, (29)
where
x AL
o oo PG)
S’ log —= . 30
®) ,- p(j) log DG) (30)
This equation is analogous to the statement % 0 after

(22) in [18] that has been proven by Pauli using the stronger
symmetry condition (in our notation)
aGii) _ n(iij)
D(j) a@i) ’
see (21) in [18], justified by first-order perturbation theory
(“Fermi’s Golden Rule”). We note that in general (31) need
not hold, see Section 4.2 for a counter-example, but there

are also positive examples beyond the Golden Rule, see
Subsection 4.3.

(1)

2.3 Symmetric Formulation

In this subsection, we will give a more symmetric and
slightly more formal account of the framework the-
ory for the (modified) statistical model of sequential
measurements that will be used later in Subsection 4.3.
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The basic concepts will be 1, J, II, p, g. As in
Section 2.1, I and J will be finite or countably infinite sets
and

32)

We first postulate

iom 1: pisafunctionp : 1 ¥ (0, 1)such that the series
; p(i) converges and has the value = ; p(i) = 1. Analo-
gously,
q is a function q:J ¥ (0, 1) such that the series
i q(j) converges and has the value i q(j) = 1.

Next, IT will be a function IT : E ¥ R+ called the “con-
ditional matrix” that has no direct physical meaning.
Its values will be written as II(jji). It is subject to the
following.

Axiom 2: IlisafunctionIl : E ¥ R+ such that the two fol-
lowing series converge foralli 2 1, j 2 J and have positive
values:

d(i)

I(jji) > 0, (33)

D(j) I(ji) >0 . (34)
i
As animmediate consequence, the “first conditional prob-

ability”

I1(jji)
n(jji) a0 35)
satisfies
X
n(ji) =1 foralli2 1, (36)
)
and
n(jji) d(i) = D(j) forall j2J . (37)

i
Hence,  is a doubly stochastic matrix in the modified

sense. Define

P@,j) #(jji) p(i) forall (i,j) 2 E, (38)

then

PG, ) =1,
(i,j)2E

(39)

and m=(1,J, P, d, D) will be an mSM? in the sense of
Subsection 2.2.

As the axioms 1 and 2 are completely symmetric with
respect to the transpositions 1 <> J and p <> g, we may
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analogously define a second model /= (J, 1, P, D, d)
by

T(jji) G5 n(jji) d(i)

7(ij) D(j) DG) (40)
and
pG, 1) 7er(ijj) q() , (41)
such that
7(ijj)D() = d(i) forall i 21, (42)
j
and
x|
PG,i)=1. (43)
(G,i)2E

Hence, i = (J, 1, P, D, d) will also be an mSM? in
the sense of Subsection 2.2 called the “reciprocal model”
with respect to m and will satisfy a reciprocal J-equation of
the form

D(j) p(i)
d(@) q(j)
Let us reconsider the original J-equation (27) and

define the corresponding random variable Y (in a less
sloppy way than above) as

_ d(Dq()

D(j)p()

We then rewrite the expectation value of Y in the
following way. For any real number y 2 R, we define

(44)

Y(i,j) foralli2 1l and j2J . (45)

LetY fy 2 RjE) & ;g, then
(] 1
>
hyi= @ P@i, )Ay . (47)
y2Y  (i,))2E,

The sum in the brackets can be interpreted as the
probability that Y assumes the value y, or, in symbols:

P(Y =y) = P(@i, j) .
(i.4)2E,

(48)

Next, we repeat the above definitions for the recipro-
calmodel m = (3, 1, P, D, d) setting

_DGp® _ 1
dig() Y@ )~

E,=f(G,i)2E Y(,i) =zg,

YG,1) (49)

(50)
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forz 2 R and
-4 g x -4 . .
P(Y=1/y) = P(j, 1) . (51)
G,D2E,,
We note that
(i,)) 2E » (,1) 2Eyy, (52)
and formulate the following “C-equation”:
Proposition 6: Forally 2 Y, there holds
P(Y =y) _1 (53)
PY=1/y) vy

The proof can be found in Appendix A.
From the C-equation, we may again derive the J-
equation (27) in the following way:
x x
(47,48) (53)
= P(Y=y)y =
y2Y

hYi PY=1/y)=1. (54)

y2Y

3 Applications to Quantum Theory

3.1 General Case

We will investigate how the (modified) statistical model of
sequential measurements outlined in the preceding sub-
sections can be realised within the framework of quantum
theory. The identification of the respective concepts will be
facilitated by denoting them with the same letters. Addi-
tionally to a number of usual assumptions, we will use
Assumptions 1 and 2 that are highlighted below.

We consider a quantum system with a Hilbert space H
and a finite number of mutually commuting self-adjoint
operators Eq, ..., E; defined on (suitable domains of) H.
Theyare aSsumed 3 havea pure point spectrum and hence
a family of common eigenprojections (gi)i2| such that

X
E/\:
e

A
EMp, A=1,...,L. (55)
i21 €
Here |1 is a finite or countable infinite index set to be
identified with the outcome set of the first measurement
according to Section 2. The P; are assumed to be of finite
e

degeneracy,
d(i)

Tr P, <oo, foralli2l, (56)
e

and are chosen as maximal projections in the sense that
i & jimplies El(.") & E](.A) foratleastoneAd = 1,..., L. Note
the completeness relation

>
Pi: 1.
i2|e

(57)
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Physically, the E1, ..., E; correspond to observables
that can be jointly fheasurefl. We assume a (mixed) state
of the system before the time t = ty described by a den-
sity operator p and perform a joint Liiders measurement,
cf. [14] (10.22), of E4, . .., E; at the time t = ty. The proba-
bility of the outcome i 2 Fwill be

p() = Tr plgi , (58)
satisfying
X .
p)=1. (59)
i21

In accordance with (8), we will make the following
assumption:

Assumption 1:

p(A)=>0 forall i2 1 . (60)
The validity of this assumption could be achieved by
restricting the Hilbert space H to the subspace spanned
by the eigenspaces of those P; with p(i) = Tr pP, > 0.

After the first measurement of the E 1y...,E Le’z the sys-
tem is subject to a further time evoldtion anf a second
measurement of (possibly) other observables. Thus, the
primary preparation together with the first measurement
may be considered as another preparation of a certain
state, in general different from the initial state p. If a selec-
tion according to a particular outcome i 2 1 is involved,
this state will be, according to the assumption of a Liiders
measurement, cf. [14] (10.22),

P.ppP,  P,pP,

e~ i (6”

pi =

If no selection according to a particular outcome is
involved, the state resulting after the first measurement
will rather be the mixed state

~  (61)
pDpi =
i21 i21

p1 = P iP p i (62)
e e

In order to apply the results of the preceding section
we will make the following crucial assumption:

Assumption 2:

=L

pi d(i)gi foralli21 .

(63)
If P; is a one-dimensional projection, i.e. if d(i) = 1, the
asgumption (63) will be automatically satisfied. In the case
of d(i) > 1, this assumption means that p is diagonal with
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respect to any common eigenbasis of the Eq, ..., E;. An
important case where (63) holds is given ifE;) is a ffiction

of the operators Eq, ..., Er, say,
e e
=GE,...,E (64)
p a1 oL

This has to be interpreted in the sense of functional
calculus as
— A
p= G E P;, (65)
i21 e
where E} will be the shorthand notation for
E 1(1), ..., E EL) . It follows that, in accordance with (63),

(61) 1 (6165) 1 A 1
2 pop, 2 6 E} Pi=——P;, (66)
PE=pme e’ T pi° T e die
as
p(i)(S:S) Tr pP, e E} Tr P, e E} d@). (67)
e e

In what follows, we will refer to the case (64) as the
“standard case” (case S). However, we stress that this is not
the most general case compatible with Assumption 2 as the
counter-example of all d(i) = 1 and p not commuting with
the P; shows.

?\Iext, we consider a second set of observables
described by the mutually commuting self-adjoint opera-
tors F1, ..., Fy subject to analogous assumptions. Hence,
the fgllowingeholds:

Fi= FYQ, A=1,...,L, (68)

e . e

j23
D(Gj) Tr Q]_ <oo, forallj2J, (69)
e
and

>

Qj =1. (70)
j23 €

We have chosen another index set J for the second set
of observables in order to stress that no natural identifica-
tion between both index sets is required in what follows.
Obviously, J has to be identified with the second outcome
set introduced in Section 2. In general, the E, will not com-
mute with the F),. We assume that a secontl measurement
oftheFq,..., FL will be performed at the time t = t1 > to,
not ne((a:essarih(/e of Liiders type. Between the two measure-
ments in the time interval (to, t1), the evolution of the
system can be quite arbitrary and will be described by a
unitary evolution operator U = U(ty, to).
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Next, we will show that the suitably defined “phys-
ical conditional probability” p(jji) is of modified doubly
stochastic type, and hence, the J-equation (27) also holds
in cases of physical relevance. Recall that the state of the
system immediately after the first measurement at time ¢t =
to with outcomei 2 I is assumed to be of the form (63) and
that the time evolution between t = to and t = t; is given
by the unitary evolution operator U. Hence, according to
the rules of quantum theory

P,
j)=Tr QU—LU , foralli2l,j2J.
p(iDd g Fio) j
(71)
Moreover,

Lemma 1: The physical conditional probability (71) is of
modified doubly stochastic type.

The proof of this Lemma can be found in Appendix A.

Recall that certain “hypothetical probabilities” g(j)
occur in Proposition 3 of Section 2.2. For the quantum case,
we will always assume that these probabilities are of the
following form:

N _ . A
q) =Tr G F,,...,F, Q, =D(j)G F; (72)
e e’ e

for all j 2 J, where the function G is chosen to be the
same as in (64). We understand the “standard case S” as
including the condition (72).

Lemma 1 and Proposition 3 immediately entail the
following theorem, referred to as claiming the general
Jarzynski equation, which will be formulated only for the
standard case S:

Theorem 1: Let E4, ..., E; be a family of mutually com-
muting self-adjoir?t operal%rs with the spectral decomposi-
tion (55) satisfying (56), likewise F1, . . ., F; asecond family
satisfying (68) and (69). Further?letp =% E,...,E be
a density operator such that € €

p@) = Tr p[e’l. >0 (73)

holds for all i 2 1. Further, let U be some unitary time
evolution operator. Then, the following holds

* +
A
G Fl

R :1
A ’
G Ef

(74)

where the expectation value has been calculated by means

of the physical probability function p(i, j) = p(jji) p(i) =
P .

Tr g}_ U Pid) U p().

We note in passing that the physical probabilities p(i, j) can

be written as

p(,))=Tr pFG,j) , (75)
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where the positive operators

FGi,j) PiU QUP; 0 (76)
e e e
satisfy
o) 1
> >
Fi,j)= PU @ QAUP,
(i,j)2E i21 € j2J e e
>
(@7 p, &y a7
i21 €

and hence constitute a “positive operator valued mea-
sure” (POVM) F : E ¥ L(H). Here, L(H) denotes the space
of bounded, linear operators defined on H. (For a more
general definition, see [14]; note that we use a simpli-
fied form of POVM adapted to countably infinite outcome
spaces E.) Hence, the various random variables defined
on E, including “work,” can be viewed as generalised
observables in the sense of [14], albeit generally not “sharp
observables” (i.e. observables described by projection val-
ued measures). This observation puts the statement of
[13] “work is not an observable” into perspective, see also
[15, 16, 22].

For the examples in the following subsections, it suf-
fices to identify the families E;1,...,E; and Fi,...,FL
and the function G. The condftions of-Theorefs 1 can Be
easily verified by the reader; it remains to evaluate the
general Jarzynski equation (74) for the various examples.
Moreover, as in all examples the convex exponential func-
tion is involved, we may invoke Jensen’s inequality and
obtain special relations that may be viewed as manifesta-
tions of the Second Law for nonequilibrium case S scenar-
ios, but have to be distinguished from case R statement
of nondecreasing modified Shannon entropy in Subsec-
tion 4.1.

3.2 Systems in Local Canonical Equilibrium

We assume that the quantum mstem consists of N subsys-
tems and consequently H = 2’21 H,,. For each subsys-
tem, we assume a, possibly time-dependent, Hamiltonian
H,(t), where the lift to the total Hilbert space by means
of suitable tensor products with identity operators will be
tacitly understood. Its spectral composition will be written
as

Hu(t) =
21,

EX(0 Py, (0) . (78)

Then,wesetL=N,1 =3 =1, Iy, and

E}( = Hu(t()), and Fy = Hy(tl), fOl’ H = 1, .o .N .
e e

(79)
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These Hamiltonians are not necessarily connected
with the unitary time evolution operator U = U(ty, to).
Further, we choose

P =G Hl(t0)9 ey HN(tO)

h'd
= Tr exp Py Hyu(to)
p=1

“exp By Hulto) ,

(80)
with the usual interpretation of the parameters 8, > 0 as
the inverse temperatures of the subsystems. The gener-
alised Jarzynski equation (74) then assumes the form

exp@ Bu wu AFyA =1, (81)
p=1
where
. () (1)
wyu(i,j)  Ej°(t)  Ep (to), (82)
Zu®) Tr e PO o RO (83)
AFy  Fu(t1) Fu(to), (84)

forally = 1,..., N. As exp is convex, Jensen’s inequality

yields ™ he*i, and hence (81) implies
* +
X
exp Bu wy AFy 1, (85)
u=1
or, equivalently,
X
p=1

Note that the left-hand side of (86) has the form of a
sum of entropy changes in the quasi-static limit and hence
can be viewed as a manifestation of the Second Law for the
present nonequilibrium scenario. For similar results, see
[3] and [23].

3.3 Systems in Microcanonical Equilibrium

We choose L = 1 and a one-parameter family of Hamilto-
nians H(t) with spectral decomposition

H@O=  E@Pi(.
i21

(87)

The microcanonical ensemble will not be represented
by a characteristic function concentrated on a small

energy interval but in the physically equivalent form
1

E Hty) >

1
Wito) exp — , (88)

p = G(H(to))
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where
" 4
E H
W() Tr exp T(t) e 10 (89)

and E, w > 0 are parameters. The generalised Jarzynski
equation (74) then assumes the form

> "

#+

E Ej(t) 2 1

exp — + Af + E_Eilto) VEV"(tO)

(90)
where Af  f(t1) f(to). Application of Jensen’s inequality
analogous to that in Section 3.2 yields

* +
E Ej(tl) 2 E Ei(to) 2
- SRV 2R
w w

0. (91

The generalisation to systems in local microcanonical
equilibrium analogous to the case treated in Section 3.2 is
straightforward and need not be given here in detail.

3.4 Systems in Grand Canonical Equilibrium

The Hilbert space of the system is chosen as the bosonic or
fermionic Fock space over the one-particle Hilbert space
H:
(\v|
F (H)= S

n=0

(92)

where H " denotes the n-fold tensor product and S
the projector onto the totally symmetric (+) part or the
totally antisymmetric ( ) part of H ". We choose L = 2
and E; = H(to), where H(t) is the canonical lift of a time-
depe%dent one-particle Hamiltonian H1(t) to F (H). Fur-
ther, we choose E; = N, the particle number operator in
F (H).By definf%ion, E 1 and E, commute. Let the respec-
tive spectral decompoesitions Svith a common system of
eigenprojections be written as

HH = E(©OP(), (93)
i2l
and
<
N=  N;P). (94)
e i2l

Moreover, we set

p=0G H(to),lg exp f Q(to)+u1(\3/ H(to) , (95)

where

exp BQ(t) Tr exp B y]él H({) , (96)
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and B, u, Q have the usual physical interpretation as
inverse temperature, chemical potential, and grand poten-
tial, respectively.

The generalised Jarzynski equation (74) then assumes
the form

E;(to)
AQ =1,

exp B Ej(t1)
u N; N; 97)
where AQ  Q(t;) Q(to). Application of Jensen’s inequal-
ity analogous to that in Section 3.2 yields
ﬁh(Ej(tl) E;i(to)i U Nj N; AQ) O. (98)
The generalisation to systems in local grand canonical
equilibrium analogous to the case treated in Section 3.2 is
straightforward and need not be given here in detail. For

similar results, see also [6-11].

3.5 Application to Periodic
Thermodynamics

Analogously to Section 3.2, we consider two systems (i.e.
N = 2) and assume that the first system is periodically
driven with a Hamiltonian K;(t) satisfying K;(t + T) =
K1(t). We have chosen the letter “K” as we will have to dis-
tinguish between the Hamiltonian and the (quasi) energy
operator H1(t) and want to conform, as far as possible,
with the notation introduced in the preceding sections.
According to Floquet theory, the general solution of the
corresponding Schrodinger equation will be of the form
x .
YO = aude G,

i21,

(99)

with time-independent coefficients a;. Here, the ¢; denote
the quasi-energies, unique up to integer multiples of w
27”, and the u;(t) are T-periodic functions of t. We assume
a pure point spectrum of the quasi-energies, and accord-
ingly, 1; will be a countably infinite or possibly finite index
set.

Upon choosing a selection of quasi-energies from their
equivalence classes, we may define a quasi-energy opera-
tor

X 1 X
Hi(®)=  &PM() & jui(Oing(8)j . (100)
i2l, 214
Hence, Tr Pgl)(t) = 1foralltand
e
PO =1. (101)

i2ly



274 =—— H.-). Schmidt and ). Gemmer: A Framework for Sequential Measurements and General Jarzynski Equations

The first system is coupled to a heat bath with Hamil-
tonian
H 2 =

E.P?, 102)
e

n2N

where the Pﬁf) are assumed to be finite-dimensional
projectors wgith dimension (degeneracy) d(n) = Tr Pﬁ,z) .
. . e.
Without loss of generality, we also assume a pure po6int
spectrum of the heat bath corresponding to a countably
infinite index set N. The outcome sets introduced in

Section 2 can be chosenas | =J =1, N. Note the
completeness relation
X
P =1, (103)
n2N €

The total Hamilton operator of the system plus bath
will be written as
K(t) = Kl(t) 1, +1; H, +Hqp , (104)
with some self-adjoint operator Hy, defined on the total
Hilbert space H = H;  H; describing the system—bath
interaction. It is assumed to be valid for t < t(. Strictly
speaking, the form of K(t) is irrelevant for the Jarzynski
equation to be formulated below. Its only purpose is to
motivate the following assumptions about the state of the
total system at the time t = t.
We assume that for times t < tg, the heat bath will be
in a thermal equilibrium state
1 BH

pzzie ’

7 (105)

where, as usual, § is the inverse temperature and the heat
bath partition function is

Z,=Tr e PH2  — e PEn d(n) .

n2N

(106)

The crucial assumption of this subsection will be
that also the system assumes, for times t < ty, a quasi-
stationary distribution p;(t) of Floquet states that will be
of Boltzmann type with an inverse quasi-temperature 9,
namely

A0

= Z e (107)

p1(6)
and the corresponding time-independent quasi-partition
function reads

>
Zy=Tr e 90 = e

i2l

Jei | (108)
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With respect to the conditions of Theorem 1, we thus
may write the initial state as

p =pilto) p2=GC Hilto), H>

9 Hy(to) BH>

Tr e

B H>

= Tr e

exp 9Hq(to) (109)

Whereas the general existence of a quasi-stationary
distribution has been made plausible in the literature [24],
the more restrictive assumption of a quasi-Boltzmann dis-
tribution has been demonstrated for only four kinds of
systems:

— For the particular case of a linearly forced harmonic
oscillator, the authors of [24] have shown that the
Floquet-state distribution remains a Boltzmann distri-
bution with the temperature of the heat bath, i.e. 9 = B,
see also [25].

— Similarly, the parametrically driven harmonic oscil-
lator assumes a quasi-stationary state with a quasi-
temperature that is, however, generally different from
the bath temperature, see [26].

— A spin s exposed to both a static magnetic field and an
oscillating, circularly polarised magnetic field applied
perpendicular to the static one, as in the classic Rabi
set-up, and coupled to a thermal bath of harmonic oscil-
lators has been shown to approach a quasi-Boltzmann
distribution, see [27],

— And finally, every quasi-stationary distribution of Flo-
quet states of a two-level system, see [25], can be trivially
viewed as a quasi-Boltzmann distribution.

Asin Section 3, we will assume that at times t = tpand t =
t; there will be performed measurements of the observ-
ables corresponding to the commuting (quasi) energy
operators H;(t) and H,. The interaction between the sys-
tem and the heat bath in the time interval (tg, t;) can be
quite arbitrary and will be described by a Hamiltonian
H(t). 1t follows that all mathematical assumptions neces-
sary to prove the general Jarzynski equation (74) are satis-
fied. But note the following difference: Typically, the gen-
eral Jarzynski equation holds in a situation of local ther-
mal equilibrium at the initial time t = ¢,. In this section,
we will rather apply Theorem 1 to a situation of a quasi-
stationary distribution of Floquet states of a periodically
driven system in contact with a heat bath. This situation
may be far from local thermal equilibrium.

Analogously to Section 3.2, we will set §; = 3, the
inverse quasi-temperature, whereas 8, = f is the ordi-
nary temperature of the heat bath. Consequently, we will
rewrite wi as the “change of quasi-energy e” and w, as the
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heat g absorbed by the heat bath. Strictly speaking, this
would exclude a time-dependent Hamiltonian for the heat
bath as otherwise w; could also be composed of both heat
and work. Nevertheless, we will stick to this more intuitive
notation.

As noted above, both partition functions Z; and Z, are
time-independent. Hence, (74) simplifies to

hexp( 9e (110)

Bgi=1.
The inequality derived by means of Jensen’s inequality
analogous to (86) hence will read
ghei +Bhgi 0, (111)
and can again be viewed as a manifestation of the Second
Law for periodic thermodynamics.

4 Further Applications to Quantum
Theory

4.1 A Second Law-like Statement for the
Nonstandard Case

In the preceding sections, we have formulated a number of
Second Law-like statements, namely (86), (91), (98), and
(111), which follow from the respective Jarzynski equations
in the standard case S. However, these statements are not
special cases of the “Pauli-type” inequalities (22) and (29)
as these are based on the assumption g(j) = p(j) for all
j 2 J (case R) and hence do not belong to the standard
case that is characterised by (72). In view of the funda-
mental significance of the Second Law, it will be in order
to add a few remarks on the realisation of (22) and (29) in
quantum mechanics.

First, we will reformulate (29) in the context of quan-
tum theory:

Theorem 2: We assume the notations and general
conditions of Section 3, in particular Assumptions 1 and 2.
It follows that the 5-quintuple (1, J , p, d, D) will be a mod-
ified statistical model of sequential measurements (mST?)
where the physical probability functionp : 1 3 ¥ R is
given by

p,))=Tr QUPpP,U = p(i)p@), (112)
e e e

and the second marginal probabilities are defined by

x
pi= pGj). (113)

1
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Then, the following holds:

0l s
. P8

S'(p)

p(i)

><
= p(i) log == (114)

d@) -

This statement is certainly not new but has a couple
of forerunners albeit formulated in different frameworks
[18, 28, 29]. We note that the modified Shannon entropy
S’(p) can be identified with the von Neumann entropy

Tr (p1 log p1) of the mixed state p; after the first mea-
surement according to (62). Indeed,

X X u(i
p1'® i p() pi © i %Pi (115)
implies
1
X 0k . -
Tr(p1 log p1)= Tr % log% P;
x .

= p() log% =S(p). (16)

i

For the modified Shannon entropy S’(p), this identifi-
cation is not possible in general. Even if we additionally
assume that the second measurement will be of Liiders
type, it is not clear whether an assumption analogous
to (63) would hold. Below we will consider a simplified
scenario where this identification is nevertheless possible.

Next, we note that the Second Law-like statement
(114) holds for closed systems irrespective of their size
and is in this respect more general than the usual for-
mulations of the Second Law for large systems includ-
ing small systems coupled to a heat bath. Moreover, (114)
is not restricted to sequential energy measurements and
e.g. would also hold for (discretised) position measure-
ments, thereby describing the spreading of wave pack-
ets, see the example of the following Subsection 4.2.
In this context, it might be instructive to discuss the
well-known Umkehreinwand (reversibility paradox) of
Loschmidt. There exist solutions 1(t) of, say, the 1-particle
Schrodinger equations that are time reflections of spread-
ing wave packets and hence concentrate on smaller and
smaller regions. These solutions do not lead to a violation
of (114) as after the first measurement this special solution
Y(0) is transformed into a mixed state p; that again will
spread with increasing time. The delicate phase relations
of 1¥(0) needed for the inverse spreading are destroyed by
the first measurement.
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Similarly, the related Wiederkehreinwand (recurrence
paradox) of Poincaré and Zermelo that would be particu-
larly serious for small systems with short recurrence times
can be rebutted. It may happen that the modified Shan-
non entropy S’(p) will be a periodic function s(s) of the
time difference ¢t t; to between the two measure-
ments, but this does not injure the validity of (114). The rea-
son is simply that the latter inequality reads s(t)  S’(p)
and not s(tq) s(tp) for all t; > t;,. Physically speaking,
the Wiederkehreinwand does not apply as in quantum
mechanics the entropy difference is not a definite quan-
tity defined for all times ¢ but rather should be construed as
the mean value of entropy differences over many measure-
ments of a pair of observables performed at a fixed time
difference t.

As (114) is a fundamental inequality that is valid for a
large class of sequential measurements, it will be interest-
ing to investigate its possible geometrical meaning.

To this end, we generalise our considerations to a
finite number of L sequential Liiders measurements but
restricted to the case of a finite n-dimensional Hilbert
space H and nondegenerate projections P;, Q;. This corre-
sponds to Subsection 2.1 dealing with the “simple case.” In
particular, Assumption 2, see (63), will be satisfied for the
corresponding state before each measurement. Consider
first the simplest case of an n = 2-dimensional Hilbert
space where all mixed states correspond to the points of
a unit ball with centre C = % 1. The boundary of the unit
ball is usually denoted as the “Bloch sphere.” Two orthog-
onal projections P; and P, are represented by antipodal
pairs of points of the Bloch sphere, and the first Liiders
operation p I p; is just the projection onto the line join-
ing P; and P,. Upon this projection, the distance d of the
state to the centre C decreases (or remains constant); i.e.
the Liiders operation is contractive. This distance can be
expressed in terms of the scalar product (A, B) — TrA B
for A, B 2 L(H). The unitary time evolution between the
first and the second measurements corresponds to a rota-
tion of the Bloch sphere and can be discarded as far as
only geometric relations are considered. Then, the sec-
ond measurement with orthogonal projections Q; and Q,
again yields a projection that maps p; onto, say, p, and fur-
ther decreases the distance to the centre C. In this way,
the L sequential Liiders measurements yield a sequence
ps P1s P2, ..., pr of mixed states represented by points
inside the Bloch sphere with nonincreasing distance to the
centre C, see Figure 1.

Before we connect this geometric picture to the Second
Law-like statement (114), we will sketch the generalisation
to finite n > 2, although the corresponding geometry can-
not be visualised in a likewise simple manner. The unit
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Figure 1: Geometric interpretation of the Liiders operation p; > p»
as a projection of points inside the Bloch sphere onto the line
joining two orthogonal projections Q; and Q,.

ball in the case of n = 2 has to be replaced by the con-
vex set K of mixed states such that the pure states are
the extremal points of K. The centre C now corresponds
to the maximally mixed state C = % 1. A family of n mutu-
ally orthogonal 1-dimensional projections P; spans an n-
simplex X of extremal points of K consisting of all mixed
states that commute withall P;, i = 1, ..., n. The centre C
is always contained in the simplex Z. The Liiders operation
p — p; is the projection onto the affine subspace spanned
bythe P;, i = 1,..., n. Again, by subsequent projections,
we obtain a sequence p, p1, p2,...,pr of mixed states
such that the distance d to the centre C is nonincreasing.
In passing, we note that the squared distance

d>= p +1 “isrelated to the (dimensionless) Tsallis
entropy [30]
1
1 X
o=ty 1 P (117)
=1
by
d2=”n1 S, . (118)

The connection to the Second Law-like statement
(114) will be first discussed for the special case of n = 2.
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Let p,1  p be the eigenvalues of a general statistical
operator p. Then

S(e)= plogp) (1 p)logt p), (119)

and

12
cP=2p 5 (120)
where d(p) denotes, as above, the Euclidean distance of
p to the maximally mixed state %]l. Obviously, (116) can
be solved for a monotonically decreasing function S(d?),
namely

S(d2)=% log(4) + 1+p§d log 1 pid

1+ pid log 1+ pid (121)
see also Figure 2, left panel.

For the general case of n = dim H > 2, the von Neu-
mann entropy S(p) is no longer a function of the distance
d(p) to the centre C, see Figure 2, left panel. This means
that there are cases of density matrices p, p; such that
d(p1) < d(p), but there is no Liiders operation p — p1
because S(p1) < S(p). In this sense, the Second Law-like
statement (114) goes beyond the contractivity of the Liiders
operation.

4.2 An Analytically Solvable Example

As a nontrivial example, we consider a particle in one
dimension and a free time evolution between the two mea-
surements described by the Schrédinger equation

2 N2

ﬂ%zp(x, 0 (122)

. 0
I~—yYlx, t) =
STY00 D
with self-explaining notation. The two measurements
are unsharp position-momentum measurements. More

S S

0.7
0.6 \
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0.4 ™~
0.3 ~
02

0.1
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specifically, the projections P;, i 2 I considered in
Section 3 are one-dimensional ahd of the form P; = jiihij
where €

o 1 2minx
Jw=jv,nt  Xpa,p+1)a] P= €Xp ,
A A
vwn27. (123)

Here, x[ya,+1)a] denotes the characteristic function of
the interval [vA, (v+ 1)A]. Thus, the first measurement is a
discretised joint measurement of position g, and momen-
tum p, = 2’%”. Analogous definitions hold for the sec-
ond measurement with projections Q; = jjihjj and jji =
ju,misuchthatl =J = 72,

We choose the physical units such that A = m =~ =
1 and an initial pure state given by the Gaussian

2

507 (124)

1
l/)(X) = m exp

After the first (Liiders) measurement, the particle is in
one of the pure states jv, ni with probability

p() = p(v, n) = jh, njpij* (125)
where
hv, njii
y+1
= P(x) exp( 2minx)dx
P
TP—  op2p2g?
= p= oe
B3
v+ 1+ 27ino? v + 27ino?
eff ——p——— eff —p——
20 20
(126)

After the time ¢t = t; to, the state jv, ni evolves
into jv, n, ti. To calculate the latter, we have integrated

0.2

0.1 0.2 0.3 0.4 0.5 0.1

03 04 05 06

Figure 2: The von Neumann entropy S versus the squared distance d? to the maximally mixed state. Left panel: In the case of Hilbert space
dimension dim = 2, S will be a monotonically decreasing function (121) of d2. Right panel: In the case of Hilbert space dimension dim > 2,
S will no longer be a function of d?. We show the case of dim = 3 and 2000 randomly chosen density matrices.
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the free propagator over one-unit interval and thereafter
performed a Galilean boost with the result

. - i 2min(nint  x)
,n,ti=—e
v 3

. 1+
erfi ?E%(\)+2rmt X)

i
erfi 1?%(\) +1+2nnt x) (127)
Here, erfi(z) denotes the imaginary error function
%02). The second (Liiders) measurement yields the result
j = (4, m) with conditional probability
p(iji) = p(u, mjv, n) = jhu, mjv, n, tij2 . (128)
If m & n, the corresponding amplitudes are obtained
as

e 4im’t(m®  2mn+2n?)

hu, mjv, n, ti = antm 1)

n 2im?t(m  2n)?
e tm 27 HR(m, u, v)
+R(m, u,v+ 1) + R(m, u + 1, v))

eziﬂZt(Zm2 4mn+3n2)( 2R(n, 4, v)

o
+R(n,u,v+1)+Rn,u+1,v)) ,
(129)
where the abbreviation
Rl p,v)  erfi LFDCKEE p+v) (130)

20t
has been used. In the case m = n, we have

2im?n’t

: . P- e v ameen?
hll’n]\),n,tl=e—29j A+i) t e
n

i( ;4+\v+2nm‘)2

2e 2 +e

i( 1,4+v+27mt+1)2
2t

ipﬁ 2( p+v+2mnt)R(n, u,v)

+ ( u+v+2ant+ 1)R(n,u,v+1)

DR(n, u+ 1,v)
(131)

We have noted in Subsection 2.2 that in general the
p(jji) need not be symmetric. Indeed, for our example,
we find, e.g. that for t = ¢ = 1 we have p(1, 1j0,0) =
0.00483946, but p(0, 0j1, 1) = 0.00258997.

The equations (85—131) yield the second marginal
probabilities p(j) = ; p(jji) p(i) in the form of a doubly
infinite series of terms given by analytical expressions.
Hence, the p(j) can be numerically calculated by a suitable

+( p+v+2ant
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truncation of the infinite series. Moreover, the Shannon
entropies S(p) and S(p) can be numerically calculated, and
the Second Law-like statement (114) can be tested, see
Figure 3. Due to the localisation of the particle by the first
measurement, an additional spreading of the momenta is
generated that leads to a stronger increase of the Shannon
entropy than the increase that is solely produced by the
spreading of the Gaussian wave packet (124) in the course
of time.

4.3 Crooks Fluctuation Theorems

In the literature, the Jarzynski equation is sometimes
derived from so-called Crooks fluctuation theorems, see
[12]. The notation refers to [31] where G. E. Crooks proved a
classical work fluctuation theorem. Quantum versions of
the Crooks fluctuation theorem have first been considered
in [2] and [3]. One may ask whether the quantum version
of a Crooks fluctuation theorem has a counterpart in the
(modified) statistical model of sequential measurements
and whether one would need additional assumptions to
prove it.

We adopt the notation of Subsection 2.3 and again
consider a modified modelm = (1, J, P, d, D) of sequen-
tial measurements as well as a its “reciprocal model”
(3,1, P, D, d). It remains to show that the C-equation (53)
indeed entails the Crooks fluctuation theorem in the case
of quantum mechanics. To this end, we assume the case of
Subsection 3.2 with N = 1 such that

Y(i,j)=exp B WG,j) AF (132)
S(p, )

2.4
2.2

2.0r

Log, t

Figure 3: Illustration of the increase of the Shannon entropies,

S(p) < S(p, b, in the case of two sequential Liiders measurements.
t denotes the time difference between the two measurements

and assumes the dimensionless values 10 *,...,10 *;the
parameter o in (124) is chosen as ¢ = 1. The entropy after the first
measurement is S(p) = 1.3654 (dashed red line).
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where we have denoted the random variable “work” by a
capital letter W, and hence, writingy = exp( Bf(w AF)),
P(W=w).

P(Y=y) = (133)

Analogously,

=P(W= w), (134)
and the Crooks fluctuation theorem assumes its familiar
form

P(W=w)

P = w o

=exp(f(w AF)).
Next, we will investigate the question how the recip-

rocal model (J, 1, P, D, d) can be realised in quantum

theory. We consider its conditional probability

!

o d(i) ) P d()
ﬂ(IJ])(40)7T()J) Tr QU -exU —=
O C ORI
Qi
=Tr zgiU mu , (136)

where the last equation was obtained by cyclic permuta-
tion of the operators inside the trace. This suggests the
following realisation: We prepare a state described by a
statistical operator p such that

q() =Tr ﬁg; , (137)

and the assumption

QipQ;= a4) Qj forall j2J, (138)
e

e Die
analogous to (63) is satisfied. Then, at the time t = to, we
measure the set of observables described by the mutually
commuting self-adjoint operators Fi,...,F; with com-
mon eigenprojections Q;, j 2 J, th? measufement being
of Liiders type. Thereafter, a unitary time evolution U

U takes place until ¢t = t; where a second measurement
of E1, ..., E; with common eigenprojections P;, i 2 I is
pereformed.el‘he corresponding conditional progabilities of
the sequential measurements are then given by (136).

In an experiment, it might be difficult to realise the
adjoint time evolution U U . As a more practical alter-
native, we briefly recapitulate the time evolution consid-
ered in [12], Section IV A, using our own notation. Let the
time evolution U(t, t1) for t 2 [tg, t1] of the original model
be given as the solution of the differential equation
iH(t) U(t, t1) ,

0 _
5 Ut ty) = (139)
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with “initial” value U(t{, t1) = 1. Then, consider the
Hamiltonian

H(t) H(ti+ty (1240)
according to a “time-reversed protocol” and the corre-
sponding evolution operator U(t, t1) satisfying
iHO U, t1),

07 o
EU(t’ t1) = (141)

with initial value U(t1, t1) = 1. Upon the transformation

t— t1+to t,(141) assumes the form
3iJ(t +to tto)
at 1 [0} s L0
=iH(t1+to Ui+t tto)

WO H(6) Uty + to

t, to) . (142)
Now assume “microreversibility,” i.e. the existence of
an antiunitary operator © commuting with all H(H):

© H({)©® = H(¢t) forall t 2 [tg, t1], (143)

and further

® Q©®=Qjand © P;0=P;, (144)

e e e e
forallj 2 J and i 2 1. The latter assumption already fol-
lows from (143) if the P; are the eigenprojections of H(ty)
and the Q; the eigeonbjections of H(t1). Our assumption
of microfeversibility is somewhat weaker than the usual
formulation in so far as it only requires that there exists
some basis such that H(t) is real for all t, see [32] for a
similar approach.

Accordingly, (142) implies

0

—0 f](l’l + to

EY: t,to) ©

= iHWOO Ulti+ty ¢t to)0. (145)

Comparison with (139) together with the initial condi-
tions yields

Ult,t1)) =0 Ulti+to t,t0)0, (146)
cp. (40) in [12], especially
U =U(ti, to) =U(to,t1) =0 Ult1,t0)0 . (147)

Inserting this result into (136) and using (144) give
1

Q
a(ijj) = Tr P U(t1, to) €% b Ulti,to)

(]) (148)
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and thus show that the time-reversed protocol correctly
realises the reciprocal model. But we stress that the
assumptions of microreversibility are convenient but not
necessary for the validity of the Crooks fluctuation theo-
rem in contrast to the impression generated by [12].

As a special case, we mention the situation where
HO=HO=H({t; +t, tand Q;=P;foralli2 | =
J, but all preceding assumption§ stillehold, in partic-
ular (143) and (144). This includes the case where H is
time-independent. Then, it follows that U = © U© and
hence

(i) dGi) = Tr P;UP;U

e e

=Tr Pi@ U@Pj@ U 6
e e

=Tr PUP,U =n(ijdG).  (149)
e e

This means that the symmetry condition (31) consid-
ered by W. Pauli will be exactly satisfied, not only in the
Golden Rule approximation. In the counter-example to (31)
in Subsection 4.2, the condition (144) is violated as the
momentum pj, is inverted under time reflections.

5 Applications to Classical
Theory

In classical statistical mechanics, all observables have def-
inite values for each individual system. Hence, it is not nec-
essary to adopt the scenario of sequential measurements
in the context of Jarzynski equations. Nevertheless, the
statistical model of sequential measurements introduced
in Section 2 can be useful if suitably reinterpreted. To this
end, we set I =J = X, where X is the 2N-dimensional
phase space of the system under consideration. Summa-
tions over I or J will be replaced by integrations using
the canonical volume form dx =dp;...dpydq1...dgy
on X. At the time t = ty, the state of the system will be
described by a probability distribution p : X ¥ R+ satis-
fying

p(x) >0 forall x 2 X (150)

and

z

pdx=1. (151)
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The time evolution between t = tq and ¢t = t; is deter-
ministic and will be described by a volume preserving
map
T X. (152)

LetA: X X ¥ R bearandom variable. Its expecta-
tion value will be defined by

z

hAi dxdy p(x) 86(y, U(x)) A(x, y)

% X
= dxpx)Ax, UX)) .
X

(153)

In the special case of A(x,y) = %, where g: X ¥
R+ is assumed to satisfy

Z
qly)dy =1, (154)
X
we conclude
qay) 53 q(UX))
p(x) dxpl) p(x) (155)
= dx g(U(x)) (156)
Vi
= dygyTEY1, @)
X

using that U is volume preserving in (157). Hence, (74) has
a classical counterpart and the general Jarzynski equa-
tion also holds classically, in particular for the examples
treated in Subsections 3.2 to 3.4.

6 Summary and Outlook

The usual formulation of the quantum Jarzynski equa-
tion applies to closed systems that are initially in ther-
mal equilibrium, described by the canonical ensemble,
and then subject to two sequential energy measurements.
Between the two measurements, the system may be arbi-
trarily disturbed under the influence of a time-dependent
Hamiltonian. The present work can be understood as a
gradual generalisation of this situation. Some of these
generalisations have already been considered in the lit-
erature, see [3, 5-11], but now they appear in a coherent
way as results of a unified approach. First, we allow for
equilibrium scenarios that are rather described by micro-
canonical or grand canonical ensembles. In the next step,
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we also consider local equilibria, i.e. N subsystems that
have initially different temperatures. This case is treated
in the present article for the case of local canonical ensem-
bles, but the extension to the case of local microcanonical
or grand canonical ensembles is straightforward. More-
over, it turns out that for the general quantum Jarzyn-
ski equation the restriction to energy measurements is
no longer necessary. The only essential assumptions are
those postulating that the first measurement is of Liiders
type and, additionally, that the state resulting after this
measurement is diagonal in the eigenbasis of the mea-
sured observables (Assumption 2). An example, where this
more general point of view is crucial, is the sequential
measurement of the “quasi-energy” in the case of periodic
thermodynamics. This example is briefly touched in our
article but could be expanded with respect to the results
on the dissipated heat obtained in [27] and [26].

At this point, a further natural generalisation suggests
itself, namely the replacement of the two sequential (pro-
jective) measurements by more general ones described
by POVMs and involving more general state transforma-
tions than those of Liiders type, see [23, 28, 33] for related
approaches. It turns out that the simple form of the gen-
eral Jarzynski equation and of the resulting Second Law—
like statements will be lost upon this generalisation. In
the article at hand, we have followed a different route of
generalisation by analysing the probabilistic core of the
general Jarzynski equation. The result is what we have
called a “statistical model of sequential measurements”
that does not explicitly presuppose quantum mechanics
and includes the “J-equation,” cf. Prop. 3, as a progeni-
tor of the general quantum Jarzynski equation. Another
benefit of the abstract statistical model is to make clear
that the J-equation will exactly hold even if the correct
quantum time evolution is replaced by an approximation,
e.g. the Golden Rule approximation, as far as the mod-
ified doubly stochasticity is retained. The mathematical
clue to prove the J-equation is the assumption of a mod-
ified doubly stochastic transition probability that is sat-
isfied in quantum theory and breaks the time-reflection
symmetry of the model. Consequently, a Second Law-like
statement follows that is different from those mentioned
above and joins the theory to previous approaches to the
Second Law going back to W. Pauli and G. D. Birkhoff.
We have illustrated this result by an example involving
discrete position—-momentum measurements and describ-
ing the spreading of an initial Gaussian wave packet. The
arrow of time remains mysterious, but the two arrows aris-
ing in thermodynamics and quantum measurement theory
point into the same direction.
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Appendix A: Proofs of Some
Propositions

Proof of Proposition 1. The first part of the proposition fol-
lows from

ai) @ ><q0) . .
m = u mP(l’]) (A1)
<X X
Q "6 T G (A2)
j i
(g) = q(]) (139&214) 1. (AB)

j

For the converse statement, choose j* 2 J arbitrarily
and let g(j) = §; . Then

ap) _><
= == = n(jji
o0 ’ q(j) n(jji)
x .= e ’ X sy
= GiynGin= a(ij), (A4)
ij i
which means that 7(jji) will be doubly stochastic. O
Proof of Proposition 2. 1t follows that
(19 pG)
0 = log1="log =% A5
g 6 (A5)
(20) H(j
£y) (46)
p@@)
= fg%g p(G)i  hlog p(gi( (A7)
= p() log p(j) p() logp()) . (A8)
j23 i21
O

Proof of Proposition 3. The if part follows as the sum (21)
is invariant under permutations. For the only-if part, we
invoke the theorem of Birkhoff-von Neumann [34] saying
that any doubly stochastic matrix is the convex sum of
permutational matrices. Assume that 7 is not of permuta-
tional type, and hence, the convex sum will be a proper
one. This means that 71 can be written in the form

K
m= Ay 6}1 , (A9)
p=1
F)
such thatAy > Oforally=1,...,M,M > 1, u)ly =1,
and
ou(ji) = 6]-,0”(,-) for some oy, 2 S(n) . (A10)
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Recall that the function f(x)
cave for x 2 [0, 1]. Then, we obtain

x log x is strictly con-

X
S@ = fpG) (A1)
j o 1
X X X
(11,49) f@ A GuGiDpMA  (A12)
j H i ]
> X > i
> Auf Gu(jdp() (A13)
j m i 1
> XX > )
(410) Auf 8,0, () (A14)
* k& i
= Muf p ooy 1G) (A15)
d Bq ]
> >
= @ AA i) (A16)
U i

where in (A13) we have applied Jensen’s inequality using
that f is strictly concave and the convex sum (A9) is a
proper one. Summarising, S(p) > S(p) if & is not of per-
mutational type, which completes the proof of Proposi-
tion 3. O

Proof of Proposition 6. We consider

py=1/) & B, 1) (A18)
(jyi)ZElly
X . R
oty rr(iji)d(]_’))g)(]) (A19)
(i,];%Ey
(43:46) aGidp()y  (A20)
o 1
<X
@ @ " pipAy  (a2)
(i,)2E,
@ py=y)y. (A22)

From this, the proposition follows immediately. O

Proof of Lemma 1. First, we will show that p(jji) is a
stochastic matrix. This follows from

(0]0] 1 1
X (71) X p;
p(ji) = Tr@@ QjAUEﬁ UuA
j23 23e ! .
P; B p; -
(70) i i
=Tr UeU =Tr -
di d)
0, (A23)
foralli2 I.
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Next, according to the definition of “modified doubly
stochastic type,” we have to confirm that (25) holds

R |
X L aD
pGidG@) = Tr QU P, U
i2l e i21 €
D1 quu =Tr
e e
@, (A24)

forallj 2 J. This completes the proof of the Lemma. [

Appendix B: Derivation of the
Modified Statistical Model of
Sequential Measurements

We assume that the outcome sets 1 and J are divided
into disjoint cells (“Elementarbereiche” in [18]) such that
the probability P(i, j) is constant over the cells. The con-
struction is similar to the operation of “coarse graining”
in physical theories, but in those cases, the probability will
typically not be constant over the cells, and the following
considerations will be at most approximately valid. The
mentioned cells will be written as the inverse images of
suitable maps

My:1 ¥ IMand 15 : J 0 J7, (B1)

and are assumed to be finite. 1’ and J’ can hence be
viewed as the respective sets of cells. We define the cell
sizes

d: IV N, d@) I,'@), (B2)

i
(@
L]

N, D(G) I5'(G) . (B3)

As mentioned above, the probability is assumed to
be constant over cells and hence gives rise to a modified
probability function P’ : 17 J’ ¥ [0, 1] via

P'(i,j)  d@)D(") PG, j),

if ()= and T5() = . (B4)



DE GRUYTER

We note that

<X
1 ¢ PG, j)

i21,j23
>< <X X .
_ P(i,j)  (BS)
21',j23" i211, 1) j211, (")
X<
- d(i") D(")P(i, j)
217,23
XX
B4 i(ir it
(84) P, i), (B6)

i21,j23"

as it must hold for a probability function. Here, and in
what follows, the index i within a sum over i’ denotes
an arbitrary element of the cell II, L, analogous for
j. As in Subsection 2.1, we define the modified marginal
probability and obtain

X
&7 pG, j) d() D()

s

J

<
p'(@) P, ")

X
=" PG, j)d@) € pG) d@) .
j

(B7)

Analogously for the modified conditional probability,

P'(i",j’) (B4.B7) P, j)d(i")D(j")
p'(i") pDd(i)

(i)

@ (i) D7) . (B8)

The condition of 7 being doubly stochastic entails the
following property of ’:

<X <X
(i) d@) 2" i) DY) d(i7)

1

>
=" (i) G) "E? D) .

i

(B9)

Next, we express the Shannon entropy in terms of the
modified probabilities:

<X X (0 1(37
Q1 , . (BT) p'(i), p@{)
Sp) = i p(i) log p(i) = a@) )
X (37
= ) p’(i")log I;((:)) S'(p),
(B10)

cp. (17) of [18] or the “observational entropy” according to
(15) of [35].

H.-J. Schmidt and ). Gemmer: A Framework for Sequential Measurements and General Jarzynski Equations = 283

Acknowledgements: This work was funded by the
Deutsche Forschungsgemeinschaft (DFG), Funder
Id:  http://dx.doi.org/10.13039/501100001659,  grant
397107022 (GE 1657/3-1) within the DFG Research Unit
FOR 2692. The authors thank all members of this research
unit, especially Andreas Engel, for stimulating and
insightful discussions and hints to relevant literature.

References

[1] C.Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

[2] J. Kurchan, arXiv:0007360v2 [cond-mat.stat-mech].

[3] H.Tasaki, arXiv:0000244v2 [cond-mat.stat-mech].

[4] S.Mukamel, Phys. Rev. Lett. 90, 170604 (2003).

[5] P.Talkner, M. Morillo, J. Yi, and P. Hanggi, New J. Phys. 15,
095001 (2013).

[6] T.Schmiedland U. Seifert, ). Chem. Phys. 126, 044101 (2007).

[7]1 K. Saito and Y. Utsumi, Phys. Rev. B 78, 115429 (2008).

[8] D.Andrieux, P. Gaspard, T. Monnai, and S. Tasaki, New J. Phys.
11, 043014 (2009), Erratum in: New J. Phys. 11, 109802 (2009).

[9] J.Yi, P. Talkner, and M. Campisi, Phys. Rev. E 84, 011138

(2011).

M. Esposito, Phys. Rev. E 85, 041125 (2012).

J. Yi, Y. W. Kim, and P. Talkner, Phys. Rev. E 85, 051107 (2012).

M. Campisi, P. Hinggi, and P. Talkner, Rev. Mod. Phys. 83, 771

(2011), Erratum in: Rev. Mod. Phys. 83, 1653 (2011).

P. Talkner, E. Lutz, and P. Hanggi, Phys. Rev. E 75, 050102

(2007).

P. Busch, P. Lahti, ).-P. Pellonpd, and K. Ylinen, Quantum

Measurement, Springer-Verlag, Berlin 2016.

A.J. Roncaglia, F. Cerisola, and J. P. Paz, Phys. Rev. Lett. 113,

250601 (2014).

G. De Chiara, A. ). Roncaglia, F. Cerisola, and . P. Paz, New ).

Phys. 17, 035004 (2015).

M. Campisi and P. Hanggi, Entropy 13, 2024 (2011).

W. Pauli, in: Probleme der Moderne Physik, Arnold Som-

merfeld zum 60, Geburtstag 1928. Reprinted in Collected

Scientific Papers by Wolfgang Pauli, Vol. 1 (Eds. R. Kronig and

V. Weisskopf), Interscience, New York 1964, p. 549.

C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).

R. Serfozo, Basics of Applied Stochastic Processes,

Springer-Verlag, Berlin 2009, Corrected 2nd printing 2012.

V. Vedral, J. Phys. A 45, 272001 (2012).

G. P. Martins, N. K. Bernandes, and M. F. Santos, Phys. Rev. A

99, 032124 (2019).

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]

[19]
[20]

[21]
[22]

[23] M. Campisi, J. Pekola, and R. Fazio, New . Phys. 19, 053027
(2017).

[24] H.-P.Breuer, W. Huber, and F. Petruccione, Phys. Rev. E 61,
4883 (2000).

[25] M. Langemeyer and M. Holthaus, Phys. Rev. E 89, 012101
(2014).

[26] O.R. Diermann, H. Frerichs, and M. Holthaus, Phys. Rev. E 100,
012102 (2019).

[27] H.-). Schmidt, ). Schnack, and M. Holthaus, Phys. Rev. E 100,
042141 (2019).

[28] ). Gemmer and R. Steinigeweg, Phys. Rev. E 89, 042113
(2014).


http://dx.doi.org/10.13039/501100001659

284 = H.-). Schmidt and]. Gemmer: A Framework for Sequential Measurements and General Jarzynski Equations DE GRUYTER

[29] 0. Penrose, Foundations of Statistical Mechanics: A Deductive  [33] Y. Morikuni and H. Tasaki, J. Stat. Phys. 143, 1 (2011).

Treatment, Pergamon Press, Oxford 1970. [34] G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ.
[30] C.Tsallis, ). Stat. Mech. 52, 479 (1988). Nac. Tucuman Rev. Ser. A5, 147 (1946).
[31] G.E.Crooks, Phys. Rev. E 60, 2721 (1999). [35] D.Safranek, ). M. Deutsch, and A. Aguirre, Phys. Rev. A 99,
[32] D. Schmidtke, L. Knipschild, M. Campisi, R. Steinigeweg, and 012103 (2019).

J. Gemmer, Phys. Rev. E 98, 012123 (2018).



	A Framework for Sequential Measurements and General Jarzynski Equations
	1 Introduction
	2 Statistical Model of Sequential Measurements
	2.1 Simple Case
	2.2 Modified Case
	2.3 Symmetric Formulation

	3 Applications to Quantum Theory
	3.1 General Case
	3.2 Systems in Local Canonical Equilibrium
	3.3 Systems in Microcanonical Equilibrium
	3.4 Systems in Grand Canonical Equilibrium
	3.5 Application to PeriodicThermodynamics

	4 Further Applications to Quantum Theory
	4.1 A Second Law–like Statement for the Nonstandard Case
	4.2 An Analytically Solvable Example
	4.3 Crooks Fluctuation Theorems

	5 Applications to ClassicalTheory
	6 Summary and Outlook


