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Abstract: We present a new, falsifiable quantum theory of
gravity, which we name non-commutative matter-gravity.
The commutative limit of the theory is classical general
relativity. In the first two papers of this series, we have
introduced the concept of an atom of space-time-matter
(STM), which is described by the spectral action in non-
commutative geometry, corresponding to a classical the-
ory of gravity. We used the Connes time parameter, along
with the spectral action, to incorporate gravity into trace
dynamics. We then derived the spectral equation of motion
for the gravity part of the STM atom, which turns out to
be the Dirac equation on a non-commutative space. In
the present work, we propose how to include the matter
(fermionic) part and give a simple action principle for the
STM atom. This leads to the equations for a quantum the-
ory of gravity, and also to an explanation for the origin of
spontaneous localisation from quantum gravity. We use
spontaneous localisation to arrive at the action for clas-
sical general relativity (including matter source) from the
action for STM atoms.

Keywords: Non-Commutative Geometry; Quantum
Gravity; Spontaneous Localisation; Statistical Thermo-
dynamics; Trace Dynamics.

1 Introduction

This paper should ideally be read as a follow-up to the
first two papers in this series [1, 2], which will be hereafter
referred to as I and II, respectively.

In I, we have introduced the concept of an atom
of space-time-matter (STM), which is described by the
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spectral action of non-commutative geometry. The spec-
tral action, in the presence of a Riemannian manifold, is
equal to the Einstein-Hilbert action of classical general rel-
ativity, after a heat kernel expansion of square of Dirac
operator is carried out, and truncated at the second order
inan expansionin L, 2, We also introduced there the four
levels of gravitational dynamics. In II, we used the Connes
time parameter, along with the spectral action, to incor-
porate gravity into trace dynamics. We then derived the
spectral equation of motion for the gravity part of the
STM atom, which turns out to be the Dirac equation on
a non-commutative space. In the present work, we pro-
pose how to include the matter (fermionic) part and give
a simple action principle for the STM atom. This leads to
the equations for a quantum theory of gravity, and also
to an explanation for the origin of spontaneous localisa-
tion from quantum gravity. We use spontaneous localisa-
tion to arrive at the action for classical general relativity
(including matter sources) from the action for STM atoms.

2 Equations of Quantum Gravity at
Level 0

In II, we have proposed the following action principle for
the gravity part of the STM atom:

z

Sow =xp  de TY(Lh ¢ /1°C). )

Here, 1 is what we have called the Connes time of non-

commutative geometry. The g-operator, which describes

gravity, is related to the operator D (which becomes the

standard Dirac operator on a curved space when there is
a background Riemannian manifold) as follows:

D — —. )

The function y(u) is so chosen as to ensure conver-
gence of the heat kernel expansion of Tr(L;D?) (for a dis-
cussion on this aspect, see e.g. [3, 4]). x is a constant
so chosen that it gives the correct dimensions of action
and the correct numerical coefficient for recovery of the
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Einstein-Hilbert action. L is a length scale associated with
the STM atom, whose physical interpretation will become
evident subsequently.

Our motivation behind introducing the operator g
‘particle’ is to establish contact between non-commutative
geometry (and the description of gravity therein) on one
hand, and trace dynamics on the other. We were seeking
an action principle that can be expressed conventionally
as the time-integral of a Lagrangian, with the Lagrangian
being made of matrix-valued configuration variable g and
its velocity ¢. Hence the action (1), and the relation (2)
which relates the g-operator to gravity, via the spectral
action and its heat kernel expansion.

The above description, which is the essence of what
was done in II, serves as the starting point for the present
paper: we will now propose an action principle for the
STM atom, which includes fermions, in addition to gravity.
First, we simplify the above gravity action and its notation.
We will assume for now that y(u) = u, leaving for later the
considerations of convergence of the heat kernel expan-
sion. Further, settingx  Co/2, where Cy is a real constant

with dimensions of action, we can write the action (1) as
z

%PS% =2 drmip /12 3
q is assumed to have dimension of length, and the
expression inside the trace is dimensionless. In the spirit
of trace dynamics, we shall assume that the matrix g
(equivalently the operator) is made from elements that are
complex numbers or anti-commuting Grassmann num-
bers. In particular, we shall assume that the g matrix
above is made from even-grade elements of the Grass-
mann algebra, and is therefore a ‘bosonic’ matrix, which
we shall henceforth label as gg. This assumption is natu-
ral keeping in view that the above action describes gravity,
via the spectral action of non-commutative geometry, and
the Dirac operator is bosonic (and self-adjoint). Thus we

rewrite the action (1) as

z
LpS 1 :
f—g? =3 drTLp g3/L7c’] )

and relate gp to the Dirac operator as

1 dq B
Dp Tc dr 5)
Since the concept of an STM atom was introduced in I
as an entity that describes both matter and gravity at Level
0, we must now introduce the fermionic/matter aspect in
this action. In order to do so, we define a new g-operator
as follows:

q =4+ qr, (6)
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where gr is fermionic, i.e. it is made of odd-grade elements
of the Grassmann algebra. However, we do not yet place
any adjointness requirement on gp or gr: the Dirac oper-
ator Dg will now be made from the self-adjoint part of gp.
The above split of g as bosonic plus fermionic simply repre-
sents the fact that any matrix made from Grassmann ele-
ments can be written as a sum of a bosonic matrix plus
a fermionic matrix. The split is significant though, as we
will soon see that gr behaves very differently from gp: not
only does it describe emergent fermions but it also paves
the way for spontaneous localisation in a quantum grav-
ity theory. The STM atom is assumed to be described by
the following fundamental action principle, which is at the
heart of all subsequent development:

z
Ip S _1 Ly . 5 (G :
Te T3 9T g s+ Buan) s+ Bade) -

@)
Here, 1 and B, are two constant fermionic matri-
ces. These matrices make the Lagrangian bosonic. The
assumptions on these matrices are that they should not
both simultaneously commute (or anti-commute) with
gr (as justified later in the paper). These assumptions
are necessary for retaining the grgr term in the trace
Lagrangian, which would otherwise vanish. The above
trace Lagrangian can be expanded and written as

z

Lp S _a .2 . .
cC 2 & Trlgp + 4sB24gr
+ B1drds + B1grP2qrl, (8)
where we have denoted @ L3/L%c?.

The first term inside the trace Lagrangian has the
familiar structure of a kinetic energy, and in any case it is
what gives rise to the Einstein-Hilbert action in the heat
kernel expansion of D3. It is the cross terms in the trace
Lagrangian, which result from introducing the fermionic
gr, that are a game changer and, as we shall see, respon-
sible for causing spontaneous collapse, besides bringing
in fermions. As in trace dynamics, we assume the trace
Lagrangian to be an even-grade element of the Grassmann
algebra. We will denote the trace Lagrangian by the sym-
bol P, i.e. P = Tr L, where L is the operator polynomial
that defines the Lagrangian in this matrix dynamics.

It is noteworthy that the introduction of the two con-
stant matrices f; and 8, seems essential for the following
reasons. Our starting point for constructing the present
Lagrangian is the gravity Lagrangian in (3) for the bosonic
gg. It is natural that to introduce fermions, we generalise
gs to ¢ = qp + qr. We also expect the Lagrangian to be
quadratic in time derivative with respect to 7, and we
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also ask for the Lagrangian to be bosonic. This makes it
essential that a constant fermionic matrix  be brought
in, and the trace Lagrangian be made from the bosonic
q = qp + Bqr. For instance, the trace Lagrangian could be
Tr(gg + Bgr)®. Intriguingly, we did not succeed in making
a consistent model with only one constant matrix in the
Lagrangian. On the other hand, the situation eases imme-
diately when two constant matrices are brought in (i.e. B
and f8,). Furthermore, if we are seeking a bosonic trace
Lagrangian which is at the most quadratic in g, then it
will not be possible to introduce more than two constant
matrices so we seem to be dealing with a generic ‘free-
particle’ quadratic trace Lagrangian, which incorporates
gr. Our Lagrangian is not self-adjoint (nor the action is),
though, as we shall see, it becomes self-adjoint in the limit
in which classical dynamics (Level III) and quantum field
theory (Level II) are recovered. The anti-self-adjoint part
of the Lagrangian is responsible for spontaneous locali-
sation, and it arises quite naturally from the structure of
our assumed trace Lagrangian: as soon as the fermionic
part gr is introduced, spontaneous localisation becomes
inevitable.

There are three universal constants in the theory:
Planck length Lp and Planck time 7p = Lp/c, where the
speed of light ¢ should be thought as the ratio L,/7p. The
third universal constant C has dimensions of action, and
at Level I will be identified with the Planck constant ~.
Newton’s gravitational constant G and Planck mass mp are
emergent only at Level L. In fact, the concepts of mass and
spin themselves emerge only at Level I, and are not present
at Level 0. We associate only a length scale (more precisely
an area L?) with the STM atom, but not mass nor spin, at
Level 0.

One can now derive the Lagrange equations of motion,
as is done in trace dynamics. The derivative of the trace
Lagrangian P (note that P is a complex number) with
respect to an operator O in L is defined as

oP = Tra—PSO.

. ©

This so-called trace derivative is obtained by varying
P with respect to O and then cyclically permuting O inside
the trace, so that §O sits to the right of the polynomial
L. While permuting cyclically inside the trace, one has
to keep in mind the change in sign when permuting two
fermionic matrices yi1, x2, and no change in sign when a
bosonic matrix B is permuted with any other matrix:

Tt[B1, B2l = Tr[By, B1l, Tt[B, x] = Trly, Bl,

Trlxsn x21 = Trlxaxal. (10)

M. Palemkota and T. P. Singh: Equations for Quantum Gravity = 145

The extra sign that appears in the commutator of
fermionic matrices in (10) causes these matrices to fol-
low different adjointness properties. If 0%, ..., O%" are n
matrices with grades gi,..,8n, respectively, then

P
(0% -08) =( 1 oft..o8
So, two fermionic matrices y; and y, obey ( )(1)(2)Jr =
x4x\. This minus sign is not there if one or both matrices
are bosonic.
We can now vary the action (8) with respect to gg and
gr, in the spirit of trace dynamics, and obtain the Lagrange
equations of motion:

d P
dr 64s

6P

— =0 12
54 (12)

and an analogous equation for gr. Since the trace
Lagrangian is independent of g, the conjugate momenta
pp = 6P/6g4p and pr = 6P/6qF are constant. From the
trace derivative of the trace Lagrangian with respect to gp
and gr, we get the momenta to be

Pr= o= Sl2dp + By + B2,

in (13)

Pr= % = %[QB(ﬁl + B2) + B1grP2 + B2qrPil. (14)

We note that all the degrees of freedom gp, gr, ps,
pr obey arbitrary time-dependent commutation relations
with each other. Quantum commutation relations emerge
after constructing a statistical thermodynamics for an
ensemble of STM atoms [5].

The momenta pp and pr are, respectively,
bosonic/fermionic. Both the momenta are constant,
because the trace Lagrangian does not depend on g. This
implies

2gp + (B1 + B2)qr = c1, (15)

qs(B1 + B2) + B1grB2 + B2grP1 = c2, (16)

where c¢; and ¢, are constant bosonic and fermionic matri-
ces, respectively. These equations yield the following solu-
tions for gg and gr:

qp = %[Cl (B1+B2)B1 B2) !

[2c;  c1(B1+ BB B1) 1, 17

qgr=B1 P2 12¢, c1(B1+BIB2  B1) 1, 18)
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This means that the velocities gg and §r are constant,
and gp and gr evolve linearly in Connes time.

Since pgp = §c1 and pr = §c2, (17) and (18) can be
written as

a=los Bi+p)B )

2pr  pe(B1+ BB 1) ', (19)

. 2
Gr=2B1 B2 '2pr peBi+BIB2 B1) . (20)
The trace Hamiltonian H can be constructed as

H = Tt[prqr] + Tt[ppgp] TrL, (1)

which becomes, after substituting for momenta and the
Lagrangian
h i

H=Tr ;@B + B1gr)(gs + Pair) 22)

and in terms of the momenta

2
H= Tra[(pBﬁl pr)(B2 B1) '(weB2 pRBL B2) L.
(23)
In trace dynamics, Hamilton’s equations of motion are
6H _ . 6H
8q, " bpy

= &rqrs (24)

where £, = 1( 1) when g, is bosonic(fermionic). For our
case, the Hamilton equations for bosonic variables are

a5 =206 ) 'sho PG B
+Ba(Br B2) 'webr pRB2 Bu) L,

pp =0.

(25)
(26)

The Hamilton equations for fermionic variables are
.o 2 1 1
qr = E[(ﬁz B1) “(peB2 pr)B1  B2)

B2) ‘(weB1 pr)B2 B1) I,

pr=0.

+ (1 (27)

(28)

It can be verified that these equations are identical
with those solutions above, which come from Lagrange’s
equations.

Taking cue from the expression for pg, we can define
the generalised (bosonic) Dirac operator D given by

1 dg 1 dgs

— % p py+pp Dy — 9B,

Lc dr B B "B Te ar’
B1 + B2 dgr

Dr (29)

2Lc dt°
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We note that it is a constant operator, and we can also
express this as an eigenvalue equation

[Dp + Delyp = Ay, (30)

where the eigenvalues A, assumed to be c-numbers, are
independent of Connes time 1, and the state i can depend
on 7 at most through a multiplicative factor.

In trace dynamics, there is a conserved charge, known
as the Adler-Millard charge, corresponding to a global
unitary invariance of the trace Lagrangian/Hamiltonian.
Assume a dynamical operator x, that undergoes a trans-
formation as x, ¥ U'x,U, where U is a constant N N
matrix, given by U = exp A, where A is an anti-self-adjoint
bosonic generator matrix. Under such a transformation of
operators, the trace Hamiltonian remains invariant.

Thus, the Adler-Millard charge is conserved under the
transformations, which obey

L(fU'q,Ug, fU' 4, Ug) = L(fq,9, F4,0), (31

where U is a constant unitary matrix, which is written
as U =-exp A, where A is an anti-self-adjoint bosonic
generator matrix. Applying the above condition on our
Lagrangian gives

L(fU'q,Ug, fU'§,UQ)

= Tr[U'q3U + U'qpUB,U" grU

+B1U"GrqpU + B U grUBU'GrU].  (32)
The above equation satisfies (31) if we choose
UB,U =B, and UBU' = B;. (33)

This condition also means that f; and 8, commute
with U (or A equivalently).

The Adler-Millard charge in trace dynamics can be
shown to be [5]

. X
Cc= [thl‘]
r2B

<
fq:, prg.
r2F

(34)
Substituting the momenta in the above equation, we
get
(2/a) C = [gp, 245 + (B1 + B2)F]
Tqr, gp(B1 + B2) + B1grB2 + B2grP19
= [gB, 2gs] + [gB, (B1 + B2)gF]
far, 4s(B1 + B2)g

Tqr, B1grP2 + P2qrP10. (35)
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The cross terms in the charge are expected to van-
ish at equilibrium when one constructs a statistical
thermodynamics for this matrix dynamics. The important
terms that lead to the emergence of statistical thermo-
dynamics, and cause spontaneous collapse, are 2[gqg, 5]
and fqrp, B1qrB2 + B2grBi19. Splitting gp into its self-
adjoint and anti-self-adjoint parts, i.e. gg = qgs + qBgas,
we get

2[gg, gl = 2(lgss, ¢ps] + [gss, dpas]

+ [qBas, qss] + [aBas, gsas])  (36)

The terms [qps, Gpas] and [ggas, ¢gs] are self-adjoint,
and the terms [qps, ¢Bs], [qBas, qras] are anti-self-adjoint.
Now writing pf; = B1grfB2 + B2grB1 and splitting g and
pf, into their self-adjoint and anti-self-adjoint parts, i.e.
qr = qrs + qras and pr = Pj;g + Prag We have

fqr, phg = Fars, phgg + Fars, v, 50

+ fqras, pj;:sg + fqras, p];:Asg- (37

The terms fqrs, p’;ASg, fqras, pfFSg are self-adjoint,
and the terms {qps,pl;sg, quAs,p’;.ASg are anti-self-
adjoint. The anti-self-adjoint part of C determines the
emergent quantum commutators at equilibrium [5].

2.1 Adjointness Properties

The Hamiltonian is
h a i
H=Tr 5(1’13 + B14r)(gp + B2gr) - (38)
It is very important to retain Tr[81 g2 §r] in the trace
Hamiltonian to get fermionic anti-commutator in the con-
served charge:

Tr[B1GrB24r]
=Til grB1grPBal (39)
= TrlB1qrB2gr + [Gr, P11B2dF
+ B1grlgr, B2l + [gF, P1llgr, B21]  (40)

Tr[B1grB2qr  B1Grfqr, B29
Tqr, f19B2qr + Tqr, B19FGrF, 20l (41)

From (40) and (41), to retain the Tr[81GrB2qr], both
B1 and B, cannot simultaneously commute or anti-
commute with gp.

The Hamiltonian can be split into its self-adjoint and
anti-self-adjoint parts as follows:

Hs = Trlg +[(B1dr)s + (B2ar)slas + (BrarB2dr)s), (42)
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Hys = Tr[[(B14r)as + (B2gr)aslds + (B1drB2dr)as]. (43)

Let us consider the adjointness property of the
momentum pg. For the remainder of our analysis, we shall
assume that gp is self-adjoint: this is consistent with the
assumption that the bosonic Dirac operator Dg made from
gp is required to be self-adjoint in the spectral action.
DB is

a,. . .
PB = 5(2613 + (B1 + B2)ar)- (44)

Assuming that gp is self adjoint, pg becomes self-

adjoint when

[(B1r)as + (B2gr)as] = O, (45)
which also means
(B1 + B2)ar + qF(Br + B2)" = 0. (46)

Equation (46) does not say anything about the adjoint-
ness of §; and f3; individually. We may assume for simplic-
ity that 1 and f3, are self-adjoint:

Bi=pB & p5=pa. (47)
Using (47) and (46), (45) becomes
(81 + B2), qrs9 + [(B1 + B2), Gras] = 0. (48)

This is the condition for the adjointness of pg. Next,
the self- and anti-self-adjoint parts of pr are given as

DFs = %[fiIB; (B1+B2)9+2(B1qrasB2+B2qrasPl, (49)

([gs, (B1 + B2)] + 2(B1grsP2 + P2grsP1)]. (50)

a
DFas = A

The self-adjoint and anti-self-adjoint parts of the
fermionic anti-commutator in the Adler-Millard charge are

Crs = Tqs, (B1gasP2 + B2dasPp1)g

+ Tqys, (B1gsP2 + B2gsP1)9, (51)
Cras = Tqs, (B1gsP> + B2gsP1)g
+ fqas, (B1gasPo + B2dasP1)9. (52)

In these two equations, g stands for gr. In (46), the
sum of the terms is zero. However, if the terms are inde-
pendently zero, i.e. (B1Gr)as = 0 and (B2Gr)as = O, then
Hys will vanish.

In summary, we see that while it is reasonable to take
gp as self-adjoint, it is not really necessary to assume
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PB, Pr, and H to be self-adjoint, at Level 0. All that we
should require is that at Levels II and III, i.e. in quan-
tum field theory and classical dynamics, these quanti-
ties should become self-adjoint. We will see in the next
section that this can be ensured. However, we do not make
our measurements at Level 0; hence there is no reason to
require these quantities to be self-adjoint at Level 0. In
fact, it is their anti-self-adjoint component, which arises
very naturally, that is responsible for a dynamical origin
of the quantum-to-classical transition (spontaneous local-
isation). Thus, in this theory, it is not necessary to ascribe
any interpretation to quantum theory to get the classi-
cal world to emerge from quantum theory. It is the pres-
ence of these anti-self-adjoint terms that gets missed when
we construct a quantum theory of gravity by quantizing
a classical theory of gravity. The bottom-up approach to
quantum gravity has more information than a top-down
approach.

The fact that the STM atom evolves like a free par-
ticle, inspite of the Hamiltonian not being self-adjoint,
suggests that we could think of its motion in the Hilbert
space as ‘geodesic’ motion in a non-commutative geom-
etry. We can associate a state vector with the STM atom,
analogous to the four-velocity vector in special relativity,
whose length remains unchanged during geodesic (i.e.
free) motion. This observation will help us in the next
section to motivate the constancy of the norm of the state
vector in the emergent theory. This overcomes a limita-
tion of collapse models, in which norm preservation in the
presence of stochastic noise has to be added by hand as
an ad hoc assumption, so as to be able to derive the Born
probability rule.

Our theory also enables us to construct a relativistic
quantum (field) theory of spontaneous localisation. It is
our contention that a relativistic theory of spontaneous
collapse must treat time at the same footing as three-
space. This implies that there must take place sponta-
neous localisation in coordinate time, besides in space.
This requires us to treat coordinate time, besides the spa-
tial position of a particle, as an operator. The role of time
as an evolution parameter has to be then played by some-
thing else, and Connes time does precisely that. A rela-
tivistic quantum field theory must treat coordinate time
also as an operator, but so long as spontaneous collapse in
time can be neglected, treating operator time as a classical
Lorentz invariant coordinate time is an excellent approxi-
mation as is assumed in conventional quantum field the-
ory. It is well known though, that one can also develop
an equivalent version of quantum field theory (the so-
called Stueckelberg-Horwitz relativistic quantum mechan-
ics [6]), which treats time as an operator and introduces,

DE GRUYTER

alongwith, a new absolute time parameter for defining
evolution.

At Level 0, the Hilbert space is populated by a
large number of STM atoms, each of which is a free
particle described by the dynamics described above.
Interaction between atoms is via entanglement of their
individual states. Each g-particle carries its own set of
non-commuting space-time coordinates (see I). There is no
classical space-time, only a Hilbert space in which evo-
lution is with respect to Connes time 7. There is a con-
served Adler-Millard charge for the collection of atoms, as
given by (34), where the index r indicates sum over all
STM atoms. Classical space-time emerges after one car-
ries out a statistical thermodynamics of a large number
of STM atoms, and spontaneous localisation arises away
from thermodynamical equilibrium. This is described in
the next section. Note that we do not quantise this matrix
dynamics; rather, quantum theory emerges from it, just
like in trace dynamics.

3 Origin of Spontaneous
Localisation

Once the matrix dynamics at Level 0 has been specified
by prescribing the Lagrangian, one constructs the statis-
tical thermodynamics of a large number of STM atoms.
The motivation is that if one is not observing the micro-
scopic dynamics at the Planck scale, it is then the emergent
coarse-grained dynamics that is of interest. To do this, one
applies the standard principles of statistical mechanics to
an ensemble of STM atoms, as is done in trace dynamics
(see e.g. Chapter 4 of Adler’s book [5]). One starts by set-
ting up an integration measure in the operator phase space
for the bosonic and fermionic matrices. Then a Liouville
theorem is derived. Next, given the operator phase space
measure, one defines an equilibrium phase space density
p, which is used to define the probability of finding the
system in the phase space volume element du. A canon-
ical ensemble and an entropy function are constructed, as
a function of the conserved charges: the trace Hamiltonian
and the Adler-Millard charge. The equilibrium distribution
is constructed by maximising the entropy function. While
we will describe this analysis in detail in a forthcoming
work, the analysis essentially follows that in trace dynam-
ics. All that we have done in the present paper is to propose
a specific trace dynamics Lagrangian that brings gravity
into the trace dynamics framework and unifies it with mat-
ter fermions. And although classical space-time is lost at
Level 0, Connes time enables us to define evolution.
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This sets the stage for the emergence of the coarse-
grained quantum gravitational dynamics at thermo-
dynamic equilibrium. A Ward identity, which is the
equivalent of the equipartition theorem, is derived. As
in trace dynamics, the anti-self-adjoint part of the con-
served Adler-Millard charge is equipartitioned over all the
degrees of freedom, and the equipartitioned value per
degree of freedom is identified with the Planck constant
~. At thermodynamic equilibrium, the standard quantum
commutation relations of (an equivalent of) quantum gen-
eral relativity emerge, for the canonical averages of the
various degrees of freedom:

lgs, pgl = i~; qus,péASg =i~

Tqras, Pl;:sg =i-. (53)

All the other commutators and anti-commutators
amongst the canonical degrees of freedom vanish at ther-
modynamic equilibrium. The above set of commutation
relations hold for every STM atom. We note that we
describe quantum general relativity in terms of these g-
operators, and not in terms of the metric and its conjugate
momenta, which are emergent concepts of Levels Il and III.

The mass m of the STM atom is defined by m = ~/Lc;
and L is interpreted to be its Compton wavelength. New-
ton’s gravitational constant G is defined by G L;c/~,
and Planck mass mp by mp = ~/Lpc. Mass and spin are
both emergent concepts of Level I; at Level 0, the STM atom
only has an associated length L.

As a consequence of Hamilton’s equations at Level
0, and as a consequence of the Ward identity mentioned
above, the canonical thermal averages of the canonical
variables obey the Heisenberg equations of motion of
quantum theory, these being determined by Hg, the canon-
ical average of the self-adjoint part of the Hamiltonian:
ops

l"y = [ps, Hsl;

. oqgsp _ .
3 lgs, Hsl;

) o
i~%9F = (gp Hl,  i~FF = ), By,

oT oT (54)

In analogy with quantum field theory, one can trans-
form from the above Heisenberg picture, and write a
Schrédinger equation for the wave function W(7) of the full
system:

ov

i~ = = Hsot¥(1),

oT (55)

where Hsgot is the sum of the self-adjoint parts of the
Hamiltonians of the individual STM atoms. Since the
Hamiltonian is self-adjoint, the norm of the state vector
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is preserved during evolution. This equation is the analog
of the Wheeler-DeWitt equation in our theory, the equa-
tion being valid at thermodynamic equilibrium at Level I.
This equation can possibly resolve the problem of time in
quantum general relativity, because to our understanding
it does not seem necessary that the physical state must
be annihilated by Hgio. We have not arrived at this the-
ory by quantising classical general relativity; rather, the
classical theory will emerge from here after spontaneous
localisation, as we now describe.

We can now describe how spontaneous localisation
comes about. It is known that the above emergence of
quantum dynamics arises at equilibrium in the approx-
imation that the Adler-Millard conserved charge is anti-
self-adjoint, and its sef-adjoint part can be neglected.
In this approximation, the Hamiltonian is self-adjoint.
Another way of saying this is that quantum dynamics
arises when statistical fluctuations around equilibrium
(which are governed by the self-adjoint part of C) can be
neglected. When the thermodynamical fluctuations are
important, one must represent them by adding a stochas-
tic anti-self-adjoint operator function to the total self-
adjoint Hamiltonian (note that one cannot simply add
the anti-self-adjoint part of the Hamiltonian to the above
Schrodinger equation because that equation is defined
for canonically averaged quantities; the only way to bring
in fluctuations about equilibrium is to represent them by
stochastic functions). This way of motivating spontaneous
collapse is just as in trace dynamics (see Chapter 6 of [5]),
except that we are not restricted to the non-relativistic case
and evolution is with respect to Connes time 7. Also, we do
not have a classical space-time background yet; this will
emerge now, as a consequence of spontaneous localisa-
tion (see also our earlier related paper ¢ Space-time from
collapse of the wave function’ [7]).

Thus we can represent the inclusion of the anti-self-
adjoint fluctuations in the above Schrédinger equation by
a stochastic function H(t) as

_ oY

i~ — = [Hsot + HDI¥ (7).

oT (56)

In general, this equation will not preserve the norm
of the state vector during evolution. However, as we noted
above, every STM atom is in free-particle geodesic motion.
Hence it is very reasonable to demand that the state vector
should preserve the norm during evolution, even after the
stochastic fluctuations have been added. Then, exactly as
in collapse models and in trace dynamics, a new state vec-
tor is defined, by dividing ¥ by its norm, so that the new
state vector preserves norm. Then it follows that the new
norm-preserving state vector obeys an equation that gives
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rise to spontaneous localisation, just as in trace dynam-
ics and collapse models (see Chapter 6 of [5]). We should
also mention that the gravitational origin of the anti-self-
adjoint fluctuations presented here (Dy is likely of gravi-
tational origin, and relates to the anti-symmetric part of
an asymmetric metric) agrees with Adler’s proposal that
the stochastic noise in collapse models is seeded by an
imaginary component of the metric [8, 9].

It turns out to be rewarding to work in the momen-
tum basis where the state vector is labelled by the eigen-
values of the momenta pp and pr. Since the Hamiltonian
depends only on the momenta, the anti-self-adjoint fluc-
tuation is determined by the anti-self-adjoint part of pr.
Hence it is reasonable to assume that spontaneous local-
isation takes place onto one or the other eigenvalue of
p’;. No localisation takes place in pp: this helps in under-
standing the long-range nature of gravity (which results
from g and the bosonic Dirac operator Dg). We assume
that the localisation of p’; is accompanied by the locali-
sation of gr and, hence, that an emergent classical space-
time is defined using the eigenvalues of gr as reference
points. Space-time emerges only as a consequence of the
spontaneous localisation of matter fermions. Thus we are
proposing that the eigenvalues of gr serve to define the
space-time manifold. It is not clear to us at this stage
as to what exactly is the relation between the g-operator
and the classical space-time metric: as of now we assume
that when spontaneous localisation leads to the emer-
gence of a classical space-time, it also (somehow) defines
the space-time metric. As in collapse models, the rate
of localisation becomes significant only for objects that
comprise a large number of matter fermions; hence the
emergence of a classical space-time is possible only when
a sufficiently macroscopic object comprising many STM
atoms undergoes spontaneous localisation. It is evident
that such localisation is far from an equilibrium process,
consequent upon a sufficiently large statistical fluctuation
coming into play. We now give a quantitative estimate as to
what qualifies as sufficiently macroscopic.

To arrive at these estimates, we recall the following
two earlier equations, the action principle for the STM
atom itself and the eigenvalue equation for the full Dirac

operator D:
LpS _a z
%: =5 dr Trlg + gsPagr + Prards + BrdrP2grl,
(57)
. 1 .1
[Dg +Dplp =AY  (Ag +iApY i + 1L—I Y. (58)

In the second equation, since D is bosonic, we have
assumed that the eigenvalues A are complex numbers and
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separated each eigenvalue into its real and imaginary part.
Furthermore, this will be taken as the definition of the
length scale L introduced earlier. We come back to L;
below. There will be one such pair of equations for each
STM atom, and the total action of all STM atoms will be the
sum of their individual actions, with the individual action
given as above.

When an STM atom undergoes spontaneous locali-
sation, p’; localises to a specific eigenvalue. Since Dy is
also made from g, just as p’; is, we assume that Dr also
localises to a specific eigenvalue, whose imaginary part is
the L introduced above. Correspondingly, the Dp associ-
ated with this STM atom acquires a real eigenvalue, which
we identify with the Az~ 1/L above (setting aside for the
moment the otherwise plausible situation that, in general,
pr will also contribute to Ag).

The spontaneous localisation of each STM atom to
a specific eigenvalue reduces the first term of the trace
Lagrangian to

Trlgz] ¥ Ag. (59)

If sufficiently many STM atoms undergo spontaneous
localisation to occupy the various eigenvalues /1}'-(, of the
Dirac operator Dg, then we can conclude, from our knowl-
edge of the spectral action in non-commutative geometry
[4], that their net contribution to the trace is

>
(AR)?

~a .2 -~ 2121 g2
5 Tr[gz] iTr[épDB] = ELp

d*x

:27[%

P-—

gR. (60)

Thus we conclude that the Einstein-Hilbert action
emerges after spontaneous localisation of the matter
fermions. In that sense, gravitation is indeed an emergent
phenomenon. Also, the eigenvalues of the Dirac operator
Dg have been proposed as dynamical observables for gen-
eral relativity [10], which in our opinion is a result of great
significance.

Let us now examine how the matter part of the general
relativity action arises from the trace Lagrangian (its sec-
ond and third terms) after spontaneous localisation. These
terms are

a— . . ..
—-TrlasPagr + B1drds] = ~Tr[L,DrDpl.  (61)

Spontaneous localisation sends this term to LIZ,
1/L; 1/L.There will be one such term for each STM atom
and, analogous to the case of TrDlz;, we anticipate that the
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trace over all STM atoms gives rise to the ‘source term’

_ = d =< i i
gd'x [Lp 1/L;  1/L']. (62)

i

Consider the term for one atom. We make the assump-
tion (which becomes plausible shortly) that spontaneous
localisation localises the STM atom to a spatial volume L>
such that LyL; = L. We note that it is natural to identify
L with the Compton wavelength ~/mc of the STM atom.
Moreover, we may say that the classical approximation
consists of replacing the inverse of the spatial volume of
the localised particle, i.e. 1/L3, by the spatial delta func-
tion 63(x Xo) so that the contribution to the matter source
action becomes

Z Z

~ Pga'x[,? 1L 1Ll=mc ds, (63)
which of course is the action for a relativistic point particle.

Putting everything together, we conclude that, upon
spontaneous localisation, the fundamental trace-based
action for a collection of STM atoms becomes
z b " JE #

4 P—

d’x " g ER +c

i

S = mi&>(x Xo) . (64)

In this way, we recover general relativity at Level III,
as a result of spontaneous localisation of quantum gen-
eral relativity at Level I. We should not think of the grav-
itational field of the STM atom as being disjoint from its
related fermionic source: they both come from the same
eigenvalue A, being, respectively, the real and imaginary
parts of this eigenvalue.

Strictly speaking, the Connes time integral should also
be displayed in the action principle:

7 7 ..3 #

s=% dr d4xp§ S R+c

o3
I, e m;6° (X  Xo) .

(65)

It is as if the observed universe is an enormous, spon-
taneously collapsed bubble that evolves ‘inside of a sea
of’ uncollapsed STM atoms. Inside the bubble there is a
space-time, with its own time evolution parameter, with
no direct indicator of Connes time. ‘Outside’ of the bubble,
there is no space-time, but only a Hilbert space populated
with other STM atoms, evolving in Connes time. Could it
be that the Big Bang represents an exceedingly huge spon-
taneous collapse event, involving an entangled state of an
astronomical number of STM atoms? Is such spontaneous
localisation accompanied by the expansion of the result-
ing classical space-time? And could it be that there are very
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many other spontaneously collapsing bubble universes
forming all the (Connes) time, in the Hilbert space of STM
atoms? The far-from-equilibrium dynamics of such spon-
taneous fluctuations in an ensemble of STM atoms should
be an interesting aspect to explore.

We have not been able to come to a definite conclu-
sion as regards what happens to the last term in the trace
Lagrangian (57) (i.e. B1grB2qr) after spontaneous locali-
sation. It roughly has the structure Tr[D?%]. Adding the con-
tribution of the eigenvalues qr; and g, of f14r and B2gF
from all STM atoms, we get Tr[qr1; qr»;]. While we do not
have a proof, we suggest that this could give rise to the cos-
mological constant term of general relativity. If this were
to be true, then we can schematically sum up the overall
picture as

Z
Snvg = dr Tl‘Di2
1
Z 3 Z
c
T dr 5G
Z

+ d*x p§ Limatter

dxPgr  2n]

(66)

Here, Symg on the left is the total action of all STM
atoms in this non-commutative matter-gravity. The action
on the right side of the arrow describes classical general
relativity with a cosmological constant and point matter
sources and is what emerges after spontaneous localisa-
tion. Our theory thus elegantly unifies, in a simple way, the
disjoint matter-gravity descriptigns on theright-hand side,
by bringing them together as  Tr Dl-z. Note that, unlike
the action on the left-hand side of the arrow, the right-
hand side of the above equation is in no way the sum of the
contributions of individual STM atoms: the matter part is
a sum, but the gravity part is not. Undoubtedly then, the
gravity part is an emergent condensate. It simply cannot
be quantised. The right-hand is the (commutative) action
at Level III covariant under general coordinate transfor-
mation of commuting coordinates, whereas the left-hand
side action at Level I is covariant under general coordinate
transformations of non-commuting coordinates. It is inter-
esting that the transition from a non-commutative geom-
etry to a commutative geometry is caused by spontaneous
localisation and that statistical thermodynamics plays a
central role in it.

Let us return to our assumption L; = L3 / L}%, which, as
we will now see, has profound consequences. If we con-
sider the case of a nucleon, and substitute for L the Comp-
ton wavelength of a nucleon ( 10 ** cm), then L; comes
out to be 10¥ c¢m, which is close to the size of the observed
universe (10?2 cm). If this is not a coincidence, it suggests
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the possibility of a connection between spontaneous local-
isation and the scale of the universe. In particular, it might
be possible to define the rate of spontaneous collapse as
Li/c 10 ' s 1, which happens to be the same as the
collapse rate assumed in standard models of localisation.

Let us return next to the modified Dirac equation that
we wrote above:

1

1 .
—+ 71—

[Dp + Drly = Ay L

(Ar +iADY Y. (67)

Substituting L; as L; = L>/L3, we can write this as

2
[DB+DF]¢:1 1+iLi P

I 12 (68)

and it is instructive to define a complex length scale Lcom
by

Leom _ 1 L} 1 .Rs .
2 I +lﬁ I 1+1T Lcom = L +iRg,

(69)

where Rg is the Schwarzschild radius associated with an
STM atom of mass m having a Compton wavelength 1/L. If
Rs L(i.e.m  mp), theimaginary part of the complex
length is ignorable compared to the real part, hence Dr can
be ignored compared to Dg and we get the standard Dirac
equation for a matter fermion. This is the microscopic
quantum limit, where spontaneous localisation is insignif-
icant. On the other hand, when Rs L, (i.e. m mpp),
the imaginary part of the length L.om dominates over the
real part, spontaneous localisation is significant, and we
recover classical behaviour: in fact, a black hole solution
of radius Rs. Thus our matrix dynamics nicely interpolates
between quantum theory and classical mechanics; we did
not have to put in this behaviour by hand, rather it comes
out quite naturally from the theory. Incidentally, the ratio
L?/Rs = ~*/Gm>, which is implicit in the above length
scale, arises naturally as the decoherence length scale
when one studies gravitationally induced decoherence
using the Schrodinger-Newton equation. In our context, it
implies that gravitational decoherence is significant when
the Compton wavelength is larger than this decoherence
length. As expected, for a nucleon this length is of the
order of the size of the universe. The length L¢om cannot
have a magnitude smaller than Planck length: this pos-
sibly is a way of avoiding the gravitational singularity of
a black hole, because it will never shrink to a vanishing
Lcom-

For a black hole made of N nucleons, the amplified
collapse rate is 10 7 N's !, which for an astrophysical
black hole with N 10°’ gives an extremely rapid rate
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of 10%° collapses per second; obviously, then black holes
behave classically. An object with a mass smaller than
Planck mass cannot be a black hole: it is necessarily quan-
tum in nature.

The Dirac equation (68) is one of great significance, as
it admits solutions which have Dirac fermions and black
holes as their special limiting cases. In that sense, this
equation unifies the standard Dirac equation with Ein-
stein equations. It answers the question: given a relativis-
tic mass m, does it obey the Dirac equation or Einstein’s
equations? It also helps in understanding why a Kerr-
Newman black hole has the same gyromagnetic ratio as
the electron: because they are both solutions of the same
equation, i.e. (68).

Equation (68) admits a duality, between black hole
and fermion solutions, after it is written as

L .
[Dp + Drlyp = Z)zm (L +iRs)Y. (70)
Given a black hole solution gy (i.e. Rs L) with

mass mgy, consider a Dirac fermion solution r (i.e. L’
R’s) with a mass mp = m}%l /mgg. That is, the second solu-
tion is obtained by setting its Schwarzschild radius equal
to Compton wavelength of first solution and setting its
Compton wavelength equal to Schwarzschild radius of
first one. This interchange means that the eigenvalue Ar
of the second solution is m3;/mfy times the eigenvalue
Agp of the first one, and the real and imaginary parts have
been interchanged. Thus, given a solution Y gy with eigen-
value Agy, its dual solution Y can be found by interchang-
ing the real and imaginary parts of the eigenvalue and
downscaling the magnitude of the eigenvalue, as just men-
tioned. This duality might be of some help in a computa-
tion of the entropy of the black hole, from a knowledge
of the eigenvalues and eigenstates of the Dirac operator
Dg. This is plausible because the action function of the
black hole, which in turn is related to its entropy, is after
all constructed from the eigenvalues of Dg.

The duality L ¥ L2/L has been investigated earlier
as well. The conclusion that space-time intervals have a
minimum length Lp has been derived in [11] by proposing
that in the path integral for a spin-zero free particle, paths
of length | have the same weightage as paths of length
L3/1. The subtle difference in our case is the i factor, which
enables spontaneous localisation: thus the duality in our
caseisl ¥ iL3/l.

Thus far we have derived a reasonable understand-
ing of the dynamics of STM atoms at Level O, Level I,
and Level III. Level O is the fundamental matrix dynam-
ics, Level I is its statistical thermodynamics (equivalent of
quantum general relativity), and Level III is its classical
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limit (caused by spontaneous localisation), i.e. the classi-
cal theory of general relativity. Level II is the hybrid level:
quantum field theory on a curved space-time. Level II is
concerned with those STM atoms that have not yet under-
gone spontaneous localisation. How to describe their
dynamics from the point of view of the classical space-
time which has already been created from the spontaneous
localisation of many many other STM atoms? These uncol-
lapsed atoms obviously live at Level 0, where we know how
to understand their dynamics. Furthermore, we can also
do the statistical thermodynamics for them and describe
them at Level I, while neglecting their spontaneous local-
isation at Level 1. To arrive at Level II, we first neglect
their own gravitational degree of freedom gg, replace the
Connes time evolution by time evolution provided by the
emergent space-time of collapsed STM atoms, and replace
their Dp operator by the standard Dirac operator associ-
ated with the emergent space-time. We also neglect Dg
(no spontaneous localisation). Thus we have the standard
Dirac equation for fermions, as well their standard quan-
tum commutators. Since we have not yet introduced non-
gravitational interactions in this matrix dynamics, there
are no other bosonic fields yet in the theory.

It is very interesting to ask if we could have missed
out some vital information in going from Level I to Level
II in the above manner. Indeed we have. We recall from
the discussion earlier in this section that space-time is
emergent from the spontaneous localisation of gr. If we
were to describe spontaneous localisation of the fermionic
degrees of freedom at Level II, we must invoke the sta-
tistical fluctuations around equilibrium. And if we want
to have a relativistic theory of collapse at Level II, we
will need to bring Connes time back into the picture and
describe spontaneous localisation at Level II precisely as
we did above. We cannot appeal to the emergent space-
time to provide a background for relativistic collapse [7].
This leads to a falsifiable prediction: spontaneous collapse
of the operator coordinate time f. Thus Connes time is
crucial at Level II as well if we are to describe relativistic
spontaneous localisation. Of course, one can take the non-
relativistic limit of the relativistic theory of Level II and
then describe collapse in absolute Newtonian time, as is
done in conventional collapse models.

4 Concluding Remarks

We have presented a viable new quantum theory of grav-
ity, which predicts spontaneous localisation and sponta-
neous collapse in time. The theory is hence falsifiable,
and a vigorous experimental effort is currently under way
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in various laboratories to test models of spontaneous
collapse [12, 13]. Our theory combines non-commutative
geometry and trace dynamics to construct a matrix dynam-
ics for our newly introduced concept of atoms of space-
time matter. This is a quantum theory of gravity, from
which quantum general relativity and classical general
relativity emerge as approximations.

Among the outstanding open issues that still need to
be resolved are understanding the exact relation between
the g-operator and the space-time metric and the interpre-
tation of the operator Dr. Our guess is that gg somehow
relates to the symmetric part of an asymmetric metric at
Level 0, and gr relates to its complex anti-symmetric part,
with D being related to a complex torsion induced by the
anti-symmetric part of the asymmetric metric. Also, right
at the beginning we made the assumption y(u) = u and
restricted ourselves to the second order in the heat ker-
nel expansion of the Dirac operator. Also we neglected the
cosmological constant term, which arises at order L, “in
the heat kernel expansion. These assumptions will need
to be relaxed so that one deals with the full theory with-
out an expansion in LIZJ. Furthermore, Dg is defined on
a Euclidean space-time, so we have a Euclidean quan-
tum gravity theory. This will have to be replaced by the
Lorentzian theory. Another important aspect is to now
include other interactions in this framework.

It would be of great interest to explore the eigenval-
ues and eigenstates of the full Dirac operator D = Dg + Dp
on a non-commutative space. This could help predict the
discrete masses of elementary particles. We have already
seen above the relation L; = L>/L3 between the real and
imaginary parts of the eigenvalue of the D-operator. The
fact that L; comes out to be the order of the size of the
observed universe introduces an infra-red scale into the
theory, which could help address the hierarchy problem.
In fact, this relation allows us to ‘predict’ the mass mpy
of a proton in terms of the Planck mass mp and the Hub-
ble parameter(L; cH, 1), recalling that L is the Compton
wavelength:

LEVE!

mPr ~ LP (71)
cH,!

We can say that the proton mass is much much smaller
than the Planck scale, because the universe is much much
bigger than the Planck scale.

Our theory probably also has interesting implications
for black hole evaporation. Black holes for us arise as
a spontaneous localisation of a collection of STM atoms
having a total mass M, for which the Schwarzschild
radius exceeds the Compton wavelength. Thus black hole
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formation is a far-from-equilibrium, non-unitary (caused
by a statistical fluctuation) process. Thus even though
a black hole has enormous entropy, it is nonetheless a
far-from-equilibrium state of relatively low entropy (com-
pared to what it would be at thermodynamic equilibrium).
Hawking evaporation is a process (opposite to sponta-
neous localisation) whereby a black hole returns to ther-
modynamic equilibrium with the ‘sea of STM atoms’ in the
Hilbert space. Recall that the equilibrium is described by
quantum general relativity/quantum field theory. In the
long run, all matter in the universe will condense into
black holes, and then evaporate as radiation and go back
to quantum gravitational equilibrium: this will amount to
loss of classical space-time and a return to evolution in
Connes time. There is no question of an information loss
paradox, because in the first place the formation of a black
hole is itself a non-unitary process [14].

Lastly, we note that we were compelled to introduce
two constant matrices 1 and 8,, and work with gg + S1gF
and gp + B24qr, as if to suggest that our STM atom is a two-
dimensional entity (‘space time is two-dimensional at the
Planck scale?’). Could it be that the object that we have
called the STM atom is after all the closed string of classi-
cal string theory? Or, could it be related to the loop in loop
quantum gravity?
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