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Abstract: Infinite-dimensional space of axisymmetric

exact solutions to the Navier–Stokes equations with time-

dependent viscosity ν(t) is constructed. Inner transfor-

mations of the exact solutions are defined that produce

an infinite sequence of new solutions from each known

one. The solutions are analytic in the whole space R3

and are described by elementary functions. The bifur-

cations of the instantaneous (for t = t
0
) phase portraits

of the viscous fluid flows are studied for the new exact

solutions. Backlund transforms between the axisymmet-

ric Helmholtz equation and a linear case of the Grad–

Shafranov equation are derived.

Keywords: Backlund Transforms; Collapses; Discontin-

uous Functions; Inner Transformations; Viscous Flows;

Vortex Blobs; Vortex Rings.

1 Introduction
Different aspects of theory of Navier–Stokes equations

were developed in numerous publications (see [1–5] and

references therein). During the past 190 years, many

exact solutions to theNavier–Stokes equations (1823) were

derived. There are several reviews devoted to the exact

solutions possessing different symmetries [6–10].

We introduce in this article new axisymmetric time-

dependent exact solutions to theNavier–Stokes equations.

The solutions are studied in the cylindrical coordinates

r, z, φ and depend on variables r, z, and time t. We con-

struct an infinite-dimensional space of solutions forwhich

fluid velocity V(r, z, t) is analytic in the whole space R3

and is defined for all moments of time t. Inner transforma-

tions acting on the space of exact solutions are presented

that generate from any exact solution an infinite sequence

of new ones.

We study the bifurcations of the instantaneous (for

t = t
0
) phase portraits of the viscous fluid flows for the
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new exact solutions. Namely, we investigate dynamics of

the vortex blobs and vortex rings, which are the maximal

compact domains invariant (for any fixed moment of time

t
0
) with respect to the vorticity vector field ∇ ×V(r, z, t

0
).

As known, for the ideal incompressible fluid, the vortic-

ity field is frozen into the fluid flow. Therefore, the vortex

blobs and vortex rings are transported with the ideal fluid

flow; their volume is constant. We show that for the con-

structed exact solutions to the Navier–Stokes equations,

the vortex blobs and vortex rings are not frozen into the

viscous fluid flow and collapse and disappear as t → ∞.

For the new exact solutions, we study the behaviour

of the volume Vm(t) of the vortex blob. We show that

despite the analyticity of exact solutions the function

Vm(t) is not even continuous. The function Vm(t) is a dis-
continuous monotonously decreasing function of time t
that has jumps down and infinite derivatives at an infi-

nite sequence of moments of time −∞ < · · · < tk < · · · <

t
3

< t
2

< tm, where tk → −∞ when k → ∞. The volume

function Vm(t) has its minimal value at t = tm. Function
Vm(t) is defined for t ∈ (−∞, tm). Here, tm is the maxi-

mal time when the vortex blob exists; it does not exist for

t > tm.

2 Infinite-Dimensional Space of
Exact Solutions

I. In this article, we derive and study new exact solutions

to the Navier–Stokes equations

∂V
∂t + (V · ∇)V = −1

ρ∇p + ∇Ψ + ν∆V,

∇ · V = 0, (1)

whereV(x, t) is the fluid velocity; p(x, t), the pressure; ρ, a
constant density; Ψ(x, t), an arbitrary gravitational poten-
tial; ν(t), the kinematic viscosity that is an arbitrary piece-

wise continuous nonnegative function of time t; and ∆, the
Laplace operator.

Theorem 1: The Navier–Stokes equations (1) have exact
z-axisymmetric solutions

V(r, z, t) = αξrêφ + 2ξ êz + f (t)B(r, z), (2)
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p(r, z, t) = ρ
[︂
C + Ψ(r, z, t) + α2ξ2r2

+α2ξf (t)ψ(r, z) − 1

2

|V(r, z, t)|2
]︂
, (3)

where α, ξ , and C are arbitrary constant parameters; êr,
êz, êφ are the unit vector fields tangent to the cylindrical
coordinates r, z, φ. The function of time f (t) is

f (t) = exp

⎛⎝−α2
t∫︁

0

ν(τ)dτ

⎞⎠
. (4)

The z-axisymmetric vector fields B(r, z) are steady and
have the form

B(r, z) = −1

r
∂ψ
∂z êr +

1

r
∂ψ
∂r êz +

αψ
r êφ , (5)

where the streamfunction ψ(r, z) is an arbitrary solution to
the equation

∂2ψ
∂r2 − 1

r
∂ψ
∂r +

∂2ψ
∂z2 = −α2ψ. (6)

The vector fields B(r, z) (5)–(6) satisfy the Beltrami
equation

∇ × B(x) = αB(x). (7)

If for some period of time c ≤ t ≤ d viscosity ν(t) = 0,
then solution (2), (3) becomes a steady solution for c ≤
t ≤ d to the Euler equations for ideal incompressible fluid
dynamics.

Proof. (a) The vorticity field for the vector field (5) has the
form

∇ × B(r, z) = −α
r
∂ψ
∂z êr +

α
r
∂ψ
∂r êz

− 1

r

(︂
∂2ψ
∂r2 − 1

r
∂ψ
∂r +

∂2ψ
∂z2

)︂
êφ . (8)

Substituting here (6), we arrive at the Beltrami equa-

tion (7).

As a consequence of (7), we get ∇ · B = 0. As rêφ =
−yêx + xêy, the vector fields V(r, z, t) (2) also satisfy the
incompressibility equation ∇ · V = 0.

(b) Let us show that vector fields V(r, z, t) (2) satisfy
equation

(∇ × V) × V = ∇
[︁
−α2ξ2r2 − α2ξf (t)ψ(r, z)

]︁
. (9)

Indeed, using equation

∇ ×
[︀
αξrêφ + 2ξ êz

]︀
= 2αξ êz (10)

and (7), we find for the vector fields V(r, z, t) (2):

∇ × V(r, z, t) = 2αξ êz + αf (t)B(r, z)

= αV(r, z, t) − α2ξrêφ . (11)

The equation proves that vector fields V(r, z, t) (2) for
ξ ̸= 0 are not the Beltrami fields. Equation (11) yields

(∇ × V) × V =
(︁
αV − α2ξrêφ

)︁
× V

= −α2ξrêφ × V. (12)

Applying to (12) the identities êφ × êz = êr, êφ × êr =
−êz, êφ × êφ = 0 and (2), (5), we find

(∇ × V) × V = (−α2ξrêφ) ×
[︂
αξrêφ + 2ξ êz

+ f (t)
(︂

−1

r
∂ψ
∂z êr +

1

r
∂ψ
∂r êz +

αψ
r êφ

)︂]︂
= −2α2ξ2rêr − α2ξf (t)

[︂
∂ψ
∂r êr +

∂ψ
∂z êz

]︂
= ∇

[︁
−α2ξ2r2 − α2ξf (t)ψ(r, z)

]︁
. (13)

(c) Using the well-known identity

(V · ∇)V = (∇ × V) × V + ∇
(︂
1

2

|V|2
)︂

and (13), we present the Navier–Stokes equations (1) in the

form

∂V
∂t = −∇

[︂
1

ρ p − Ψ − α2ξ2r2 − α2ξf (t)ψ(r, z) +
1

2

|V|2
]︂

+ ν(t)∆V. (14)

Applying to the identity ∆B = ∇(∇ ·B)− (∇×)(∇×B)
theBeltrami equation (7) and equation∇·B = 0,wederive

∆B = −α2B. Formula rêφ = −yêx+xêy implies ∆(αξrêφ+
2ξ êz) = 0. Therefore, for the vector field V(r, z, t) (2), we
find

∆V = ∆

[︀
αξrêφ + 2ξ êz + f (t)B

]︀
= f (t)∆B

= −α2f (t)B. (15)

Substituting formulas (2) and (15) into the Navier–

Stokes equation (14), we transform it to the form

∂
[︀
αξrêφ + 2ξ êz + f (t)B

]︀
∂t

= −∇
[︂
1

ρ p − Ψ − α2ξ2r2 − α2ξf (t)ψ(r, z) +
1

2

|V|2
]︂

− α2ν(t)f (t)B.
(16)
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Insertinghere formula (3) for thepressure p(r, z, t),we
find that (16) is reduced to equation

df (t)
dt = −α2ν(t)f (t) (17)

that is identically satisfied by the function f (t) (4).
(d) If ν(t) = 0 for c ≤ t ≤ d, then Navier–Stokes equa-

tions (1) become Euler equations for ideal incompress-

ible fluid. Equation (17) yields f (t) = const for c ≤ t ≤
d. Hence, solutions (2), (3) for c ≤ t ≤ d become steady

solutions to the Euler equations.

Analogously, if viscosity ν(t) = 0 on two intervals of

time c ≤ t ≤ d and c
1

≤ t ≤ d
1
and ν(t) > 0 for d < t <

c
1
, then solution (2), (3) describes transition of viscous

fluid between two steady flows of inviscid fluid for c ≤ t ≤
d and c

1
≤ t ≤ d

1
.

Remark 1: The new exact solutions (2), (3) depend on

the infinite-dimensional family of axisymmetric Beltrami

fields B(r, z) (5) and (6) and on two arbitrary parameters

α and ξ . Therefore, Theorem 1 presents an infinite-

dimensional space Lα of exact solutions to the Navier–

Stokes equations (1).

Remark 2: After changing parameter α to (−α) in the

exact solution (2), (3), one gets the exact viscous flow

having the opposite rotation around the axis z.

Remark 3: Using results of our article [11], we get that

the z-axisymmetric Beltrami vector fields B(r, z) (5) to (7)
admit the integral representation

B(x) =
∫︁
S2

[︀
sin(αk · x)T(k) + cos(αk · x)k × T(k)

]︀
dσ.

(18)

Here, T(k) is an arbitrary z-axisymmetric differentiable

vector field tangent to the unit sphere S2: k · k = 1, and

dσ is the standard Euclidean measure on the sphere S2.
Indeed, in [11], we proved that the general nonsymmetric

solution to the Beltrami equation (7) has form (18), where

T(k) is an arbitrary vector field tangent to the sphere S2,
and dσ is an arbitrary measure on S2. The Beltrami field

B(x) (18) evidently becomes z-axisymmetric if the vector

field T(k) and the measure dσ are z-axisymmetric. As we

have shown in [11], the absolute value |B(x)| decreases as
C/|x| when |x| → ∞; see also [12].

Remark 4: The solutions (2), (3) exist for all moments

of time t ∈ (−∞,∞). Below we assume that viscosity

ν(t) ≥ ν
0

> 0; for this case, function f (t) (4)monotonously

decreases and f (t) → ∞ at t → −∞ and f (t) → 0

at t → ∞. Therefore, (2) yields that the exact solutions

at t → ∞ tend to the steady flow

Ṽ(r, z) = αξrêφ + 2ξ êz , (19)

that according to (10) has constant vorticity ∇ × Ṽ(r, z) =
2αξ êz. Therefore, solutions (2) describe a relaxation of

the axisymmetric flows (2) to the steady flow (19) with

constant vorticity 2αξ êz.
Solutions (2) at t → −∞ have the leading term

f (t)B(r, z) which describes a Beltrami flow with the

streamfunction f (t)ψ(r, z).

3 Infinite-Dimensional Family of
Inner Transformations

Theorem 2: If two axisymmetric vector fields V
1
(r, z, t)

andV
2
(r, z, t) are solutions of form (2) to the Navier–Stokes

equations (1), then vector fields

VMN(r, z, t)

=
M∑︁
n=1

a
1nV1

(r, z + u
1n , t)

+
M∑︁
n=1

a
2nV2

(r, z + u
2n , t) + αξrêφ

+ 2ξ êz +
N∑︁
k=1

M∑︁
n=1

[︂
bkn

∂nV
1
(r, z + zkn , t)
∂zn

+ ckn
∂nV

2
(r, z + z̃kn , t)
∂zn

]︂
(20)

also are solutions to the Navier–Stokes equations (1). The
constants ajn, ujn (j = 1, 2), bkn, ckn, zkn, z̃kn are arbitrary,
n = 1, · · · ,M, k = 1, · · · , N.

Proof. Let vector fields Vj(r, z, t) (2) (j = 1, 2) are as fol-

lows:

Vj(r, z, t) = αξjrêφ + 2ξjêz + f (t)Bj(r, z), (21)

where vector fieldsBj(r, z) have the form (5) and satisfy the

Beltrami equation (7). Formulae (20), (21) yield

VMN(r, z, t)

= αξ rêφ + 2ξ êz

+ f (t)
[︃ M∑︁
n=1

a
1nB1(r, z + u

1n)
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+
M∑︁
n=1

a
2nB2(r, z + u

2n)

]︃

+ f (t)
N∑︁
k=1

M∑︁
n=1

[︂
bkn

∂nB
1
(r, z + zkn)
∂zn

+ ckn
∂nB

2
(r, z + z̃kn)
∂zn

]︂
, (22)

where parameter ξ = ξ +
∑︀M

n=1

(a
1nξ1 + a

2nξ2). Here,
vector fields ∂nBj(r, z+ zkn)/∂zn (5) (j = 1, 2) correspond

to the streamfunctions ∂nψj(r, z + zkn)/∂zn. The latter

together with the streamfunctions ψj(r, z) for Bj(r, z) evi-
dently satisfy (6) because it is invariant under arbitrary dif-

ferentiations ∂n/∂zn and translations z → z + zkn. There-
fore, all vector fields ∂nBj(r, z + zkn)/∂zn and Bj(r, z +
ujn) satisfy the Beltrami equation (7). Hence, vector field

VMN(r, z, t) (22) has the form

VMN(r, z, t) = αξ rêφ + 2ξ êz + f (t)BMN(r, z), (23)

where vector field BMN(r, z) is the linear combination of

all steady Beltrami fields in (22), having the common fac-

tor f (t). As the Beltrami equation (7) is linear, we get that

vector fieldBMN(r, z) also is a Beltrami field. Hence, vector

fieldsVMN(r, z, t) (20), (23) have the form (2) and therefore

by Theorem 1 define exact solutions to the Navier–Stokes

equations (1). The corresponding pressure pMN(r, z, t) is
defined by the formula (3) with the new parameter ξ =∑︀M

n=1

(a
1nξ1 + a

2nξ2).

Remark 5: Theorem 2 proves that the space of exact solu-

tions Lα for a fixed parameter α and variable parameter ξ
is linear with respect to the vector fields V(r, z, t) (2) and
is nonlinear with respect to the pressure p(r, z, t) (3).

Corollary 1: The infinite-dimensional space Lα of exact
solutions (2)–(3) is invariant under the transformations:

V(r, z, t) → FMN(V(r, z, t))

= αξrêφ + 2ξ êz +
M∑︁
n=1

anV(r, z + un , t)

+
N∑︁
k=1

M∑︁
n=1

bkn
∂nV(r, z + zkn , t)

∂zn . (24)

Here, an , un , bkn , zkn are arbitrary parameters.

Proof. Applying Theorem 2 for the case V
2
(r, z, t) =

αξrêφ + 2ξ êz, we get that transformations (24) are special

cases of transforms (20). The transformations (24) com-

mute with each other because the differentiations ∂n/∂zn

commute with arbitrary translations z → z + uk.

4 Backlund Transforms between
the Axisymmetric Helmholtz
Equation and the Linear Case of
the Grad-Shafranov Equation

As known, the Helmholtz equation

∆F(x) = −α2F(x) (25)

for the z-axisymmetric functions F(r, z) has the form

Frr +
1

r Fr + Fzz = −α2F. (26)

Consider two cases of the Grad–Shafranov equation

[13, 14]

ψrr − 1

r ψr + ψzz = −r2 dP
dψ − G dG

dψ , (27)

corresponding to (a) P(ψ) = 0, G(ψ) = αψ and (b) P(ψ) =
0, G(ψ) =

√︀
β2 + α2ψ2

. For both cases, (27) becomes

ψrr − 1

r ψr + ψzz = −α2ψ. (28)

Equations (26) and (28) describe absolutely different

physical phenomena. Therefore, the closeness in form of

these equations is striking.

We introduce the new Backlund transforms between

the axisymmetric Helmholtz equation (26) and the lin-

ear case (28) of the Grad–Shafranov equation, which

coincides with (6). The Backlund transforms are used in

Section 6 below.

Lemma 1: (a) Backlund transform

ψ(r, z) = r ∂F(r, z)∂r (29)

maps any solution of (26) into a solution to (28).
(b) Backlund transform

F(t, z) =
1

r
∂ψ(r, z)
∂r (30)

maps any solution of (28) into a solution to (26).

Proof. (a) Rewrite the Helmholtz equation (26) in the form

r−1

(rFr)r+Fzz = −α2F. Denoting here rFr = ψ anddiffer-

entiatingwith respect to r, we find r−1ψrr−r−2ψr+Frzz =
−α2Fr. Multiplying this equation with r and putting rFr =
ψ, we get (28).

(b) Represent the linear case (28) of the Grad–

Shafranov equation in the form r(r−1ψr)r + ψzz = −α2ψ
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anddenote r−1ψr(r, z) = F(r, z). After differentiationwith
respect to r, we get rFrr + Fr +ψrzz = −α2ψr. Multiplying
with r−1

and putting r−1ψr = F, we get (26).

Remark 6: The composition of Backlund transforms (29)

and (30) is

˜F(r, z) = Frr(r, z) + r−1Fr(r, z). (31)

By Lemma 1, the mapping (31) is auto-Backlund transform

of the axisymmetric Helmholtz equation (26); it has also

the form
˜F = −Fzz − α2F.

Remark 7: The composition of Backlund transforms (30)

and (29) is

˜ψ(r, z) = ψrr(r, z) − r−1ψr(r, z). (32)

The mapping (32) by Lemma 1 is the auto-Backlund trans-

form of the linear case (28) of the Grad–Shafranov equa-

tion (27). The transform has also the form
˜ψ = −ψzz −

α2ψ.

5 Vortex Blobs and Vortex Rings
In view of (5), vector fields (2) have the form

V
1
(r, z, t) = −1

r
∂ψ

1

∂z êr +
1

r
∂ψ

1

∂r êz +
αψ

1

r êφ , (33)

where ψ
1
(r, z, t) is the time-dependent streamfunction:

ψ
1
(r, z, t) = ξ r2 + f (t)ψ(r, z). (34)

Remark 8: The inner transforms (24) correspond to

the following transformations of the streamfunctions

ψ
1
(r, z, t):

ψ
1
(r, z, t) → FMN(ψ1

(r, z, t))

= ξ r2 +
M∑︁
n=1

anψ1
(r, z + un)

+
N∑︁
k=1

M∑︁
n=1

bkn
∂nψ

1
(r, z + zkn)
∂zn . (35)

Equation (33) implies that for any fixed moment of time t
0

the surface ψ
1
(r, z, t

0
) = const (the angle φ ∈ S1 is arbi-

trary) is an invariant submanifold for the vorticity vec-

tor field ∇ × V
1
(r, z, t

0
). This follows from formula (11):

∇×V
1

= αV
1
−α2ξrêφ and the z-axisymmetry of the flow.

As this surface ψ
1
(r, z, t

0
) = const is z-axisymmetric,

it is a disjoint union of either some spheres S2 or some tori

T2 = Cψ
1
(t) × S1 or some cylindersC2 = Rψ

1
(t) × S1. Here,

Cψ
1
(t) and Rψ

1
(t) are the level curves ψ

1
(r, z, t) = const

in the poloidal plane (r, z) for a fixed time t. The curves
Cψ

1
(t) ⊂ (r, z) are closed, and the curves Rψ

1
(t) ⊂ (r, z) are

infinite. The circle S1 corresponds to the angular variable
φ: 0 ≤ φ ≤ 2π.

Assume that a surfaceψ
1
(r, z, t

0
) = C

1
bounds a com-

pact connected domain D
1
. We call the domain D

1
max-

imal and denote it Dm if it is not contained in any big-

ger compact connected domain Dm bounded by a sur-

face ψ
1
(r, z, t

0
) = C

1
. If such a maximal domain Dm inter-

sects the axis of symmetry r = 0, then topologically it is

a z-axisymmetric ball B3

m, which we call a vortex blob

because it is invariant with respect to the vorticity field

∇ × V
1
(r, z, t

0
).

Remark 9: Suppose that function ψ(r, z) in (34) is

obtained by transform (29). Then on the axis of symme-

try r = 0, we have ψ
1
(0, z, t) = 0. As the vortex blobs Dm

intersect the axis r = 0, the same is true for their bound-

aries defined by equation ψ
1
(r, z, t) = Cm. Putting here

r = 0, we get Cm = 0. Hence, the boundaries of the vortex

blobs satisfy the equation

ψ
1
(r, z, t) = 0. (36)

Equation (36) can define several connected compo-

nents; see exact solutions in Section 6 and 8.

If Cm ̸= 0, then the corresponding maximal compact con-

nected domain Dm bounded by the surface ψ
1
(r, z, t

0
) =

Cm ̸= 0 does not intersect the axis of symmetry r = 0

because ψ
1
(0, z, t

0
) = 0. Therefore, the domain Dm for

Cm ̸= 0 topologically is a 3-dimensional z-axisymmetric

ring B2

m(t0) × S1, where B2

m(t0) ⊂ (r, z) topologically is

equivalent to a 2-dimensional ball in the poloidal plane

(r, z). The boundary of the ring B2

m(t0)× S1 is a torus T2 =
Cψ

1
(t
0
)
× S1 where Cψ

1
(t
0
)

= ∂B2

m(t0) is a closed level curve
ψ
1
(r, z, t

0
) = Cm ̸= 0, φ = 0. As the ring B2

m(t0) × S1 is
invariant with respect to the vorticity field∇×V

1
(r, z, t

0
),

we call it a vortex ring. In view of (11), the vortex blobs and

vortex rings are invariant also with respect to the velocity

field V
1
(r, z, t

0
).

As known, for an ideal incompressible fluid, the vor-

ticity field ∇ × V(x, t) is frozen into the fluid flow. There-

fore, for the inviscid fluid (ν = 0), the vortex blobs and vor-

tex rings are transported with the fluid flow. For a viscous

fluid with ν(t) ̸= 0, the vortex blobs and vortex rings are

not frozen into the viscous fluid flow and undergo a more

sophisticated dynamics and can collapse and disappear at

some moments of time t.
Both vortex blobs and vortex rings are equivalently

represented by their intersections with the poloidal plane
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(r, z), φ = 0. Below we study dynamics in time t of the
poloidal sections of the vortex blobs and vortex rings for

the concrete exact solutions derived in Section 6.

6 Bifurcations in Exact Solutions to
the Navier–Stokes Equations

I. The Helmholtz equation (25) for the spherical functions

F(R), R =
√
r2 + z2, has the form FRR + 2FR/R = −α2F.

This equation has an important exact solution F(R) =
sin(αR)/R.¹ The solution evidently is z-axisymmetric and

therefore satisfies (26). Applying the Backlund transform

(29), we get that function

ψ(r, z) = − r
α3
∂F(r, z)
∂r = −r2G

2
(αR)

= − r2

α2R2

[︂
cos(αR) − sin(αR)

αR

]︂
(37)

satisfies (28) [or (6)]. Therefore, the corresponding z-
axisymmetric vector field B(r, z) (5) by Theorem 1 satisfies

the Beltrami equation (7). Function G
2
(u) in (37), G

2
(u) =

u−2

(cos u− u−1

sin u), is connected with the Bessel func-
tion J

3/2
(u) of order 3/2 by the relation

G
2
(u) = −

√
π/2
u3/2

J
3/2

(u).

Remark 10: In another form, Beltrami field B(r, z) [(5)
and (37)] was first derived in 1899 in the pioneer article

by W.M. Hicks [16] that is the historical precursor of many

works on fluid and plasma equilibria.² The Beltrami field

B(r, z) (5), (37) was rediscovered in the theory of plasma

equilibria in terms of Bessel functions J
3/2

(u) [19] by Chan-
drasekhar [20] andWoltjer [21] as amodel of axisymmetric

plasma equilibria and is called the spheromak field. The

term “spheromak” was first introduced in [22]; see review

[23]. Moduli spaces of vortex knots for the spheromak Bel-

trami field in different invariant domains were presented

in [24] and for another Beltrami field in [25].

1 Applications of the exact solution sin(αR)/R to the atomic bomb

physics were analysed by W. Heisenberg, see pp. 193 and 194 of his

lecture [15].

2 The author has found in the literature another article by Hicks [17]

that is the abstract of [16] published separately in 1898. Therefore,

the two articles [16, 17] should be read together. Their analysis from

a comprehensive point of view is shown in Section 9 “Comments on

Hicks’ Papers” of our work [18].

II.We will use in this article the following functions Gn(u)
connected with the Bessel functions Jn−1/2

(u):

G
0
(u) = −cos u,

G
1
(u) =

d

udu G0(u) =
sin u
u =

√
π/2
u1/2

J
1/2

(u),

G
2
(u) =

d

udu G1(u) =
1

u2

[︂
cos u − sin u

u

]︂

= −
√
π/2
u3/2

J
3/2

(u),

G
3
(u) =

d

udu G2(u) =
1

u4

[︂
(3 − u2) sin uu − 3 cos u

]︂

=
√
π/2
u5/2

J
5/2

(u).

G
4
(u) =

d

udu G3(u)

=
1

u6

[︂
(6u2 − 15)

sin u
u − (u2 − 15) cos u

]︂

= −
√
π/2
u7/2

J
7/2

(u). (38)

All functions Gn(u) are analytic everywhere and have
the nonzero values at u = 0:

G
1
(0) = 1, G

2
(0) = −1/3,

G
3
(0) = 1/15, G

4
(0) = −1/105. (39)

The plot of function y
1
(u) = G

2
(u) is shown in

Figure 1. The range of function G
2
(u) is the segment I* =

(−1/3, ξ
1
≈ 0.02872).

Functions Gn(u) (38) are even and satisfy the easily

verifiable identities

G
0
(u) + G

1
(u) + u2G

2
(u) = 0,

G
1
(u) + 3G

2
(u) + u2G

3
(u) = 0. (40)

The general identity

Gn(u) + (2n + 1)Gn+1
(u) + u2Gn+2

(u) = 0, (41)

for Gk+1
(u) = u−1

dGk(u)/du follows from identities (40)

by induction.

III. Vector field V
1
(r, z, t) (33) with the streamfunction

ψ
1
(r, z, t) = r2

[︀
ξ − f (t)G

2
(αR)

]︀
(42)
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y

u
u*

0

ξ1

ξ3

ξ3

ξ2

ξ2

ξ4

v1 u1 u1

u2

v2

y1

–1/3

v3 u3 v4
v1

y2

ξ1

Figure 1: Plots of functions y1(u) = G2(u) and y2(u) = −(G1(u) + G2(u))/2.

has the form

V
1
(r, z, t) = α2rzf (t)G

3
(αR)êr

+
[︁
2ξ − f (t)(2G

2
(αR) + α2r2G

3
(αR))

]︁
êz

+ αr
[︀
ξ − f (t)G

2
(αR)

]︀
êφ , (43)

where f (t) is the function (4). This vector field together

with the pressure p(r, z, t) (3) defined by the formula

p(r, z, t) = ρ
[︂
C + Ψ(r, z, t) + α2r2ξ

[︀
ξ − f (t)G

2
(αR)

]︀
− 1

2

|V
1
(r, z, t)|2

]︂

is the new exact solution to the Navier–Stokes equa-

tions (1).

Remark 11: For the vanishing viscosity ν(t) = 0, function

f (t) (4) equals 1. Fluid flows (43) for f (t) = const and arbi-

trary parameters α, ξ are equivalent to the steady solu-

tions to Euler equations for the ideal incompressible fluid

studied in [26].

Remark 12: For exact solutions (42), (43), we find

ψ
1
(0, z, t) = 0 for r = 0. Hence, the boundary of a vor-

tex blob is defined by equation ψ
1
(r, z, t) = 0 (36); see

Remark 9 above. Therefore, on the boundary, we have

ξ = f (t)G
2
(αR). Hence, the vortex blob is a ball B3

ak of

radius ak defined by the equation

G
2
(αak) = ξ /f (t) = ξ exp

⎛⎝α2 t∫︁
0

ν(τ)dτ

⎞⎠
(44)

and its boundary is the sphere S2ak of radius R = ak.

IV. Function G
2
(u) → 0 when u → ∞ and has infinitely

many oscillations, see its formula in (38). Therefore, from

Figure 1, it becomes evident that equation G
2
(u) = ξ /f (t)

(44) for ξ ̸= 0, ξ /f (t) ∈ I* = (−1/3, ξ
1
≈ 0.02872), has a

finite number N(t) of roots and N(t) → ∞ when ξ /f (t) →
0. That means the vector field V

1
(r, z, t) in the whole

spaceR3

can have for ξ ̸= 0 a finite number N(t) of invari-
ant spheroids B3

ai , and it has infinitely many invariant

spheroids when ξ = 0.

The velocity field V
1
(r, z, t) (43) does not have any

invariant spheroids B3

c (R ≤ c) for time t satisfying condi-
tion ξ /f (t) /∈ I* because for this case (44) has no solutions;
see Figure 1.

Dynamical system defined by the vector field

V
1
(r, z, t) (33), (43) has the form

ṙ = α2rzf (t)G
3
(αR),

ż = 2ξ − f (t)
[︁
2G

2
(αR) + α2r2G

3
(αR)

]︁
, (45)

φ̇ = α[(ξ − f (t)G
2
(αR)]. (46)
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Dynamics of fluid vanishes on the spheres R = Rk,
where G

3
(αRk) = 0 at the moments of time tk defined by

equation f (tk) = ξ /G
2
(αRk).

Equilibrium points (at a fixed time t) of dynamical

system (45) are defined by equations z = 0 and

[2G
2
(u) + u2G

3
(u)]/2 = ξ /f (t), (47)

where u = αR. The second identity (40) yields 2G
2
(u) +

u2G
3
(u) = −G

1
(u)− G

2
(u). Therefore, (47) takes the form

y
2
(u) = −G

1
(u) + G

2
(u)

2

= −1

2

[︂
sin u
u +

1

u2

(︂
cos u − sin u

u

)︂]︂
= ξ /f (t).

(48)

The plot of function y
2
(u) (48) is shown in Figure 1.

The range of function y
2
(u) is the segment (−1/3, ξ

1

≈

0.11182). Thus, oscillations of function y
2
(u) are greater

than those of function y
1
(u); see Figure 1. Function

y
2
(u) → 0 when u → ∞. Therefore, the number M(t) of

roots of (48) is finite for all t and M(t) → ∞ when

ξ /f (t) → 0.

The stream surfaces ψ
1
(r, z, t) = const for solutions

(42), (43) are up-down symmetric and have different

structure for ξ > 0 and ξ < 0. The poloidal contours of

the stream surfaces for ξ > 0 are shown (for α = 1) in

Figures 2–11 for a sequence of increasing moments of time

t: −∞, t
1

< t
2

< · · · < t
8
, ∞. In Figures 12–19, we show

the poloidal contours of the stream surfaces for ξ < 0,

α = 1 for a sequence of increasing moments of time t*:
−∞, t*

1
< t*

2
< · · · < t*

6
, ∞. The arrows in Figures 2–19

show the direction of the dynamics defined by system (45).

For the solutions (42), (43), all vortex blobs are the

balls bounded by certain spheres R = ak (44); they are

shown in blue. The roots uk = αRk of (48) for a given time

Z

7.73

4.49

–4.49

–7.73

0

Figure 2: Time t = −∞, ξ > 0.

Z

r

13.28

11.46

7.50

–7.50

–11.46

–13.28

4.58

–4.58

0

Figure 3: Time t1: f (t1) = ξ/0.004.

Z

6.78

–6.78

4.95

–4.95

0

Figure 4: Time t2: f (t2) = ξ/0.0176.

Z

r

6.31

5.27

–6.31

–5.27

0

Figure 5: Time t3: f (t3) = ξ/0.025.
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Z

r

5.76

–5.76

0

Figure 6: Time t4: f (t4) = ξ/0.02872.

Z

r

0

Figure 7: Time t5: f (t5) = ξ/0.0326.

Z

0

Figure 8: Time t6: f (t6) = ξ/0.0461.

t that are greater than all roots αaj of (44) define equilib-
ria (r = Rk , z = 0), which belong to the vortex rings that

are shown in Figures 2–9 in pink. The roots uk = αRk (48)
are extreme of function ψ

1
(r, z, t) (42); they are denoted

Z

r

0

Figure 9: Time t7: f (t7) = ξ/0.0788.

Z

0

Figure 10: Time t8: f (t8) = ξ/0.132.

Z

r

0

Figure 11: Time t = +∞.

in Figures 2–19 as cj, ai, and sk. Points cj are stable max-

ima or minima of function ψ
1
(r, z, t); points ai and sk are

unstable saddles. The interiors of each vortex ball and vor-

tex ring are filled with invariant tori T2 = C1ψ
1
(t) × S1 of

dynamical system (45) to (46), where C1ψ
1
(t) ⊂ (r, z) is a
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Z

0

7.73

–7.73

4.49

–4.49

Figure 12: Time t = −∞, ξ < 0.

Z

r

–4.27

–9.10

4.27

0

9.10

Figure 13: Time t*1 : f (t*1 ) = |ξ|/0.0119.

Z

r

–4.08

0

4.08

Figure 14: Time t = t*2 : f (t*2 ) = |ξ|/0.0237.

closed curve defined by equation ψ
1
(r, z, t) = const (for

the given moment of time t).
When ξ/f (t) satisfies the inequalities

ξ
1
≈ 0.02872 < ξ /f (t) < ξ

1

≈ 0.11182, ξ > 0, (49)

the vector field V
1
(r, z, t) (43) has finitely many vortex

rings and no vortex balls; see Figures 7–9. Figures 2–19

illustrate dynamics of vortex balls and vortex rings. It is

Z

r

–3.99

0

3.99

Figure 15: Time t*3 : f (t*3 ) = |ξ|/0.03.

Z

–3.72

0

3.72

Figure 16: Time t*4 : f (t*4 ) = |ξ|/0.0501.

Z

r

–3.54

0

3.54

Figure 17: Time t*5 : f (t*5 ) = |ξ|/0.0652.
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Z

0

Figure 18: t*6 : f (t*6 ) = |ξ|/0.36.

Z

r
0

Figure 19: Time t = +∞.

evident from these Figures that vortex balls and vortex

rings as t → ∞ collapse and disappear.

V. Using (11), we find the corresponding to (43) vorticity

field

∇ × V
1
(r, z, t)

= α3rzf (t)G
3
(αR)êr

+ α
[︁
2ξ − f (t)(2G

2
(αR) + α2r2G

3
(αR))

]︁
êz

− α2rf (t)G
2
(αR)êφ . (50)

In the Cartesian coordinates (x, y, z), the new solution

V
1
(r, z, t) has the form

V
1
(x, t) = [−αξy + f (t)(αyG

2
+ α2xzG

3
)]êx

+ [αξx + f (t)(−αxG
2

+ α2yzG
3
)]êy

+ [2ξ + f (t)(G
1

+ G
2

+ α2z2G
3
)]êz , (51)

where we substituted 2G
2

+ α2r2G
3

= −(G
1

+ G
2

+
α2z2G

3
) [applying the second identity (40)]. Everywhere

Gn = Gn(αR).

Remark 13: The exact solutions (43), (51) for ξ > 0 and

for ξ < 0 have the following important distinctions that

follow from (44), (48):

(a) If the flow for ξ > 0 at a time t has a vortex blob,
then it does have at least one vortex ring; see Figures 3–6.

For ξ > 0, there is interval of time t satisfying inequalities
(49) when the flow has vortex rings but does not have a

vortex blob; see Figures 7–9.

(b) For ξ < 0, there is interval of time t satisfying
inequalities

−1/3 < ξ /f (t) < ξ
2

≈ −0.0648, ξ < 0,

when the flow has a vortex blob but does not have any vor-

tex rings; see Figure 17. However, if for ξ < 0 the flow (43),

(51) has a vortex ring, then it necessarily has a vortex blob;

see Figures 13–16.

7 Discontinuous Volume Function
Vm(t)

I. At any fixed time t = t
0
, the fluid velocity field

V
1
(r, z, t

0
) (43) and vorticity field ∇ × V

1
(r, z, t

0
) (50) are

tangent to the surfaces of constant level of the streamfunc-

tion ψ
1
(r, z, t

0
) (42).

The zero level of function (42) at a fixed time t is
the union of several spheres S2ai(t) of radii ai(t) obeying
equation G

2
(αai(t)) = ξ /f (t) or

G
2
(αai(t)) = ξ exp

⎛⎝α2 t∫︁
0

ν(τ)dτ

⎞⎠
. (52)

Vector fieldsV
1
(r, z, t) (43) and∇ ×V

1
(r, z, t) (50) on

each sphere S2ai(t) have the form

V
1
(r, z, t) = α2rf (t)G

3
(αai(t))

[︀
zêr − rêz

]︀
, (53)

∇ × V
1
(r, z, t) = α3rf (t)G

3
(αai(t))

[︀
zêr − rêz

]︀
− α2rξ êφ . (54)

It is evident from (53) to (54) that the spheres S2ai(t)
are invariant submanifolds for the flows V

1
(r, z, t) and

∇ × V
1
(r, z, t). Therefore, the balls B3

ai(t) bounded by the

spheres S2ai(t) also are invariant under the vorticity field

∇ × V
1
(r, z, t). Therefore, we call the ball B3

am(t) of the

maximal radius am(t) a vortex blob.
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From Figure 1, it is evident that for ξ > 0 the num-

ber of solutions ai(t) to (52) is even, say equal to 2N(t).
Therefore, inside the vortex blobB3

am(t), there are 2N(t)−1

invariant balls

B3

a
1
(t) ⊂ B3

a
2
(t) ⊂ · · ·B3

a
2N(t)−1

(t) ⊂ B3

am(t). (55)

For ξ < 0, the number of solutions ai(t) to (52) is odd,
say equal to 2N(t)+1. Hence, inside the vortex blobB3

am(t),

there are 2N(t) invariant balls

B3

a
1
(t) ⊂ B3

a
2
(t) ⊂ · · ·B3

a
2N(t)(t) ⊂ B3

am(t). (56)

At t → −∞, we have exp

(︁
α2

∫︀ t
0

ν(τ)dτ
)︁

→ 0. Hence,

formula (52) and Figure 1 yield N(t) → ∞when t → −∞.

II. The fluid flow (53) becomes identically zero on the

spheres S2aℓ(t) defined by equation G
3
(αaℓ(t)) = 0. As

G
3
(u) = u−1

dG
2
(u)/du, the equation G

3
(uℓ) = 0 means

that the point uℓ = αaℓ(t) is a point of either local max-

imum or local minimum of function y
1
(u) = G

2
(u); see

Figure 1. In view of (38), equation G
3
(u) = 0 is equivalent

to equation

tan u =
3u

3 − u2 . (57)

The first eight roots uℓ of (57) are

u
1
≈ 5.7635, u

2
≈ 9.0950,

u
3
≈ 12.3229, u

4
≈ 15.5146,

u
5
≈ 18.6890, u

6
≈ 21.8539,

u
7
≈ 25.0128, u

8
≈ 28.1678.

The corresponding values ξℓ = G
2
(uℓ) are as follows:

ξ
1

= G
2
(u

1
) ≈ 0.02872, ξ

2
≈ −0.0119,

ξ
3
≈ 0.0065, ξ

4
≈ −0.0041, ξ

5
≈ 0.0029,

ξ
6
≈ −0.0021, ξ

7
≈ 0.0016, ξ

8
≈ −0.0013. (58)

The positive values ξℓ > 0 are local maxima of func-

tion G
2
(u); the negative values ξℓ < 0 are local minima;

see Figure 1.

The vortex blob B3

am(t) and invariant spheres S2ai(t)
exist if (52) has some roots ai(t). This is possible only

if ξ exp
(︁
α2

∫︀ t
0

ν(τ)dτ
)︁
belongs to the range of function

G
2
(u). The plot of function y

1
(u) = G

2
(u) in Figure 1

shows that the range of function G
2
(u) is the segment

[−1/3, ξ
1
≈ 0.02872]. Here, ξ

1
is the maximal value of

function y
1
(u) = G

2
(u). It is attained at the point u

1
satis-

fying equation G
3
(u) = u−1

dG
2
(u)/du = 0. The first root

of equation G
3
(u) = 0 (57) is u

1
≈ 5.7635. Hence, we cal-

culate G
2
(u

1
) = ξ

1
≈ 0.02872.

III. Consider (52) for am(t) and differentiate it with respect
to time t. Using equation dG

2
(u)/du = uG

3
(u) (38), we

find

α2am(t)G3(αam(t))
dam(t)
dt

= α2ν(t)ξ exp

⎛⎝α2 t∫︁
0

ν(τ)dτ

⎞⎠
= α2ν(t)G

2
(αam(t)).

Hence, we get

dam(t)
dt = ν(t) G

2
(αam(t))

am(t)G3(αam(t))
. (59)

The volume Vm(t) of the vortex blob B3

am(t) is

4πa3m(t)/3. Hence, from (59), we derive

dVm(t)
dt = 4πν(t)am(t)G2(αam(t))G

3
(αam(t))

. (60)

Equation (60) shows that the speed of the change of

the vortex blob volume Vm(t) is proportional to the kine-
matic viscosity ν(t) of the fluid.
IV. For ξ > 0, (52) yields that function G

2
(αam(t)) >

0. As um(t) = αam(t) is the maximal root of (52), we

see from Figure 1 that dG
2
(u)/du < 0 at u = um(t).

Hence, G
3
(um(t)) = u−1

m (t)dG
2
(um(t))/du < 0. Therefore,

from (60), we get dVm(t)/dt < 0. Hence, function Vm(t) is
monotonously decreasing.

Equation (60) shows that derivative dVm(t)/dt = −∞

at themoment of time t = tk when G3(αam(tk)) = 0. Func-

tion G
2
(u) has local maximum at u = uk = αam(tk), and

for t = tk + ε, there is no invariant sphere of radius close
to am(tk) because the two neighbouring spheres B3

a
2N(t)−1

and B3

am(t) coincide at t = tk and then disappear. There-

fore, the next ball B3

a
2N(t)−2

in the nested sequence (55)

becomes maximal. Hence, the radius am(tk) of the vortex
blob jumps down to the value a

2N(t)−2
(tk) at the moment

tk. The volumeVm(t) = 4πa3m(t)/3 jumpsdowncorrespon-

dently. The jumps occur at the moments of time tk when
function G

2
(αam(t)) takes the positive values ξk (58). From

(52), we get equation for the corresponding times tk:

tk∫︁
0

ν(τ)dτ = α−2

log(ξk/ξ ), (61)

where ξk = G
2
(uk) > 0, and uk satisfies equation

G
3
(uk) = 0, am(tk) = uk/α.
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For ξ > 0, (52) yields that the maximal time t = tm
when the fluid flowV

1
(r, z, t) (43) has a vortex blobB3

am(tm)
is defined by the condition G

2
(αam(tm)) = ξ

1
≈ 0.02872.

At this moment, αam(tm) = u
1
≈ 5.7635. Hence, we get

from (52) the equation for the time tm:

tm∫︁
0

ν(τ)dτ = α−2

log(ξ
1
/ξ )

≈ α−2

log(0.02872/ξ ). (62)

The last vortex blob (ball) B3

am(tm) has the minimal

possible radius am(tm) = u
1
/α ≈ 5.7635/α. Equation (53)

yields that the fluid velocity V
1
(r, z, tm) is identically zero

on the boundary sphere S2am(tm). For all times t > tm, the
fluid flow V

1
(r, z, t) (43) does not have any vortex blob.

The plot of the monotonously decreasing discontinu-

ous function Vm(t) is shown in Figure 20.
V. Equation (52) for ξ < 0 yields that function

G
2
(αam(t)) < 0. The range of negative values of G

2
(u) is

the segment [−1/3, 0]. As um(t) = αam(t) is the maximal

root of (52), we see from Figure 1 that dG
2
(u)/du > 0 at

u = um(t). Hence, G3(um(t)) = u−1

m (t)dG
2
(um(t))/du > 0.

Therefore, from (60), we get dVm(t)/dt < 0. Hence,

function Vm(t) is monotonously decreasing.

Equation (60) shows that derivative dVm(t)/dt = −∞

at themoment of time t = tk when G3(αam(tk)) = 0. Func-

tion G
2
(u) has local minimum at u = uk = αam(tk), and

for t = tk + ε, there is no invariant sphere of radius close
to am(tk) because the two neighbouring spheresB3

a
2N(t) and

B3

am(t) coincide at t = tk and then disappear. Therefore,

the next ball B3

a
2N(t)−1

in the nested sequence (56) becomes

maximal. Hence, the radius am(tk) of the vortex blob

jumps down to the value a
2N(t)−1

(tk) at themoment tk. The
volume Vm(t) = 4πa3m(t)/3 jumps down correspondently.

The jumps occur at the moments of time tk when function

V
m

(t)

t
k + 1 t

k – 1t
k

t4 t3 t2 t
m

t0

Figure 20: Plot of function Vm(t) for flow (43) with ξ > 0.

V
m

(t)

t3t4 t2 t
m

tt
k + 1 t

k – 1t
k

0

Figure 21: Plot of function Vm(t) for flow (43) with ξ < 0.

G
2
(αam(t)) takes the negative values ξk (58). The same

(61) but with ξ < 0 and ξk < 0 defines the corresponding

times tk.
For ξ < 0, we get from (52) that the maximal time t =

t*m when the flowV
1
(r, z, t*m) (43) has a vortex blobB3

a(t*m)
is

defined by the equation G
2
(αa(t*m)) = −1/3 = min G

2
(u).

Hence, (52) yields the equation for the time t*m:

t*m∫︁
0

ν(τ)dτ = α−2

log(−1/(3ξ )). (63)

The last vortex blob B3

a(t*m)
has zero radius a(t*m) = 0.

From (39), we get G
2
(0) = −1/3, G

3
(0) = 1/15. Substitut-

ing this into (60), we get dVm(t*m)/dt = 0. Therefore, the

plot of function Vm(t) for ξ < 0 differs from the plot in

Figure 20 for ξ > 0by its behaviour near point t*m: the limit

values of Vm(t*m) and its derivative dVm(t*m)/dt are both
zeros; see Figure 21.

The fluid flow V
1
(r, z, t) (43) has no vortex blobs and

invariant spheres for all times t > t*m.

8 Conclusion
In this article, we presented an infinite-dimensional space

of new exact time-dependent axisymmetric solutions (2)

to (6) to the Navier–Stokes equations (1). The solutions

are analytic in the whole space R3

and exist for all times

t; the velocity field and vorticity field for the solutions

are not collinear and satisfy (11). The constructed space

of exact viscous fluid flows V(r, z, t) is invariant under
arbitrary shifts z → z + z

0
and differentiations ∂k/∂zk,

k = 1, 2, 3, · · · . The iterations of these transforms gen-

erate infinite sequences of new exact solutions from any

known one.
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We studied solutions with velocity fieldV
1
(r, z, t) (33)

having the streamfunction (42):

ψ
1
(r, z, t) = r2[ξ − f (t)G

2
(αR)],

f (t) = exp

⎛⎝−α2
t∫︁

0

ν(τ)dτ

⎞⎠
. (64)

Applying transforms (35) to the streamfunction

ψ
1
(r, z, t), we get an infinite sequence of streamfunctions

ψn(r, z, t) = r2
[︂
ξ − f (t)∂

n−1G
2
(αR)

∂zn−1

]︂
, (65)

that define by formula (33) new exact solutions Vn(r, z, t)
to the Navier–Stokes equations; here, n = 2, 3, · · · . The

streamfunctions ψ
1
(r, z, t) (64) and ψ

2k+1
(r, z, t) (65) are

up-down symmetric with respect to the reflection z →
−z, as well as the corresponding velocity fields (33). The
streamfunctions ψ

2k(r, z, t) (65) and the related vector

fields (33) are up-down asymmetric.

We presented Figures 2–19 describing the bifurcations

of the instantaneous (for t = t
0
) phase portraits of the vis-

cous fluid flows (43). As t → ∞, thederived exact solutions

tend to the steady flow V(r, z) = αξrêφ + 2ξ êz that has
a constant vorticity ∇ × V(r, z) = 2αξ êz and hence has

no vortex blobs and vortex rings. Therefore, for the con-

structed exact solutions to the Navier–Stokes equations,

the vortex blobs and vortex rings collapse and disappear

as t → ∞.

For the exact fluid flows (43),we studied thebehaviour

of the volume Vm(t) of the vortex blob. We proved

that function Vm(t) is a discontinuous monotonously

decreasing function of time t that has jumps down and

infinite derivatives at an infinite sequence of moments of

time−∞ < · · · < tk < · · · < t
3

< t
2

< tm, where tm is the

maximal time when the vortex blob exists.

References
[1] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge

University Press, Cambridge 1967.
[2] P. Constantin and C. Foias, Navier–Stokes Equations, The

University of Chicago Press, Chicago 1988.
[3] J. C. Mattingly and Ya. G. Sinai, Commun. Contemp. Math. 1,

497 (1999).
[4] V. L. Fefferman, in: The Millennium Prize Problems (Eds.

J. Carlson, A. Jaffe, A. Wiles), Clay Mathematics Institute,
Cambridge, Massachusets 2006.

[5] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible
Flow, Cambridge University Press, Cambridge 2002.

[6] C. Y. Wang, Appl. Mech Rev. 42, 269 (1989).
[7] C. Y. Wang, Acta Mech. 81, 69 (1990).
[8] C. Y. Wang, Annu. Rev. Fluid Mech. 23, 159 (1991).
[9] P. G. Drazin and N. Riley, The Navier–Stokes Equations: A Clas-

sification of Flows and Exact Solutions, Cambridge University
Press, Cambridge 2006.

[10] C. Y. Wang, Eur. J. Mech. B Fluids 30, 475 (2011).
[11] O. Bogoyavlenskij, C. R. Math. Rep. Acad. Sci. Canada 24, 138

(2002).
[12] O. Bogoyavlenskij, Phys. Lett. A 307, 281 (2003).
[13] H. Grad and H. Rubin, in: Proceedings of the Second United

Nations International Conference on the Peaceful Uses of
Atomic Energy, 31, United Nations, Geneva 1958, p. 190.

[14] V. D. Shafranov, Sov. Phys. JETP 6, 3 (1958).
[15] W. Heisenberg, in: Hitler’s Uranium Club. The Secret Record-

ings at Farm Hall (Ed. J. Bernstein), American Institute of
Physics, Woodbury, New York 1996, pp. 187–209.

[16] W. M. Hicks, Phil. Trans. Roy. Soc. London A 192, 33 (1899).
[17] W. M. Hicks, P. R. Soc. London 62, 332 (1898).
[18] O. Bogoyavlenskij, Z. Naturforsch. A 74, 163 (2019).
[19] G. N. Watson, A Treatise on the Theory of Bessel functions,

Cambridge University Press, Cambridge 1980.
[20] S. Chandrasekhar, Proc. Nat. Acad. Sci. 42, 1 (1956).
[21] L. Woltjer, B. Astron. I. Neth. 14, 39 (1958).
[22] M. N. Rosenbluth and M. N. Bussac, Nucl. Fusion 19, 489

(1979).
[23] T. R. Jarboe, Plasma Phys. Contr. F. 36, 945 (1994).
[24] O. Bogoyavlenskij, J. Math. Anal. Appl. 450, 21 (2017).
[25] O. Bogoyavlenskij, J. Math. Phys. 58, 013101 (2017).
[26] O. Bogoyavlenskij, Phys. Rev. E 95, 043104 (2017).


	New Exact Axisymmetric Solutions to the Navier–Stokes Equations
	1 Introduction
	2 Infinite-Dimensional Space of Exact Solutions
	3 Infinite-Dimensional Family of Inner Transformations
	4 Backlund Transforms between the Axisymmetric Helmholtz Equation and the Linear Case of the Grad-Shafranov Equation
	5 Vortex Blobs and Vortex Rings
	6 Bifurcations in Exact Solutions to the Navier–Stokes Equations
	7 Discontinuous Volume Function Vm(t)
	8 Conclusion


