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Abstract: Infinite-dimensional space of axisymmetric
exact solutions to the Navier—Stokes equations with time-
dependent viscosity v(t) is constructed. Inner transfor-
mations of the exact solutions are defined that produce
an infinite sequence of new solutions from each known
one. The solutions are analytic in the whole space R®
and are described by elementary functions. The bifur-
cations of the instantaneous (for t = ty) phase portraits
of the viscous fluid flows are studied for the new exact
solutions. Backlund transforms between the axisymmet-
ric Helmholtz equation and a linear case of the Grad-
Shafranov equation are derived.

Keywords: Backlund Transforms; Collapses; Discontin-
uous Functions; Inner Transformations; Viscous Flows;
Vortex Blobs; Vortex Rings.

1 Introduction

Different aspects of theory of Navier-Stokes equations
were developed in numerous publications (see [1-5] and
references therein). During the past 190 years, many
exact solutions to the Navier—Stokes equations (1823) were
derived. There are several reviews devoted to the exact
solutions possessing different symmetries [6-10].

We introduce in this article new axisymmetric time-
dependent exact solutions to the Navier—Stokes equations.
The solutions are studied in the cylindrical coordinates
r, z, ¢ and depend on variables 7, z, and time t. We con-
struct an infinite-dimensional space of solutions for which
fluid velocity V(r, z, t) is analytic in the whole space R>
and is defined for all moments of time ¢t. Inner transforma-
tions acting on the space of exact solutions are presented
that generate from any exact solution an infinite sequence
of new ones.

We study the bifurcations of the instantaneous (for
t = tp) phase portraits of the viscous fluid flows for the
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new exact solutions. Namely, we investigate dynamics of
the vortex blobs and vortex rings, which are the maximal
compact domains invariant (for any fixed moment of time
to) with respect to the vorticity vector field r  V(r, z, to).
As known, for the ideal incompressible fluid, the vortic-
ity field is frozen into the fluid flow. Therefore, the vortex
blobs and vortex rings are transported with the ideal fluid
flow; their volume is constant. We show that for the con-
structed exact solutions to the Navier—-Stokes equations,
the vortex blobs and vortex rings are not frozen into the
viscous fluid flow and collapse and disappearast ¥ oo.

For the new exact solutions, we study the behaviour
of the volume Vp,(t) of the vortex blob. We show that
despite the analyticity of exact solutions the function
Vm(t) is not even continuous. The function Vy,(¢) is a dis-
continuous monotonously decreasing function of time ¢
that has jumps down and infinite derivatives at an infi-
nite sequence of moments of time oo <:.-- <t <--: <
t3 <t, <tm,wWherety ¥ oowhenk ¥ oco.The volume
function Vi, (t) has its minimal value at t = t,;. Function
Vm(t) is defined for t 2 (oo, ty). Here, ty is the maxi-
mal time when the vortex blob exists; it does not exist for
t=>tm.

2 Infinite-Dimensional Space of
Exact Solutions

I In this article, we derive and study new exact solutions
to the Navier—Stokes equations
oV

— +(V-nNv=

S5t % rp+r¥+vAV,

)

where V(x, t) is the fluid velocity; p(x, t), the pressure; p, a
constant density; W(x, t), an arbitrary gravitational poten-
tial; v(t), the kinematic viscosity that is an arbitrary piece-
wise continuous nonnegative function of time t; and A, the
Laplace operator.

Theorem 1: The Navier—Stokes equations (1) have exact
z-axisymmetric solutions

V(r,z, t) = aéréy, + 2£&, + f(t)B(r, 2), @)
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plr,z,) =p C+¥(r,z,t)+ achzrz

+ a2 O(r, 2) %jV(r,z,t)jz, 3)

where a, &, and C are arbitrary constant parameters; &,
&, &, are the unit vector fields tangent to the cylindrical
coordinates r, z, . The function of time f(t) is

(@] 1

7t
f(©) = exp@ a® v(1)dTA. (4)

0

The z-axisymmetric vector fields B(r, z) are steady and
have the form
10, . 10y,

"W+ - Vo, + Mo, (5)

B(r,2) = r oz r or r

where the streamfunction Y(r, z) is an arbitrary solution to
the equation

0%y

109  0%Y _
or? t o

1oy - 2
ror  0z? . ©

The vector fields B(r, z) (5)-(6) satisfy the Beltrami
equation

r B®x) = aB(Xx). @)

If for some period of time ¢t  d viscosity v(t) = 0,
then solution (2), (3) becomes a steady solution for c
t d to the Euler equations for ideal incompressible fluid
dynamics.

Proof. (a) The vorticity field for the vector field (5) has the
form

r B(rz)= %%éﬁ%%éz
1 % 10y %Y .
oo ror oz o ®

Substituting here (6), we arrive at the Beltrami equa-
tion (7).
As a consequence of (7), we get r -+ B =0. As ré, =
yéx + x&y, the vector fields V(r, z, t) (2) also satisfy the
incompressibility equation ¥ - V = 0.
(b) Let us show that vector fields V(r, z, t) (2) satisfy
equation

h i
(r V) V=r &7 H0yr,2) . ©9)

Indeed, using equation

r alré, +2£8, =2ade, (10)
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and (7), we find for the vector fields V(r, z, t) (2):
r V(rzt) =2aéé, + af()B(r, z)
(11)

The equation proves that vector fields V(r, z, t) (2) for
¢ & 0 are not the Beltrami fields. Equation (11) yields

=aV(r,z,t) azf;'ré(p.

(ir V) V= aVv az.{ré(p A"
= azé’ré(p V. (12)
Applying to (12) the identities &, &, =&,,&, & =
é;,8, &, =0and(2),(5),wefind
(r V) V=( a’tréy) aéré, +2%8,
109 . 10y . ay .
O e e
. oY, oY,
= 22°8%re,  a’Ef(0) a—l/r)e,+ a—fez
d 222 2 I
=r a§r a’ffOyir,z) . (13)

(c) Using the well-known identity
V-rV=(r V) V+r %jij

and (13), we present the Navier—Stokes equations (1) in the
form

2422
3t ’ a&r

P OP(r, 2)+ JIVP

+ v(H)AV. (14)

Applying to the identity AB= r(r-B) (r )(r B)
the Beltrami equation (7) and equation r-B = 0, we derive
AB = a’B.Formularé, = y&+x&, implies A(a&ré,+
2£@;) = 0. Therefore, for the vector field V(r, z, t) (2), we
find

AV = A aéréy +28é, + f()B = f(t)AB

= &*f(6)B. (15)

Substituting formulas (2) and (15) into the Navier—
Stokes equation (14), we transform it to the form
0 alré, + 2£&, + f(t)B
ot

= rop ¥ @Y QG0N+ 5V

a®v(O)f(H)B. (16)
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Inserting here formula (3) for the pressure p(r, z, t), we
find that (16) is reduced to equation
df(t
PO = 2o )

that is identically satisfied by the function f(t) (4).

(@) Ifv(t) =0forc t d,then Navier-Stokes equa-
tions (1) become Euler equations for ideal incompress-
ible fluid. Equation (17) yields f(t) = const for ¢ ¢
d. Hence, solutions (2), 3) for c t d become steady
solutions to the Euler equations.

Analogously, if viscosity v(f) = 0 on two intervals of
timec t dandc; t diandv(t)>0ford<t<
c1, then solution (2), (3) describes transition of viscous
fluid between two steady flows of inviscid fluid forc ¢
dandc; t d;. O

Remark 1: The new exact solutions (2), (3) depend on
the infinite-dimensional family of axisymmetric Beltrami
fields B(r, z) (5) and (6) and on two arbitrary parameters
a and ¢&. Therefore, Theorem 1 presents an infinite-
dimensional space L, of exact solutions to the Navier—
Stokes equations (1).

Remark 2: After changing parameter a to ( a) in the
exact solution (2), (3), one gets the exact viscous flow
having the opposite rotation around the axis z.

Remark 3: Using results of our article [11], we get that
the z-axisymmetric Beltrami vector fields B(r, z) (5) to (7)
admit the integral representation
Z
Bx) = sin(ak-x)T(k) + cos(ak - x)k T(k) do.

s?
(18)

Here, T(k) is an arbitrary z-axisymmetric differentiable
vector field tangent to the unit sphere S2:k-k=1,and
do is the standard Euclidean measure on the sphere S2.
Indeed, in [11], we proved that the general nonsymmetric
solution to the Beltrami equation (7) has form (18), where
T(K) is an arbitrary vector field tangent to the sphere S?,
and do is an arbitrary measure on S2. The Beltrami field
B(x) (18) evidently becomes z-axisymmetric if the vector
field T(k) and the measure do are z-axisymmetric. As we
have shown in [11], the absolute value jB(x)j decreases as
C/jxjwhen jxj ¥ oo; see also [12].

Remark 4: The solutions (2), (3) exist for all moments
of time t 2 ( oo, o0). Below we assume that viscosity
v(t)  vp > 0;for this case, function f(t) (4) monotonously
decreases and f(t) ¥ oo at t ¥ oo and f(t) ¥ O
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att
att

oo. Therefore, (2) yields that the exact solutions
oo tend to the steady flow

V(r, z) = aéré, + 2£¢;, (19)

that according to (10) has constant vorticity r  V(r, z) =
2aé@é;. Therefore, solutions (2) describe a relaxation of
the axisymmetric flows (2) to the steady flow (19) with
constant vorticity 2aéé,.

Solutions (2) at t ¥ oo have the leading term
f(6)B(r, z) which describes a Beltrami flow with the
streamfunction f()y(r, z).

3 Infinite-Dimensional Family of
Inner Transformations

Theorem 2: If two axisymmetric vector fields V1(r, z, t)
and V;(r, z, t) are solutions of form (2) to the Navier—Stokes
equations (1), then vector fields

Vun(r, z, t)

= ainVi(r, z + uin, t)
n=1

x .
+ aVa(r, z + uxn, t) + aéré,
n=1

XK
+ 2‘{éz + bkn
k=1n=1

O"Vi(r,z + zin, t)
oz

a"Vz(r, z+ an, t)
oz"

+ Cin (20)
also are solutions to the Navier-Stokes equations (1). The
constants ajy, Wiy (j = 1, 2), bins Cins Zikn» Zin are arbitrary,
n=1,--- ,M,k=1,---,N.

Proof. Let vector fields V(r, z, t) (2) (j = 1, 2) are as fol-

lows:

Vi(r, z, t) = a&jré, + 2¢;&, + f(OB;(r,2z), (21)

where vector fields B;(r, z) have the form (5) and satisfy the
Beltrami equation (7). Formulae (20), (21) yield

Vun(r, z, t)
= alréy, + 288,

+f(#)

ainB1(r, z + uin)
n=1
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#
b ¢
+  amBa(r, z + uzy)
n=1

O"Bi(r, z + z1y)

KX
+£(0 2

k=1n=1

bkn

0"Ba(r, z + Zkn)

D22 A @

+ Cikn

where parameter & = & + Pff:l(alncﬁ + axpé,). Here,
vector fields 0"B;(r, z + zy,)/ 02" (5) (j = 1, 2) correspond
to the streamfunctions 0";(r,z + zy,)/0z". The latter
together with the streamfunctions ;(r, z) for B;(r, z) evi-
dently satisfy (6) because it is invariant under arbitrary dif-
ferentiations 0" /0z" and translations z ¥ z + z;,,. There-
fore, all vector fields 0"B;(r, z + zy,)/0z" and Bj(r,z +
ujn) satisfy the Beltrami equation (7). Hence, vector field
Vun(r, z, t) (22) has the form

VMN(I’, Z, l’) = afréq, + Zg'éz +f(t)BMN(r, Z), (23)

where vector field Byy(r, 2) is the linear combination of
all steady Beltrami fields in (22), having the common fac-
tor f(t). As the Beltrami equation (7) is linear, we get that
vector field Byy(r, z) also is a Beltrami field. Hence, vector
fields Vyn(r, z, t) (20), (23) have the form (2) and therefore
by Theorem 1 define exact solutions to the Navier—Stokes
equations (1). The corresponding pressure pyn(r, z, t) is

ﬁﬁned by the formula (3) with the new parameter ¢ =
’,,V’zl(am{l + axpé). O

Remark 5: Theorem 2 proves that the space of exact solu-
tions L, for a fixed parameter a and variable parameter &
is linear with respect to the vector fields V(r, z, t) (2) and
is nonlinear with respect to the pressure p(r, z, t) (3).

Corollary 1: The infinite-dimensional space L, of exact
solutions (2)-(3) is invariant under the transformations:

V(T, zZ, t) L] FMN(V(T, zZ, t))

= aéré, + 2¢8, + anV(r,z + un, t)
n=1
KX b anv(r’ Z+ Zyp, t)

kn azn
k=1n=1

+ (24)

Here, an, un, by, zin are arbitrary parameters.

Proof. Applying Theorem 2 for the case Vy(r,z,t) =
aéré, + 2£@;, we get that transformations (24) are special
cases of transforms (20). The transformations (24) com-
mute with each other because the differentiations 0" /0z"
commute with arbitrary translations z ¥ z + u. O
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4 Backlund Transforms between
the Axisymmetric Helmholtz
Equation and the Linear Case of
the Grad-Shafranov Equation

As known, the Helmholtz equation

AF(X) = a’F(x) (25)
for the z-axisymmetric functions F(r, z) has the form
1 2
Fpr + ?F, +F,;= a°F. (26)

Consider two cases of the Grad-Shafranov equation
[13, 14]
1 _ ,dP dG
?’abr"'l.bzz = r ap G@,
corresponc}i:;lg to (a) P(y) = 0, G(y) = ayp and (b) P(yp) =
0, G(Y) = B2 + aZy2. For both cases, (27) becomes

Yrr @7)

Yrr %lpr + P = 0(2111- (28)

Equations (26) and (28) describe absolutely different
physical phenomena. Therefore, the closeness in form of
these equations is striking.

We introduce the new Backlund transforms between
the axisymmetric Helmholtz equation (26) and the lin-
ear case (28) of the Grad-Shafranov equation, which
coincides with (6). The Backlund transforms are used in
Section 6 below.

Lemma 1: (a) Backlund transform

_ O0F(r,2)
Y(r,z)=r 5 (29)
maps any solution of (26) into a solution to (28).
(b) Backlund transform
1 0y(r, z)
F(t,z) = = o (30)

maps any solution of (28) into a solution to (26).

Proof. (a) Rewrite the Helmholtz equation (26) in the form
r YF),+F,;, = o’F. Denoting here rF, = i and differ-
entiating with respecttor, wefindr 1y, r *Y,+F,;, =
a’ F,. Multiplying this equation with r and putting rF, =
Y, we get (28).
(b) Represent the linear case (28) of the Grad-
Shafranov equation in the form r(r ), + .. = a?y
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anddenoter 4,(r, z) = F(r, z). After differentiation with
respect to r, we get rFy, + Fr + 2z = a1, Multiplying
with r ! and putting r 11, = F, we get (26). O

Remark 6: The composition of Backlund transforms (29)
and (30) is

F(r,z) = Fu(r,2) + 1 'Fi(r, 2). (€3]
By Lemma 1, the mapping (31) is auto-Backlund transform

of the axisymmetric Helmholtz equation (26); it has also
theform F= F,, aF.

Remark 7: The composition of Backlund transforms (30)
and (29) is

1
r Y, 2).

P(r,2) = Pn(r, 2) (32)

The mapping (32) by Lemma 1 is the auto-Backlund trans-
form of the linear case (28) of the Grad—Shafranov equa-
tion (27). The transform has also the form l]} = Y

a*y.

5 Vortex Blobs and Vortex Rings

In view of (5), vector fields (2) have the form

1oy, 1oy, . ap:,
= e+ = &, + =@y,
roz | ror - r ¢

Vl(r) z, t) = (33)

where Y1 (r, z, t) is the time-dependent streamfunction:

P1(r, z, £) = Er2 + F(OY(r, 2). (34)

Remark 8: The inner transforms (24) correspond to
the following transformations of the streamfunctions

Y1(r, z, 0):
Yi(r,z, ) ¥ Fyn(pi(r, z, 1)

=&+ anha(r, z + un)
n=1
. KX b n6"¢1(r,z+zkn).

oz" (5)

k
k=1n=1

Equation (33) implies that for any fixed moment of time ¢,
the surface 1 (r, z, ty) = const (the angle ¢ 2 S is arbi-
trary) is an invariant submanifold for the vorticity vec-
tor field r Vi(r, z, tg). This follows from formula (11):
r Vi =aV; azfré(p and the z-axisymmetry of the flow.

As this surface 4(r, z, tp) = const is z-axisymmetric,
it is a disjoint union of either some spheres S or some tori
T? =Cy,p S'orsomecylindersC*> =Ry, S'.Here,
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Cy,(y and Ry, (y are the level curves Y1(r, z, t) = const
in the poloidal plane (r, z) for a fixed time t. The curves
Cy,y (r,z)areclosed, and the curves Ry, ) (r,2) are
infinite. The circle S corresponds to the angular variable
:0 ¢ 2m.

Assume that a surface ;1 (r, z, to) = C;1 bounds a com-
pact connected domain D;. We call the domain D; max-
imal and denote it Dy, if it is not contained in any big-
ger compact connected domain D, bounded by a sur-
face 1(r, z, to) = C;. If such a maximal domain Dy, inter-
sects the axis of symmetry r = 0, then topologically it is
a z-axisymmetric ball B;,, which we call a vortex blob
because it is invariant with respect to the vorticity field
r Vi(,z to).

Remark 9: Suppose that function Y(r, z) in (34) is
obtained by transform (29). Then on the axis of symme-
try r = 0, we have 11 (0, z, t) = 0. As the vortex blobs Dy,
intersect the axis r = 0, the same is true for their bound-
aries defined by equation (1, z, t) = Cw. Putting here
r = 0, we get C,; = 0. Hence, the boundaries of the vortex
blobs satisfy the equation
Yi(r, z, t) = 0. (36)
Equation (36) can define several connected compo-
nents; see exact solutions in Section 6 and 8.

If Cm & 0, then the corresponding maximal compact con-
nected domain Dy, bounded by the surface ¥4(r, z, to) =
Cm & 0 does not intersect the axis of symmetry r = 0
because ¥1(0, z, to) = 0. Therefore, the domain Dy, for
Cm & 0 topologically is a 3-dimensional z-axisymmetric
ring B2,(to)  S', where BZ(to) (r, 2) topologically is
equivalent to a 2-dimensional ball in the poloidal plane
(r, z). The boundary of the ring B2,(to) S!isatorus T2 =
Cyu(ty S'where Cy .,y = 0BR(to) is a closed level curve
P1(r, z, to) = Cm & 0, @ = 0. As the ring B3,(tp) S' is
invariant with respect to the vorticity field r V4(r, z, to),
we call it a vortex ring. In view of (11), the vortex blobs and
vortex rings are invariant also with respect to the velocity
field V1(r, z, to).

As known, for an ideal incompressible fluid, the vor-
ticity field r  V(x, t) is frozen into the fluid flow. There-
fore, for the inviscid fluid (v = 0), the vortex blobs and vor-
tex rings are transported with the fluid flow. For a viscous
fluid with v(t) & 0, the vortex blobs and vortex rings are
not frozen into the viscous fluid flow and undergo a more
sophisticated dynamics and can collapse and disappear at
some moments of time t.

Both vortex blobs and vortex rings are equivalently
represented by their intersections with the poloidal plane
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(r, z), @ = 0. Below we study dynamics in time ¢ of the
poloidal sections of the vortex blobs and vortex rings for
the concrete exact solutions derived in Section 6.

6 Bifurcations in Exact Solutions to
the Navier—Stokes Equations

I. The HehBloltz equation (25) for the spherical functions
F(R), R = rZ+ 22, has the form Frg + 2Fg/R = «°F.
This equation has an important exact solution F(R) =
sin(aR)/R.* The solution evidently is z-axisymmetric and
therefore satisfies (26). Applying the Backlund transform
(29), we get that function

_ r oF(r,z) _
Y(r,2) = 2 o -7 G2(aR)
o sin(aR)
= 2R cos(aR) IR 37)

satisfies (28) [or (6)]. Therefore, the corresponding z-
axisymmetric vector field B(r, z) (5) by Theorem 1 satisfies
the Beltrami equation (7). Function G, (u) in (37), G,(u) =
u *(cosu u !sinu), is connected with the Bessel func-
tion J3/,(u) of order 3/2 by the relation

2
3//2 J372(w).

Gy(u) =
Remark 10: In another form, Beltrami field B(r, z) [(5)
and (37)] was first derived in 1899 in the pioneer article
by W.M. Hicks [16] that is the historical precursor of many
works on fluid and plasma equilibria.? The Beltrami field
B(r, z) (5), (37) was rediscovered in the theory of plasma
equilibria in terms of Bessel functions J5, (u) [19] by Chan-
drasekhar [20] and Woltjer [21] as a model of axisymmetric
plasma equilibria and is called the spheromak field. The
term “spheromak” was first introduced in [22]; see review
[23]. Moduli spaces of vortex knots for the spheromak Bel-
trami field in different invariant domains were presented
in [24] and for another Beltrami field in [25].

1 Applications of the exact solution sin(aR)/R to the atomic bomb
physics were analysed by W. Heisenberg, see pp. 193 and 194 of his
lecture [15].

2 The author has found in the literature another article by Hicks [17]
that is the abstract of [16] published separately in 1898. Therefore,
the two articles [16, 17] should be read together. Their analysis from
a comprehensive point of view is shown in Section 9 “Comments on
Hicks’ Papers” of our work [18].
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II. We will use in this article the following functions Gn(u)
connected with the Bessel functions J,, 1/,(u):

Go(u) = cosu,
d 2
G1(u) = wdu ——Go(u) = sinu _ 711//2 J12(W),
Gy(u) = % 1(w) = Sy
pP__
2
= 3//2 J312(),
6w=-46w=2L6 WM 3cosu
udu u# u
[o
2
= 7://2 Tsp2(w).
Gy(u) = iGg(u)
udu
= ié (6u’ 15)w (> 15)cosu
u
2
’7’/2 2. G8)

All functions Gn(u) are analytic everywhere and have
the nonzero values at u = 0:

G1(0) =1, GZ(O) = 1/3’

G3(0) = 1/15, G4(0)= 1/105. (39)
The plot of function y;(u) = G,(u) is shown in
Figure 1. The range of function G (u) is the segment I =
( 1/3, & ~0.02872).
Functions Gn(u) (38) are even and satisfy the easily

verifiable identities

Go(u) + G1(u) + U’ G (u) =

G1(w) +3Ga(w) + u’Gs(w) = (40)
The general identity
Gn(w) + (21 + 1)Gn+1(u) + U’ Gpe2(w) = 0 (41)

for Gyeq1(u) = u 1dGy(u)/du follows from identities (40)
by induction.
III. Vector field V(r, z, t) (33) with the streamfunction

Yi(r,z, 0 =1* & f()Gy(aR) (42)
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Figure 1: Plots of functions y;(u) = G2(u) and y,(u) =

has the form

Vi(r, z, t) = a®rzf(t)Gs(aR)é,

h i
+ 2&  f(D(2G2(aR) + a’r*G3(aR)) &;

+ar & f()Ga(aR) &y, (43)

where f(t) is the function (4). This vector field together
with the pressure p(r, z, t) (3) defined by the formula

plr,z,t) =p C+¥(r,z,t)+ azrzf & f(HG2(aR)

SiVi0, 2,07

is the new exact solution to the Navier-Stokes equa-
tions (1).

Remark 11: For the vanishing viscosity v(¢) = 0, function
f(t) (4) equals 1. Fluid flows (43) for f(t) = const and arbi-
trary parameters a, ¢ are equivalent to the steady solu-
tions to Euler equations for the ideal incompressible fluid
studied in [26].

Remark 12: For exact solutions (42), (43), we find
Y1(0, z, t) = 0 for r = 0. Hence, the boundary of a vor-
tex blob is defined by equation (1, z, t) = 0 (36); see
Remark 9 above. Therefore, on the boundary, we have
& = f(t)G,(aR). Hence, the vortex blob is a ball B}, of

0. Bogoyavlenskij: New Exact Axisymmetric Solutions to the Navier-Stokes Equations

(G1(u) + Ga(u))/2.

radius ay defined by the equation

OZf 1

Ga(aay) = &/f(t) = £exp@a®  v(1)dTA
0

(44)

and its boundary is the sphere Sflk of radius R = ay.

IV. Function G,(u) ¥ O when u ¥ oo and has infinitely
many oscillations, see its formula in (38). Therefore, from
Figure 1, it becomes evident that equation G,(u) = &/f(t)
(a4)foré & 0,¢8/f()21 =( 1/3,4, =0.02872), has a
finite number N(t) of roots and N(t) ¥ oo when &/f(t) ¥
0. That means the vector field Vi(r, z, t) in the whole
space R> can have for ¢ & 0 a finite number N(¢) of invari-
ant spheroids Bzi, and it has infinitely many invariant
spheroids when & = 0.

The velocity field V1(r, z, t) (43) does not have any
invariant spheroids B2 (R ¢) for time ¢ satisfying condi-
tion &/f(t) 2 I because for this case (44) has no solutions;
see Figure 1.

Dynamical system defined by the vector field
Vi(r, z, t) (33), (43) has the form

i = a’rzf()Gs(aR),
h i

2=2¢ f(t) 2G2(aR) + a’r*G3(aR) (45)

¢ =all§ f(OG2aR)]. (46)
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Dynamics of fluid vanishes on the spheres R = Ry,
where G3(aR;) = 0 at the moments of time t; defined by
equation f(ty) = &/Ga(aRy).

Equilibrium points (at a fixed time t) of dynamical
system (45) are defined by equations z = 0 and

[2G,(w) + u?Gs(W)]/2 = &/f(D), (47)

where u = aR. The second identity (40) yields 2G»(u) +

u?Gs(w) = G1(w) Ga(u). Therefore, (47) takes the form
G + G
o) = 1(v) . 2(u)
1 sinu , 1 sinu  _
= 5 T"'ﬁ cosu —_— —flf(t).
(48)

The plot of function y,(u) (48) is shown in Figure 1.
The range of function y,(u) is the segment ( 1/3, Z’l ~
0.11182). Thus, oscillations of function y,(u) are greater
than those of function y;(u); see Figure 1. Function
y2(u) ¥ 0 when u ¥ oo. Therefore, the number M(t) of
roots of (48) is finite for all ¢ and M(t) ¥ o when
¢IfO 1 o.

The stream surfaces 1(r, z, t) = const for solutions
(42), (43) are up-down symmetric and have different
structure for £ > 0 and ¢ < 0. The poloidal contours of
the stream surfaces for £ > 0 are shown (for a = 1) in
Figures 2—-11 for a sequence of increasing moments of time
t: oo, t; <t <:--<tg,oo. In Figures 12-19, we show
the poloidal contours of the stream surfaces for & < 0,
a = 1 for a sequence of increasing moments of time ¢ :

oo, t; <t, <-.--<tg,oo. The arrows in Figures 2-19
show the direction of the dynamics defined by system (45).

For the solutions (42), (43), all vortex blobs are the
balls bounded by certain spheres R = a; (44); they are
shown in blue. The roots u; = aR; of (48) for a given time

z
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Figure 2: Time t =

o0, &> 0.
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Figure 3: Time t1: f(t;) = £/0.004.
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Figure 4: Time t,: f(t;) = £/0.0176.
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Figure 5: Time t5: f(t3) = £/0.025.
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5.76

a4
L
St

0

-5.769

Figure 6: Time t,: f(t,) = &/0.02872.

:

Figure 7: Time ts: f(ts) = £/0.0326.

i

Figure 8: Time t¢: f(ts) = £/0.0461.

N

o

N

o

t that are greater than all roots aa; of (44) define equilib-
ria (r = Ry, z = 0), which belong to the vortex rings that
are shown in Figures 2-9 in pink. The roots u; = aR; (48)
are extreme of function ¥ (r, z, t) (42); they are denoted

|

Figure 9: Time t;: f(t;) = £/0.0788.

Figure 10: Time ts: f(ts) = £/0.132.

z

Figure 11: Time t = +oo.

in Figures 2-19 as ¢j, g;, and s;. Points ¢; are stable max-
ima or minima of function y4(r, z, t); points a; and s are
unstable saddles. The interiors of each vortex ball and vor-
tex ring are filled with invariant tori T? = Cl}“(t) St of
dynamical system (45) to (46), where Czlpl(t) (r,z)is a
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Figure12: Timet = oo, & < 0.

M

Figure 13: Time t, : f(t,) = j&j/0.0119.
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Figure 14: Time t = t,: f(t,) = j&j/0.0237.
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closed curve defined by equation 14(r, z, t) = const (for
the given moment of time t).
When &/f(t) satisfies the inequalities

& ~0.02872 < &/f(H) <&, =0.11182, ¢>0, (49)

the vector field V;(r, z, t) (43) has finitely many vortex
rings and no vortex halls; see Figures 7-9. Figures 2-19
illustrate dynamics of vortex balls and vortex rings. It is
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Figure 15: Time t; : f(t;) = j&j/0.03.

2

Figure 16: Time ¢, : f(t,) = j&j/0.0501.
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Figure 17: Time ¢, : f(t;) = j&j/0.0652.
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Figure18: f, : f(t,) = j&j/0.36.

z

Figure 19: Time t = +oo.

evident from these Figures that vortex balls and vortex
ringsast ¥ oo collapse and disappear.

V. Using (11), we find the corresponding to (43) vorticity
field

r V1(I’, Z, t)
= &’rzf(£)G3(aR)&,

h i
+a 28 f()2Gy(aR) + a*r*G3(aR)) &,
Q’rf(t)G2(aR)&yp. (50)

In the Cartesian coordinates (x, y, z), the new solution
Vi(r, z, t) has the form

Vilx, ) = [ ady + f(O)(ayG, + a’xzG3)]éx
+ [agx + f(O( axG, + a’yzG3)léy

+[28 + f(t)(G1 + Gy + a’2°G3)]1&z,  (51)
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where we substituted 2G, + a’r’Gs = (G1 + Gy +
a’z%G3) [applying the second identity (40)]. Everywhere
Gn = Gn(aR).

Remark 13: The exact solutions (43), (51) for & > 0 and
for £ < 0 have the following important distinctions that
follow from (44), (48):

(a) If the flow for & > 0 at a time ¢ has a vortex blob,
then it does have at least one vortex ring; see Figures 3-6.
For & = 0, there is interval of time ¢ satisfying inequalities
(49) when the flow has vortex rings but does not have a
vortex blob; see Figures 7-9.

(b) For & < 0, there is interval of time ¢t satisfying
inequalities

1/3<&/f() <&~ 0.0648, &<0,

when the flow has a vortex blob but does not have any vor-
tex rings; see Figure 17. However, if for & < 0 the flow (43),
(51) has a vortex ring, then it necessarily has a vortex blob;
see Figures 13-16.

7 Discontinuous Volume Function
Vi(t)

I. At any fixed time t =tp, the fluid velocity field
Vi(r, z, to) (43) and vorticity field r V(r, z, to) (50) are
tangent to the surfaces of constant level of the streamfunc-
tion Y4 (r, z, to) (42).

The zero level of function (42) at a fixed time ¢ is
the union of several spheres Si,—(t) of radii a;(t) obeying
equation G, (aa;(t)) = &/f(t) or

OZt 1

Gy (aai(t) = Eexp@a®  v(r)dTA.
0

(52)

Vector fields Vi(r, z, t) (43)and r V(r, z, t) (50) on
each sphere Sii(t) have the form

Vi(r, z, t) = &’rf()Gs(aa;(t)) z&, ré&,, (53)
T Vi, z t) = Erf(0)Gs(aa;(t) zé, ré,
a2r§'é¢. (54)

It is evident from (53) to (54) that the spheres Szzz,-(t)
are invariant submanifolds for the flows V4(r, z, t) and
r Vi(r, z, t). Therefore, the balls Bzi(t) bounded by the
spheres Si(t) also are invariant under the vorticity field
r Vi, z, t). Therefore, we call the ball Bflm(t) of the
maximal radius an(t) a vortex blob.
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From Figure 1, it is evident that for £ > 0 the num-
ber of solutions a;(t) to (52) is even, say equal to 2N(t).
Therefore, inside the vortex blob Bzm(t)’ thereare 2N(t) 1
invariant balls

3 3 3
Baw Baw B (55)

3
awo 1O Ban

For ¢ < 0, the number of solutions a;(t) to (52) is odd,
say equal to 2N(t)+ 1. Hence, inside the vortex blob Bim(t),
there are 2N(t) invariant balls

3 3
Ba,y " Bayo

3 3
Ba, Banty-  (56)

Att ¥ oo, we have exp a’ Rot v(r)dt ¥ 0. Hence,
formula (52) and Figure 1 yield N(t) ¥ cowhent ¥ oo,
II. The fluid flow (53) becomes identically zero on the
spheres S(ZN(O defined by equation Gs(aa:(t)) =0. As
G3;(w) = u 'dG,(u)/du, the equation G3(u:) = 0 means
that the point u- = aa-(t) is a point of either local max-
imum or local minimum of function y;(u) = G,(u); see
Figure 1. In view of (38), equation G3(u) = 0 is equivalent
to equation

tanu = 3 3uu2. (57)
The first eight roots u- of (57) are
u; = 5.7635, uy =9.0950,
uz = 12.3229, uy4 = 15.5146,
us ~ 18.6890, ug =~ 21.8539,
u; =~ 25.0128, ug=~28.1678.
The corresponding values &< = G, (u-) are as follows:
& = Go(uy) ~0.02872, &~ 0.0119,
& ~0.0065, & =~ 0.0041, &5 =0.0029,
¢~ 0.0021, ¢&7=0.0016, é&3= 0.0013. (58)

The positive values & > 0 are local maxima of func-
tion G,(u); the negative values - < 0 are local minima;
see Figure 1.

The vortex blob B} . and invariant spheres S7
exist if (52)Rhas some roots a;(t). This is possible only
if £exp a? Ot v(t)dt belongs to the range of function
G,(u). The plot of function y;(u) = G>(u) in Figure 1
shows that the range of function G,(u) is the segment
[ 1/3,¢; = 0.02872]. Here, &; is the maximal value of
function y; (1) = G,(u). It is attained at the point u; satis-
fying equation G3(u) = u 1dG,(u)/du = 0. The first root
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of equation G3(u) = 0 (57) is u; = 5.7635. Hence, we cal-
culate G,(u1) = &; =~ 0.02872.

III. Consider (52) for an(t) and differentiate it with respect
to time t. Using equation dG,(u)/du = uGs(u) (38), we
find

@ an(0)Gs aan(®) 410

Ozt 1

= a’v()¢ exp@a®  v(1)dTA
0

= a®v(t) G2 (aam(D).
Hence, we get

dam(t) _

Ga(aam(t))
=v(t)
a

am(t)G3(aam(t)’

(59)
The volume Vn(f) of the vortex blob Bim(t) is
4raz,(t)/3. Hence, from (59), we derive

dVm(6)
dt

am(t)G(aam(t))
Gs(aam(t))

= 471v(t) (60)
Equation (60) shows that the speed of the change of
the vortex blob volume V() is proportional to the kine-
matic viscosity v(t) of the fluid.
IV. For & > 0, (52) yields that function G(aam(t)) >
0. As um(t) = aan(t) is the maximal root of (52), we
see from Figure 1 that dG>(u)/du <0 at u = un(t).
Hence, G3(um(t)) = up ()dG2(um(t))/du < 0. Therefore,
from (60), we get dV,,(t)/dt < 0. Hence, function Vi, (t) is
monotonously decreasing.

Equation (60) shows that derivative dV,,(t)/dt = oo
at the moment of time t = t;, when Gs3(aam(t;)) = 0. Func-
tion G,(u) has local maximum at u = u; = aam(t), and
for t = t; + &, there is no invariant sphere of radius close
to am(t,) because the two neighbouring spheres B?zmm ,
and Bzm(t) coincide at t = t; and then disappear. There-
fore, the next ball Bflmm , in the nested sequence (55)
becomes maximal. Hence, the radius an(t)) of the vortex
blob jumps down to the value a,y() ,(tx) at the moment
ty. The volume Vi (t) = 4ma3,(t)/3 jumps down correspon-
dently. The jumps occur at the moments of time t;, when
function G,(aam(t)) takes the positive values &y (58). From
(52), we get equation for the corresponding times t;:

Ztk
v(r)dr = a *log(&/8),
0

(61)

where & = G,(uy) >0,
G3(uy) = 0, am(ty) = ug/a.

and u; satisfies equation
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For £ > 0, (52) yields that the maximal time t = tp
when the fluid flow V1 (r, z, t) (43) has a vortex blob Bzm )
is defined by the condition G, (aam(tm)) = &1 = 0.02872.
At this moment, aam(tm) = u1 = 5.7635. Hence, we get
from (52) the equation for the time t;:

Zn
v(r)dr = a *log(£1/¢)

~a 210g(0.02872/¢). (62)

The last vortex blob (ball) Bzm(tm) has the minimal
possible radius am(tm) = u1/a =~ 5.7635/a. Equation (53)
yields that the fluid velocity V1 (r, z, tm) is identically zero
on the boundary sphere Sim(tm). For all times t > ty,, the
fluid flow V1(r, z, t) (43) does not have any vortex blob.

The plot of the monotonously decreasing discontinu-

ous function Vp,(t) is shown in Figure 20.
V. Equation (52) for & <O yields that function
Gy(aam(t)) < 0. The range of negative values of G,(u) is
the segment [ 1/3, 0]. As un(t) = aam(t) is the maximal
root of (52), we see from Figure 1 that dG,(u)/du > 0 at
u = um(t). Hence, G3(um(t)) = uy ()dG(um(t))/du > 0.
Therefore, from (60), we get dV,(t)/dt < 0. Hence,
function V(t) is monotonously decreasing.

Equation (60) shows that derivative dVp,(t)/dt = oo
at the moment of time t = t;, when Gs(aam(t;)) = 0. Func-
tion G, (u) has local minimum at u = u; = aan(t;), and
for t = t; + &, there is no invariant sphere of radius close
to am(t;) because the two neighbouring spheres Bimm and

Bim(t) coincide at t = t; and then disappear. Therefore,
the next ball BZZN([) , in the nested sequence (56) becomes

maximal. Hence, the radius an(t;) of the vortex blob
jumps down to the value a, () 1(t;) at the moment ¢;.. The
volume V() = 4maz,(t)/3 jumps down correspondently.
The jumps occur at the moments of time ¢, when function

-\ V(D)
I

tes 1 t t_ 0] t, t Lt t

Figure 20: Plot of function V,(t) for flow (43) with & > 0.
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V(D

fies 1 fi b 4 0 b b f t

Figure 21: Plot of function V,(t) for flow (43) with & < 0.

G2 (aam(t)) takes the negative values &y (58). The same
(61) but with ¢ < 0 and & < 0 defines the corresponding
times ty.

For & < 0, we get from (52) that the maximal time ¢t =
t,» when the flow V4 (r, z, t,,,) (43) has a vortex blob Bi(tm) is
defined by the equation G>(aa(t,;,)) = 1/3 = min G (u).
Hence, (52) yields the equation for the time t,:

Zm

v(r)dt = a %log( 1/(3¢)). (63)

0
The last vortex blob Bf’z(tm) has zero radius a(t,;,) = 0.
From (39), we get G,(0) = 1/3, G3(0) = 1/15. Substitut-
ing this into (60), we get dVi(t,,)/dt = 0. Therefore, the
plot of function Vy(t) for & < 0 differs from the plot in
Figure 20 for ¢ > 0by its behaviour near point ¢,,: the limit
values of Vi (t,,) and its derivative dVp,(t,,)/dt are both
zeros; see Figure 21.
The fluid flow V(r, z, t) (43) has no vortex blobs and

invariant spheres for all times ¢ > t,,.

8 Conclusion

In this article, we presented an infinite-dimensional space
of new exact time-dependent axisymmetric solutions (2)
to (6) to the Navier-Stokes equations (1). The solutions
are analytic in the whole space R> and exist for all times
t; the velocity field and vorticity field for the solutions
are not collinear and satisfy (11). The constructed space
of exact viscous fluid flows V(r, z, t) is invariant under
arbitrary shifts z ¥ z + zy and differentiations ok / ozk,
k=1,2,3,---. The iterations of these transforms gen-
erate infinite sequences of new exact solutions from any
known one.
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We studied solutions with velocity field V1(r, z, t) (33)
having the streamfunction (42):

Yi(r,z, ) =r’[€ f(OG2(aR)],

(0] 7t 1
f(6) = exp@ a® v(1)dTA.

0

(64)

Applying transforms (35) to the streamfunction
Y1 (7, z, t), we get an infinite sequence of streamfunctions

0" 1Gy(aR)

Tt 0 ©@

Un(r,z,0=1" & f(b)

that define by formula (33) new exact solutions V,(r, z, t)
to the Navier-Stokes equations; here, n = 2, 3, ---. The
streamfunctions 1 (r, z, t) (64) and Y41 (1, z, t) (65) are
up-down symmetric with respect to the reflection z ¥

z, as well as the corresponding velocity fields (33). The
streamfunctions Y, (r, z, t) (65) and the related vector
fields (33) are up-down asymmetric.

We presented Figures 2-19 describing the bifurcations
of the instantaneous (for t = t() phase portraits of the vis-
cous fluid flows (43). Ast ¥ oo, the derived exact solutions
tend to the steady flow V(r, z) = aéré, + 2£@, that has
a constant vorticity r  V(r, z) = 2aé@é, and hence has
no vortex blobs and vortex rings. Therefore, for the con-
structed exact solutions to the Navier—Stokes equations,
the vortex blobs and vortex rings collapse and disappear
ast ¥ oo,

For the exact fluid flows (43), we studied the behaviour
of the volume Vp,(f) of the vortex blob. We proved
that function Vi (t) is a discontinuous monotonously
decreasing function of time ¢ that has jumps down and
infinite derivatives at an infinite sequence of moments of
time oco<:.. <t <---<t3 <ty < tm, Wheretyisthe
maximal time when the vortex blob exists.
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