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Abstract: By introducing a special kind of variable sub-
stitution, we skillfully solve the delta-shock and vacuum
solutions to the one-dimensional Eulerian droplet model.
The position, propagation speed, and strength of the delta
shock wave are derived under the generalised Rankine–
Hugoniot relation and entropy condition. Moreover, we
show that the Riemann solution of the Eulerian droplet
model converges to the corresponding the pressureless
Euler system solution as the drag coefficient goes to zero.

Keywords: Delta-Shock Wave; Eulerian Droplet Model;
Generalised Rankine–Hugoniot Condition; Vacuum.

1 Introduction
We are concerned with the following one-dimensional
Eulerian droplet model:⎧⎨⎩αt + (αu)x = 0,

(αu)t + (αu2)x = µα(ua − u),
(1)

where α and u are the volume fraction and velocity of
the particles (droplets), respectively, ua is the velocity
of the carrier fluid (air), and µ is the drag coefficient
between the carrier fluid and the particles.

This model was proposed by Bourgault et al. [1] to
compute the impingement of droplets on airfoils. In (1),
the virtual mass force is neglected since the density of
particles exceeds the air density by orders of magnitude.
Other forces, such as lift force, gravity, and other interfa-
cial effects, are also negligible when compared to the vis-
cous drag force, though they may be important in some
applications [1]. The Eulerian droplet model (1) corre-
sponds to a dispersed phase subsystem in its simplest
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form: for instance, a multi-phase system for particles sus-
pended in a carrier fluid. Currently, it is not only used to
predict deposition patterns for high-speed external gas-
particle flows [1, 2] but also works for low-speed gas-
particle internal flows [3, 4].

It is clear that, as µ = 0, the system (1) is nothing
but the pressureless Euler system, or the so-called the
zero-pressure flow model, which can be used to describe
the motion of free particles sticking together under colli-
sion [5] or to explain the formation of large-scale struc-
tures in the Universe [6, 7]. Since the delta-shock wave
and vacuum are found in the solutions, the pressureless
Euler system has been widely studied by a large number
of scholars with strong interest since 1994 (see [8–11] and
the references therein). If ua = 0 and µ = 1, the system (1)
becomes a non-homogeneous, pressureless Euler system,
which is derived from the Cucker-Smale model and can
be used to describe the flocking phenomenon. The well
posedness of entropy solution to this pressureless Euler
system with flocking dissipation was systemically studied
in [12–14], etc.

To our knowledge, investigations on the Eulerian
droplet model (1) have mostly focused on the numeri-
cal level [1] and the practical level [3, 4, 15–17]. Recently,
the theoretical arguments for (1) were completed by Keita
and Bourgault [18]. They solved the Riemann problem for
the Eulerian droplet model by going through the solu-
tion of the Riemann problems for the inviscid Burgers
equation with a source term and the subsystem, respec-
tively. Particularly, for the delta-shock solution, the gener-
alised Rankine–Hugoniot condition, which is in the form
of ordinary differential equations, was proposed. Never-
theless, as was pointed out in [18], “In general, it might
be hard to find the analytical solution of this ordinary
differential equations”. Thus, for the delta-shock solution
of the Eulerian droplet model (1), with the help of the
Cauchy-Peáno theorem, the Cauchy–Lipschitz existence
theorem, and the Arzla–Ascoli theorem, they obtained
the existence of a solution to the generalised Rankine–
Hugoniot condition satisfying the Lax entropy condition.
Finally, for the Riemann problem for (1), they were lucky
to find an analytical solution for the generalised Rankine–
Hugoniot condition.However, hydrodynamicists and engi-
neers find it difficult to apply the theory of delta-shock
waves conveniently in practice because of the lack of a
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recondite mathematical foundation. Therefore, one of the
main objectives of this paper is to propose another effec-
tive and workable method to solve the Riemann problem
for the Eulerian droplet model (1).

For this purpose, we consider the Riemann problem of
(1) with the following initial data:

(α, u)(0, x) = (α±, u±), ±x > 0 (2)

and aim at putting forward a newmethod to construct the
Riemann solutions. Here, α± and u± are constants. Aswas
done in [18], just for the convenience of the study, in the
system (1), µ is assumed to be a positive constant, ua is also
supposed to be constant, and α > 0 is required.

Recall that, in 2016, Shen [19] studied the Riemann
problem for the pressureless Euler systemwith the follow-
ing source term:⎧⎨⎩ρt + (ρu)x = 0,

(ρu)t +
(︀
ρu2

)︀
x = βρ,

(3)

where ρ and u denote the density and velocity of fluids,
respectively, and β is a constant. The source term βρ in
(3) is known as the Coulomb-like friction term, which was
introduced by Savage and Hutter [20] to describe the gran-
ular flow behaviour. By skillfully performing the variable
substitution v(x, t) = u(x, t) − βt, which was earlier used
by Faccanoni and Mangeney [21] for the shallow water
equations, they rewrote (3) in a conservative form that is
linearly degenerate and whose solution contains a delta-
shock wave in certain situations. Then they successfully
constructed the explicit Riemann solutions of (3) with con-
tact discontinuity, vacuum state, and delta-shock wave.
Variable substitution is the common method used to dis-
cuss the balance law with the source term. For example,
see [22] for the generalised zero-pressure flow model, [23]
for the Suliciu relaxation system, and [24] for the per-
fect fluid model. Besides, one can also refer to [19] and
[25–30] for the Chaplygin and generalised Chaplygin gas
equations with friction.

Motivated by the works in [19] and [22–30], here we
introduce a new state variable v(x, t) and perform the
following variable substitution for (1):

v(x, t) = ua − (ua − u(x, t))eµt . (4)

Then, system (1) is reduced to a modified system
of conservation laws (see Section 2) and all the desired
results on the Riemann problem (1) and (2) are obtained
by the mathematical theory of hyperbolic conservation
laws. Concretely, both the vacuum and delta-shock solu-
tions for the modified system of conservation laws and (1)

are obtained. For the delta-shock solution, we investigate
and derive its position, propagation speed, and strength
in detail under the generalised Rankine–Hugoniot rela-
tion and entropy condition. Interestingly, it is found that
the generalised Rankine–Hugoniot relation proposed here
can be reduced to a function equation. More precisely, it is
a quadratic equation of one variable. Then, the existence
and uniqueness of the delta-shock solution are solved
completely under the entropy condition by studying the
function equation, which is one of the outstanding advan-
tages of our approach. Compared to the discussions in [18],
this approach avoids using some analytical theorems that
are complicated and not easy to understand for hydro-
dynamicists and engineers. Although we take a different
method from [18], the results are just the same.

The novelty of this article comes from the following
four aspects. First, compared with the method presented
in [18], our method seems simpler and has the advantage
of being easily workable. Second, the variable substitu-
tion (4) introduced in this paper is obviously different from
that in previous works [19, 22–30]. Third, influenced by
the source term, the Riemann solutions for (1) are not self-
similar anymore. All the characteristic curves, namely the
curves of contact discontinuities and delta-shock waves,
are bent into parabolic shapes. Fourth, we show that,
as the drag coefficient µ → 0+, the Riemann solution of
the Eulerian droplet model (1) tends to the corresponding
zero-pressure flow solution.

The rest of the paper is organised as follows. In
Section 2, by the change of the state variable, we obtain a
modified system of conservation laws with some new ini-
tial data, and constructively get its Riemann solutions con-
tainingdelta-shockwaves and vacuumstates. In Section 3,
we study the Riemann problem (1) and (2) and establish
the existence and uniqueness of solutions under a suit-
able generalised Rankine–Hugoniot relation and entropy
condition. Then, we rigorously prove that the delta-shock
solution satisfies (1) in the sense of distributions. In addi-
tion, we show that the solutions of (1) and (2) converge to
those of the pressureless Euler systemwith the same initial
data when µ → 0+. Finally, a brief conclusion is drawn in
Section 4.

2 Riemann Problem to a Modified
System of Conservation Laws

Under the transformation (4), the system (1) and ini-
tial data (2) are reduced into the following system of
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conservation laws:⎧⎨⎩αt + (α(ua + (v − ua)e−µt))x = 0,

(α(v − ua))t + (α(v − ua)(ua + (v − ua)e−µt))x = 0
(5)

with the new initial data

(α, v)(0, x) = (α±, u±), ±x > 0. (6)

The system (5) can be rewritten in the quasi-linear
form

ÃUt + B̃Ux = 0,

where U = (α, v)T, and

Ã =

(︃
1 0

v − ua α

)︃
,

B̃ =

(︃
ua + (v − ua)e−µt αe−µt

(v − ua)(ua + (v − ua)e−µt) αua + 2α(v − ua)e−µt

)︃
.

From this form, we can calculate the eigenvalue of
system (5) as

λ = ua + (v − ua)e−µt

and the right eigenvector as r⃗ = (1, 0)T. Since ∇λ · r⃗ = 0,
the system (5) is linear degenerate, and the elementary
waves involve only contact discontinuities.

Noting that the parameter t appears in the flux
functions of (5), it is quite different from the classical
hyperbolic systems of conservation laws. However, the
Rankine–Hugoniot conditions can also be derived via a
standard technique as usual. For the bounded disconti-
nuity x = x(t), we have the following Rankine–Hugoniot
condition:⎧⎨⎩σ(t)[α] = [α(ua + (v − ua)e−µt)],

σ(t)[α(v − ua)] = [α(v − ua)(ua + (v − ua)e−µt)],
(7)

where [p] = p+ − p− denotes the jump of p across the
discontinuity, and σ(t) = x′(t).

If σ(t) ̸= 0, from (7), one has

[α(ua + (v − ua)e−µt)] · [α(v − ua)]

= [α] · [α(v − ua)(ua + (v − ua)e−µt)]. (8)

Simplifying (8) yields

α−α+e−µt(v+ − v−)2 = 0. (9)

Therefore, we can connect the two non-vacuum
constant states (α−, v−) and (α+, v+) by a contact dis-
continuity J if and only if v− = v+. At this moment, the
propagation speed of J is

σ(t) = ua + (v− − ua)e−µt = ua + (v+ − ua)e−µt .

The solutions to (5) and (6) can be constructed in two
cases.

When u− < u+, one can construct the Riemann solu-
tion of (5) and (6) by constant, vacuum, and contact dis-
continuity, which is

(α, v)(t, x)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(α−, u−), −∞ < x < x1(t),(︂
0, ua +

µ(x − ua t)
1 − e−µt

)︂
, x1(t) ≤ x ≤ x2(t),

(α+, u+), x2(t) < x < +∞,

(10)
in which

x1(t) = ua t +
(u− − ua)(1 − e−µt)

µ ,

x2(t) = ua t +
(u+ − ua)(1 − e−µt)

µ .

When u− > u+, the characteristic lines from the
x-axis will overlap in the domain Ω = {(t, x)|ua t +
(u+−ua)(1−e−µt)

µ ≤ x ≤ ua t+ (u−−ua)(1−e−µt)
µ , t > 0}, so the

singularity of solutions must occur. We affirm that there
exist no solutions in the bounded variation space. Actu-
ally, for a smooth solution, (5) is equivalent to{︃

αt + (α(ua + (v − ua)e−µt))x = 0,
vt + (ua + (v − ua)e−µt))vx = 0.

(11)

Then we consider (11) with sufficiently smooth initial
data (α, v)(0, x) = (α0(x), v0(x)), in which v′0(x) < 0.

The characteristic equations of the system (5) are

dx
dt = ua + (v − ua)e−µt ,

dv
dt = 0, dα

dt = −αe−µtvx . (12)

For any given point (0, b) on the x-axis, the character-
istic curve passing through this point is

x(t) = b + ua t − 1
µ (v0(b) − ua)(e−µt − 1), (13)

on which v takes the constant value v = v0(b).
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Differentiating the second equation of (11) with
respect to x gives

vtx + (ua + (v − ua)e−µt)vxx + v2xe−µt = 0, (14)

that is

dvx
dt = −v2xe−µt , (15)

which is a standard type of the Riccati equation. As a
result, along the characteristic curve (13), we can obtain

vx =
µv′0(b)

µ + (1 − e−µt)v′0(b)
, (16)

which when combined with the third equation of (12)
yields

α =
µα0(b)

µ + (1 − e−µt)v′0(b)
. (17)

Noting that µ > 0 and v′0(b) < 0, there exists b

such that µ < −v′0(b). Let T* = inf
µ<−v′0(b)

{︃
−

ln(1+ µ
v′0(b)

)

µ

}︃
, so

along the characteristic curve (13), one can easily observe
that

lim
t→T*

(α, vx) → (∞,−∞). (18)

This implies that α and vx must blow up simultane-
ously at a finite time, which leads to unboundedness and
discontinuities in the solution.

We will construct the solution using a delta-shock
wave for this case. In order to define the delta-shock solu-
tion, we give the following two definitions:

Definition 1: A two-dimensional weighted delta function
w(s)δS supported on a smooth curve S parameterised as
t = t(s), x = x(s)(a ≤ s ≤ b) can be defined by

⟨w(t(s))δS , φ(t, x)⟩ =

b∫︁
a

w(t(s))φ(t(s), x(s))ds (19)

for all test functions φ ∈ C∞0 ([0,+∞) × (−∞,+∞)).

Definition 2: A pair (α, v) is called a delta-shock solu-
tion of (5) in the sense of distributions if there exist a
smooth curve S and a function w(t) such that α and v are
represented in the following form:

α = ᾱ(t, x) + w(t)δs , v = v̄(t, x), (20)

ᾱ, v̄ ∈ L∞(R × [0,+∞); R), w(t) ∈ C1(S), v|S = vδ, and
they satisfy

⟨α, φt⟩ + ⟨α(ua + (v − ua)e−µt), φx⟩ = 0,

⟨α(v − ua), φt⟩

+ ⟨α(v − ua)(ua + (v − ua)e−µt), φx⟩ = 0 (21)

for all test functions φ ∈ C∞0 ([0,+∞) × (−∞,+∞)),
where

⟨α, φ⟩ =

+∞∫︁
0

+∞∫︁
−∞

ᾱφdxdt + ⟨w(t)δS , φ⟩,

⟨α(v − ua), φ⟩ =

+∞∫︁
0

+∞∫︁
−∞

ᾱ(v̄ − ua)φdxdt

+ ⟨w(t)(vδ − ua)δS , φ⟩.

With these two definitions, for the Riemann problem
(5) and (6) we seek the solution in the form

(α, v)(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(α−, v−), x < x(t),

(w(t)δ(x − x(t)), vδ), x = x(t),

(α+, v+), x > x(t),

(22)

where x(t) ∈ C1 is the position of the discontinuity, w(t)
denotes the strength of the delta-shock wave, and vδ is the
corresponding value of v on the delta-shock wave curve.

We conclude that if (22) satisfies the generalised
Rankine–Hugoniot condition⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = σ(t) = ua + (vδ − ua)e−µt ,

dw(t)
dt = σ(t)[α] − [α(ua + (v − ua)e−µt)],

dw(t)(vδ − ua)
dt = σ(t)[α(v − ua)]

− [α(v − ua)(ua + (v − ua)e−µt)],

(23)

then the solution (α, v)(t, x) defined in (22) satisfies (5) in
the sense of distributions.

Now we check that the solution obtained from solv-
ing (23) satisfies Definition 2 in the sense of distri-
butions. The proof is similar to that of Theorem 4.2
in [18], so we only deliver the second equality in (21)
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for completeness. Actually, for any test function φ ∈
C∞0 ([0,+∞) × (−∞,+∞)), if (23) holds, we have

I = ⟨α(v − ua), φt⟩

+ ⟨α(v − ua)(ua + (v − ua)e−µt , φx⟩

=

+∞∫︁
0

x(t)∫︁
−∞

(α−(u− − ua)φ)t

+ (α−(u− − ua)(ua + (u− − ua)e−µtφ)xdxdt

+

+∞∫︁
0

+∞∫︁
x(t)

(α+(u+ − ua)φ)t

+ (α+(u+ − ua)(ua + (u+ − ua)e−µtφ)xdxdt

+

+∞∫︁
0

w(t)(vδ − ua)(φt + (ua + (vδ − ua)e−µt)φx)dt.

By usingGreen’s formula and integrating byparts, one
has

I = −
∮︁

−α−(u− − ua)(ua + (u− − ua)e−µt)φdt

+ α−(u− − ua)φdx

+
∮︁

−α+(u+ − ua)(ua + (u+ − ua)e−µt)φdt

+ α+(u+ − ua)φdx

−
+∞∫︁
0

φdw(t)(vδ − ua)
dt dt

=

+∞∫︁
0

φ
(︂
σ(t)[α(v − ua)] − [α(v − ua)(ua

+(v − ua)e−µt)] − dw(t)(vδ − ua)
dt

)︂
dt

= 0.

It means that the second equation of (21) holds. The
first one of (21) can be proved similarly.

Moreover, the entropy condition

λ(α+, v+) < σ(t) < λ(α−, v−), (24)

that is

u+ < vδ < u− (25)

should be assumed to guarantee the uniqueness.

Now we solve the Riemann problem (5) and (6) when
u− > u+. Under the entropy condition (24), the Riemann
problem is reduced to solving the ordinary differential
equations (23) with the initial data x(0) = 0, w(0) = 0.

From (23), we can compute that

dw(t)
dt = (vδ − ua)(α+ − α−)e−µt

− (α+(u+ − ua)e−µt − α−(u− − ua)e−µt) (26)

and

(vδ − ua)
dw(t)
dt

= (vδ − ua)e−µt(α+(u+ − ua) − α−(u− − ua))

− (α+(u+ − ua)2e−µt − α−(u− − ua)2e−µt). (27)

Then, we immediately obtain from (26) and (27)

(vδ − ua)2(α+ − α−)

− 2(vδ − ua)(α+(u+ − ua) − α−(u− − ua))

+ α+(u+ − ua)2 − α−(u− − ua)2 = 0. (28)

If α+ − α− = 0, from (28) we get⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vδ =
u+ + u−

2 ,

x(t) = ua t +
1
µ

(︁u+ + u−
2 − ua

)︁
(1 − e−µt),

w(t) =
1
µ α+(u− − u+)(1 − e−µt).

(29)

If α+ − α− ̸= 0, by solving the quadratic equation of
vδ − ua in (28), one can obtain

vδ =
α+u+ − α−u− ±

√︁
α−α+(u− − u+)2

α+ − α−
. (30)

Under the entropy condition (24), we have

vδ =
α+u+ − α−u− +

√︁
α−α+(u− − u+)2

α+ − α−

=
√α+u+ +

√α−u−√α+ +
√α−

. (31)

Owing to (23), one has⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(t) = ua t +

1
µ

(︂√α+u+ +
√α−u−√α+ +
√α−

− ua
)︂
(1 − e−µt),

w(t) =
1
µ

√
α−α+(u− − u+)(1 − e−µt).

(32)
So far, we have obtained the solution of the Riemann

problem (6) for the system of conservation laws (5).
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3 Riemann Solutions for the
Eulerian Droplet Model (1)

In this section, we pay attention to the Riemann solutions
for the original Eulerian droplet model (1). Based on the
results in Section 2, when u− < u+, as shown in Figure 1,
the Riemann solution of (1) and (2) can be expressed as

(α, u)(t, x)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α−, ua + (u− − ua)e−µt), −∞ < x < x1(t),(︂
0, ua +

µ(x − ua t)
eµt − 1

)︂
, x1(t) ≤ x ≤ x2(t),

(α+, ua + (u+ − ua)e−µt), x2(t) < x < +∞,

(33)
in which

x1(t) = ua t +
(u− − ua)(1 − e−µt)

µ ,

x2(t) = ua t +
(u+ − ua)(1 − e−µt)

µ ,

which is a vacuum-state solution.
For convenience, herewe only give the structure of the

Riemann solution in the (x, t)-plane for the cases where
u−, u+, ua > 0. At this moment, the two curves J1 and J2
are monotonously increasing.

When u− > u+, the delta-shock solution for (1) and
(2) in the sense of distributions can be introduced as
follows:

Definition 3: A pair (α, u) is called a delta-shock solu-
tion of (1) in the sense of distributions if there exist a
smooth curve S and a function w(t) such that α and u are
represented in the following form:

α = ᾱ(t, x) + w(t)δs , u = ū(t, x), (34)

ᾱ, ū ∈ L∞(R × (0,+∞); R), w(t) ∈ C1(S), u|S = uδ(t) and
they satisfy

⟨α, φt⟩ + ⟨αu, φx⟩ = 0,

⟨αu, φt⟩ + ⟨αu2, φx⟩ = −⟨µα(ua − u), φ⟩ (35)

for all test functions φ ∈ C∞0 ([0,+∞) × (−∞,+∞)),
where

⟨α, φ⟩ =

+∞∫︁
0

+∞∫︁
−∞

ᾱφdxdt + ⟨w(t)δS , φ⟩,

⟨αu, φ⟩ =

+∞∫︁
0

+∞∫︁
−∞

ᾱūφdxdt + ⟨w(t)uδ(t)δS , φ⟩.

Then, we give the solution to the Riemann problem (1)
and (2) in the following form:

(α, u)(t, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α−, ua + (u− − ua)e−µt), x < x(t),

(w(t)δ(x − x(t)), uδ(t)), x = x(t),

(α+, ua + (u+ − ua)e−µt), x > x(t),
(36)

where uδ(t) is the value of u on the delta-shock wave curve
x = x(t), and (uδ(t) − ua)eµt is assumed to be a constant
based on the result in Section 2.

The delta-shock solution of the Riemann problem (1)
and (2) defined above should satisfy the following gener-
alised Rankine–Hugoniot relation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = σ(t) = uδ(t),

dw(t)
dt = σ(t)[α] − [αu],

dw(t)uδ(t)
dt = σ(t)[αu] − [αu2] + µw(t)(ua − uδ),

(37)

a b c

e

e
e e

e

e

Figure 1: Riemann solution of (1) and (2) in the (x, t)-plane when u− < u+.
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in which the discontinuity becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[αu] = α+(ua + (u+ − ua)e−µt)

− α−(ua + (u− − ua)e−µt),

[αu2] = α+(ua + (u+ − ua)e−µt)2

− α−(ua + (u− − ua)e−µt)2.

(38)

To ensure the uniqueness of the solution, we add the
entropy condition

ua + (u+ − ua)e−µt < uδ(t) < ua + (u− − ua)e−µt . (39)

In this case, the solution can be described by the
following theorem:

Theorem 1: Suppose that u− > u+ and α− ̸= α+; then
the delta-shock solution of the Riemann problem (1) and (2)
can be shown to be

(α, u)(t, x)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(α−, ua + (u− − ua)e−µt), x < x(t),

(w(t)δ(x − x(t)), ua + (vδ − ua)e−µt), x = x(t),

(α+, ua + (u+ − ua)e−µt), x > x(t),

(40)

where x(t) = ua t+ 1
µ (vδ − ua)(1− e−µt) and w(t) = A(1−

e−µt) denote the position and strength of the delta-shock
wave, respectively, in which

vδ =
√α+u+ +

√α−u−√α+ +
√α−

, A =
1
µ

√
α−α+(u− − u+).

(41)

Proof. From the second equation of (37), we have

dw(t)
dt = (σ(t) − ua)(α+ − α−)

− (α+(u+ − ua)e−µt − α−(u− − ua)e−µt).

(42)
Noticing that (uδ(t)− ua)eµt is a constant, one can get

dw(t)uδ(t)
dt = uδ(t)w′(t) + µw(t)(ua − uδ(t)). (43)

Then, we have

uδ(t)w′(t) = σ(t)(α+(ua + (u+ − ua)e−µt)

− α−(ua + (u− − ua)e−µt))

− α+(ua + (u+ − ua)e−µt)
2

+ α−(ua + (u− − ua)e−µt)
2
. (44)

Combining (42) and (44) leads to

(α+ − α−)(uδ − ua)2 − 2(uδ − ua)e−µt

(α+(u+ − ua) − α−(u− − ua))

+ α+(u+ − ua)2e−2µt − α−(u− − ua)2e−2µt = 0,
(45)

from which one has

uδ(t) − ua =
e−µt(√α+v+ ± √α−v−)√α+ +

√α−
− e−µtua . (46)

By the entropy condition (39), we choose

uδ(t) = ua + e−µt
(︂√α+v+ +

√α−v−√α+ +
√α−

− ua
)︂

(47)

as the admissible solution. Furthermore, we can compute
that

x(t) = ua t − 1
µ

(︂√α+u+ +
√α−u−√α+ +
√α−

− ua
)︂
(e−µt − 1)

(48)
and

w(t) =
1
µ

√
α−α+(u− − u+)(1 − e−µt). (49)

As was done in [19] and [22], in what follows, we need
to check that the delta-shock solution satisfies Definition 3
in the sense of distributions. We only prove the second
equation in (35), because the proof for the other one is
similar. In fact, one can deduce that

I = ⟨αu, φt⟩ + ⟨αu2, φx⟩

=

+∞∫︁
0

x(t)∫︁
−∞

α−(ua + (u− − ua)e−µt)φt(x, t)

+ α−(ua + (u− − ua)e−µt)
2
φx(x, t)dxdt

+

+∞∫︁
0

+∞∫︁
x(t)

α+(ua + (u+ − ua)e−µt)φt(x, t)

+ α+(ua + (u+ − ua)e−µt)
2
φx(x, t)dxdt

+

+∞∫︁
0

A(1 − e−µt)(ua + (vδ − ua)e−µt)(φt(x(t), t)

+ (ua + (vδ − ua)e−µt)φx(x(t), t))dt.

When ua , vδ > 0 (see Fig. 2a,b) or ua , vδ < 0, the
curve of the delta-shock wave is always monotonous with
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Figure 2: Delta-shock solution of (1) and (2) in the (x, t)-plane when u− > u+, where vδ is determined by (29) if α− = α+ or (31) if
α− ̸= α+.

respect to the time t, so x = x(t) exists as an inverse func-
tion for t > 0.However,when ua < 0 < vδ or vδ < 0 < ua
(see Fig. 2c), there exists a point t* = 1

µ ln
ua−vδ
ua , such that

the inverse function of x(t) should be solved for t ≤ t* and
t > t*, respectively. At this moment, the integral region
(t, x) ∈ [0,+∞) × (−∞,+∞) should be divided into two
parts (t, x) ∈ [0, t*] × (−∞,+∞) and (t, x) ∈ (t*,+∞) ×
(−∞,+∞). As a result, we need to check that (35) holds in
the two parts.

Here, without loss of generality, we suppose that
ua > 0 and vδ > 0. Then, we can solve t = t(x) from x(t)
uniquely. By exchanging the integral orders, one has

I = ⟨αu, φt⟩ + ⟨αu2, φx⟩

=

+∞∫︁
0

+∞∫︁
t(x)

α−(ua + (u− − ua)e−µt)φt(x, t)dtdx

+

+∞∫︁
0

x(t)∫︁
−∞

α−(ua + (u− − ua)e−µt)
2
φx(x, t)dxdt

+

+∞∫︁
0

t(x)∫︁
0

α+(ua + (u+ − ua)e−µt)φt(x, t)dtdx

+

+∞∫︁
0

+∞∫︁
x(t)

α+(ua + (u+ − ua)e−µt)
2
φx(x, t)dxdt

+

+∞∫︁
0

A(1 − e−µt)(ua + (vδ − ua)e−µt)dφ(x(t), t)

=

+∞∫︁
0

(α+(ua + (u+ − ua)e−µt(x))

− α−(ua + (u− − ua)e−µt(x)))φ(x, t(x))dx

+

+∞∫︁
0

(−α+(ua + (u+ − ua)e−µt)
2

+ α−(ua + (u− − ua)e−µt)
2
)φ(x(t), t)dt

+

+∞∫︁
0

+∞∫︁
t(x)

α−µ(u− − ua)e−µtφ(x, t)dtdx

+

+∞∫︁
0

t(x)∫︁
0

α+µ(u+ − ua)e−µtφ(x, t)dtdx

−
+∞∫︁
0

(µAe−µt(ua + (vδ − ua)e−µt)

− µAe−µt(1 − e−µt)(vδ − ua))φ(x(t), t))dt.

By using the change of variables and exchanging the
ordering of the integrals again, we have

I =

+∞∫︁
0

B(t)φ(x(t), t)dt

+

+∞∫︁
0

x(t)∫︁
−∞

α−µ(u− − ua)e−µtφ(x, t)dxdt

+

+∞∫︁
0

+∞∫︁
x(t)

α+µ(u+ − ua)e−µtφ(x, t)dxdt, (50)

in which

B(t) = (α+(ua + (u+ − ua)e−µt)

− α−(ua + (u− − ua)e−µt))

· (ua + (vδ − ua)e−µt)

− α+(ua + (u+ − ua)e−µt)
2

+ α−(ua + (u− − ua)e−µt)
2

− µAe−µt(ua + (vδ − ua)e−µt)

+ µAe−µt(1 − e−µt)(vδ − ua)
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= α+(ua + (u+ − ua)e−µt)(vδ − u+)e−µt

+ α−(ua + (u− − ua)e−µt)(u− − vδ)e−µt

− µAe−µt(ua + (vδ − ua)e−µt)

+ µAe−µt(1 − e−µt)(vδ − ua).

Substituting vδ into B(t) yields

B(t) =
√
α+

√
α−e−µt(u− − u+)

√α+√α+ +
√α−

(ua + (u+ − ua)e−µt)

+
√
α+

√
α−e−µt(u− − u+)

√α−√α+ +
√α−

(ua + (u− − ua)e−µt)

−
√
α+

√
α−e−µt(u− − u+)(︂

ua + e−µt
√α+u+ +

√α−u− − ua(
√α+ +

√α−)√α+ +
√α−

)︂
+ µAe−µt(1 − e−µt)(vδ − ua)

= µAe−µt(1 − e−µt)(vδ − ua),

from which we immediately get

B(t) = µw(t)(vδ − ua)e−µt . (51)

Combining (50) and (51), one can see that the second
equation in (35) holds in the sense of distributions. The
proof is complete.

Remark 1: Particularly, when u− > u+ and α− = α−,
the delta-shock solution of (1) and (2) can be shown to be⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uδ(t) = ua + e−µt
(︁u− + u+

2 − ua
)︁
,

x(t) = ua t +
1
µ

(︁u− + u+

2 − ua
)︁
(1 − e−µt),

w(t) =
1
µ α−(u− − u+)(1 − e−µt).

(52)

Remark 2: It is easily observed that the solutions
obtained here are completely coincident with those in
[18]. In other words, the transformation (4) is an effective
way to obtain the solutions of the Euler droplet model (1).
It also shows that the method used in [18] is not the only
one to solve the Riemann problem of (1).

Remark 3: In view of lim
µ→0+

1−e−µt

µ = t, from (47)–(49)

and (52), one can find that the Riemann solutions of

the Euler droplet model (1) converge to those of the
pressureless Euler system studied in [10] and others. Nev-
ertheless, it should be noticed that, under the influence
of external forces, all the characteristic curves, namely
curves of contact discontinuities and delta-shock waves of
the Euler dropletmodel (1), are bent into parabolic shapes.

4 Conclusions
The Riemann problem for the one-dimensional Eulerian
droplet model was solved. Compared to the discussions in
[18], we introduced a special kind of non-linear variable
substitution to rewrite the original Eulerian droplet model
into a conservative one. Then, thedelta-shock andvacuum
solutions for both systems were constructively obtained.
Thismethod adopted here is easy to understand andwork-
able. Furthermore, the variable substitution introduced
here is different from that in [19, 22–30], etc. It is also
shown that, because of the effect of the external force, the
contact discontinuities and delta-shock waves are curved,
and then the solutions are not self-similar. Finally, this
work canprovide a fundamentalmethodof exploration for
the study of the Riemann problem of the Eulerian droplet
model with the initial data containing the Dirac measure,
namely the Radon measure initial data problem. We leave
it for a future study.
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