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Abstract: In this article, we use the surface theory and
compatibility conditions to describe the behaviour ofwave
propagation and their culmination into a shock wave
in nonideal reacting gas with dust particles. The one-
dimensional steepening of waves has been considered.
A Bernoulli-type transport equation for the velocity gra-
dient has been obtained. A numerical approach is used
to explain the effects of van der Waals excluded volume
of the medium, the ratio of specific heats, and the mass
concentration of the solid particles on the shock wave.

Keywords: Breaking of Waves; Dusty Gas; Magnetic Field;
Singular Surface Theory.

1 Introduction
Mathematicians and physicists have developed a great
interest in the study of nonlinear waves because of its
applications in many areas such as plasma physics, astro-
physics, aerodynamics, nuclear science, etc. The field of
shockwaves has become very interesting not only because
of its great scope in research area but also of its practi-
cal applications, as it is successfully used in medical field
also. The investigation of shock waves is important for the
point of view of research and practical applications.

The wave is considered as moving surface under
which the variables and their derivatives undergo certain
kind of discontinuities that are carried along by the sur-
face. These discontinuities are bound to be interrelated.
The relations that connect the field variables and their
derivatives are known as compatibility conditions. These
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relations are defined along both sides of the disconti-
nuity surface. These conditions have arisen because of
the dynamical conditions that define the properties and
behaviour of the material. The compatibility condition
of first kind is known as Rankine–Hugoniot jump con-
ditions. This set of compatibility conditions, which is a
consequence of conservation laws, holds across the dis-
continuity surface. The relations between the first-order
derivatives of the field variables on the two sides of the dis-
continuity surface and its speed of propagation are known
as compatibility condition of first order. The compatibil-
ity conditions for the second- and higher-order derivatives
canbe obtainedwith the assumption of smoothwavefront.
The geometrical and kinematical compatibility conditions
of first and second order were developed by Thomas [1].
The growth anddecay of discontinuities have been studied
by Coleman and Gurtin [2]. When the wave steepened, the
singular surface theory has been studied by Shyam et al.
[3]. Chadha and Jena [4] investigated different modes of
wave propagation using the compatibility conditions and
singular surface theory suggested by Thomas.

When the energy of the electric field is much smaller
than that of magnetic field, then all the electromagnetic
quantities can be expressed in terms of magnetic field,
and then only the interaction between gas-dynamic field
and magnetic field can be considered. Such analysis is
known as a magnetogasdynamics. Many investigators are
interested in the propagation of shock waves influenced
by strong magnetic field. Arora et al. [5] have studied
the shock waves in magnetogasdynamics using similarity
method. Pandey et al. [6] have obtained the exact solutions
of magnetogasdynamics using Lie symmetry analysis. A
detailed study on weak shock wave in nonideal magneto-
gasdynamics has been done by Nath et al. [7]. Chaturvedi
et al. [8] described the evolution of weak shock wave in
two-dimensional steady supersonic flow in dusty gas. The
evolution of compression pulses in magnetohydrodynam-
ics has been studied by Sharma [9]. The self-similar solu-
tions of exponential shockwaves and imploding shocks in
nonideal magnetogasdynamics and the weak discontinu-
ity in radiative magnetogasdynamics have been described
by Singh et al. [10–14].

The study of fluid flow containing dust particles has
grabbed undivided attentions by the researchers due to its
wide applications in environmental and industrial fields
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such as lunar ash flow, nozzle flow, volcanic explosions,
underground explosions, supersonic flight in the dusty
air, the formation of polluted crystals, star formation,
and many other problems of engineering. There are many
research papers, which concern the study of the propa-
gation of shock waves in the presence of dust particles.
Chadha and Jena [15] have studied the propagation of
waves in a dusty gas. Sahu [16] described the shock waves
in rotational axisymmetry nonideal dusty gas. Yin et al.
[17] studied the dusty shocknumerically. Themainmotiva-
tion towork onmagnetogasdynamicswith dust particles is
its application in astrophysics as dusty plasmas are com-
mon in astrophysical environments; examples range from
the interstellar medium to cometary tails and planetary
ring system. Where there are plasmas, there are charged
particles zipping around, and thus, there are magnetic
fields. Thus, themagnetic fields thread theplanet and sun,
the solar system, distant nebulas, and even the galaxy
itself. Consolmagno [18] has shown the influence of the
interplanetary magnetic field on cometary and primordial
dust orbits. Morfill and Grün [19] described the motion in
charged dust particles in interplanetary space. The change
of the dust charge, when it is transferred from the region
of weak magnetic field to the region of strong magnetic
field, canbeused inmanyexperiments. The changeof dust
charges by magnetic fields is important in dust shocks,
in strong magnetic fields where the value of the magnetic
field suddenly changes at the surface of the shock.

Thus, the study of shock waves in magnetogasdynam-
ics in dusty gas has great importance. Vishwakarma et al.
[20] have obtained the self-similar solution for cylindrical
shock waves in a weakly conducting dusty gas. The self-
similar solutions of cylindrical shock wave in a dusty gas
have been obtained by Chauhan and Arora [21]. Merlino
et al. [22] have studied the nonlinear dust acoustic waves,
shocks, and structures.

In this article, we considered a system of partial dif-
ferential equations describing the planar and cylindrically
symmetric flow in the presence of axial magnetic field.
Employing the theory of singular surfaces, we study the
various aspects of nonlinear wave propagation in a non-
ideal medium in the presence of dust particles. In order
to get some essential features of shock propagation, small
solid particles are considered as a pseudofluid, and it
is assumed that the equilibrium flow condition is main-
tained in the flow field and that the viscous stress and
heat conduction of the mixture are negligible. There is
no literature available to show these effects on magne-
togasdynamics using singular surface theory as per the
authors’ knowledge. The density of the solid particles is
much greater than the density of the gas. Therefore, the

volume occupied by the particles is negligible. The arti-
cle is summarized as follows: in Section 1, a brief intro-
duction about the magnetogasdynamics and shock waves
is given. In Section 2, governing equations are described
in brief, whereas in Section 3, the transport equation and
the velocity of wave propagations are determined. Then,
in Section 4 and 5, for a particular case, the behaviour
of velocity gradient is discussed graphically, and then in
Section 6, results and a brief conclusion are presented
about thewhole study. The effects of dust particles, vander
Waals excluded volume, and the magnetic field strength
on the shock wave propagation are investigated. All the
computational work has been done using the software
package MATLAB in which comparatively better approach
viz. ode45 instead of Runge–Kutta and other methods has
been used to obtain the solutions.

2 Governing Equations
The conservation equations governing the nonsteady one-
dimensional flow, which is the function of two indepen-
dent variables, the space coordinate r and the time t, are
as follows [23]:

ρt + ρur + uρr +
(m − 1)ρu

r = 0,

ut + uur +
(pr + hr)

ρ = 0,

Et + uEr − p
ρ2 (ρt + uρx) = 0,

ht + uhr + 2hur +
2h(m − 1)u

r = 0, (1)

where u, p, and ρ denote the velocity, pressure, and den-
sity, respectively.Magnetic pressure is denoted by h, which
can be defined as h = σH2

2 . Here, σ is the magnetic perme-
ability, while H is the transverse magnetic field. For pla-
nar and cylindrically symmetricmotion,mwill assume the
values 1 and 2, respectively. The internal energy E per unit
mass of the mixture is defined as [24]:

E =
(1 − Z)p

(Γ − 1)(1 + b̃ρ)ρ
. (2)

Here, Z denotes the volume fraction defined as

Z =
Vsp
Vg

,

and kp is the mass fraction in mixture defined as

kp =
msp
mg

.
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Vsp is the volumetric extension, and msp is the total
mass of solid particles. Vg is the total volume, while mg is
the total mass of the mixture.

b̃ = b(1 − kp),

Its value lies between the range 0.9 × 10−3 ≤ b ≤
1.1 × 10−3. Γ denotes the Grüneisen coefficient and is
defined as Γ = γ(1+χβ)

1+χβγ , where χ = kp
(1−kp) and β are the

ratio of specific heat of solid particles at constant pressure
(Cp) to the specific heat of gas at constant volume (Cv).
Also, we have the equation

Z =
kp

(1 − kp)G + kp
,

where G = ρsp/ρg. Here, ρsp is the density of the solid par-
ticles, and ρg is the species density of the gas. Now, the
equation of state is given as follows:

p =
(1 − kp)(1 + b̃ρ)

(1 − Z) ρRT,

where T andR denote the temperature and the specific gas
constant, respectively. Thus, from (2), (1)3 is transformed
into

pt + upr + ρa2
(︂
ur +

(m − 1)u
r

)︂
= 0,

where a2 is the equilibrium speed of sound, which is
defined as

a2 =

[︃
(Γ − b̃µρ2 + 2Γb̃ρ + (Γ − 1)b̃2ρ2)p

(1 − µρ)(1 + b̃ρ)ρ

]︃
, (3)

and depends on the parameter µ and b as follows:

Case 1: for µ = 0 and b = 0, we have Γ = γ and a2 = γp
ρ ;

mixture transforms into an ideal gas.

Case 2: for µ = 0 and b ̸= 0, we have Γ = γ and a2 =
p(γ+2γb̃ρ+(γ−1)b̃2ρ2)

ρ(1+b̃ρ) . Thus, mixture becomes a nonideal
gas.

Case 3: for µ ̸= 0 and b = 0, we have a2 = Γp
ρ(1−µρ) . Thus,

it becomes a mixture of ideal gas and dust particles.

Case 4: for µ ̸= 0 and b ̸= 0, a2 is given by (3), which
yields a mixture of dust particles and nonideal gas.

3 Velocity Gradient and Formation
of the Transport Equation

We consider the equation of wavefront Ξ as

r = X(t), (4)

across which we have continuous flow variables ρ, u,
p, and h, and the discontinuities in their derivatives are
acceptable. Let A represent any of the flow variables ρ, u,
p, or h with π = dX

dt , which is the propagation speed of Ξ,
and Z and Z̃ are the quantities defined on Ξ. Therefore, for
a singular surface, the geometrical and kinematical com-
patibility conditions of first- and second-order are given
by

|[Ar]| = Z, |[At]| = −πZ,

|[Arr]| = Z̃, |[Art]| = π
(︂
∂Z
∂r − Z̃

)︂
. (5)

Here, |[A]| denotes the jump in variable A across the
surface Ξ, defined as |[A]| = A−A0, where A0 is the value
just ahead of Ξ, and A denotes the value just behind the Ξ.

Let us consider

|[ρr]| = θ, |[ur]| = λ, |[pr]| = ξ , |[hr]| = η, (6)

thus,

|[ρt]| = −πθ, |[ut]| = −πλ,

|[pt]| = −πξ , |[hx]| = −πη, (7)

Now, evaluating (1) on the inner boundary of Ξ, we
obtain

(π − u0)θ = ρ0λ, (π − u0)ρ0λ = ξ + η,

(π − u0)ξ = a20ρ0λ, (π − u0)η = 2h0λ. (8)

Since π is positive for an advancing wave, the follow-
ing relations are obtained between λ, η, θ, and ξ

π = Z0ρ0 + u0, λ = Z0θ =
Z0ξ
a20

=
Z0ρ0η
2h0

, (9)

where

Z0 =
[︂
1
ρ0

(a20 +
2h0
ρ0

)
1
2

]︂
. (10)

Now, taking jumpacross Ξ after differentiating (1)with
respect to r, we obtain

|[ρrt]| + ρ0|[urr]| + 2|[ρrur]| + u0|[ρrr]|

+
1
r ((m − 1)ρ0|[ur]|) +

1
r ((m − 1)u0|[ρr]|) = 0,

|[urt]| + |[urur]| + u0|[urr]| +
|[prr]|
ρ0

+
|[hrr]|
ρ0

− |[ρrpr]|
ρ20

− |[ρrhr]|
ρ20

= 0,
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|[prt]| + u0|[prr]| +
(︂
1 +

ρ0a20
p0

)︂
|[urρr]|

+ ρ0a20
(︂

|[urr]| +
(m − 1)|[ur]|

r

)︂
+

p0H0|[urρr]|
(1 − µρ0)2(1 + b̃ρ0)

2

+
(m − 1)u0

r

(︃
ρ0a20|[pr]|

p0

+
p0H0|[ρr]|

(1 − µρ0)2(1 + b̃ρ0)
2

)︃
= 0,

|[hrt]| + u0|[hrr]| + 3|[urhr]| + 2h0|[urr]|

+
1
r (2(m − 1)h0|[ur]|)

+
1
r (2(m − 1)u0|[hr]|) = 0, (11)

where

H0 = (1 − µρ0)(1 + b̃ρ0)

{2b̃Γ − 2µρ0b̃ + 2(Γ − 1)b̃2ρ0}

− {Γ − b̃µρ20 + 2Γb̃ρ0 + (Γ − 1)b̃2ρ20)}

(b̃ − µ − 2b̃µρ0). (12)

Using (5), (6), and

|[ρrr]| = θ̃, |[urr]| = λ̃,

|[prr]| = ξ̃ , |[hrr]| = η̃, (13)

and

|[ρrt]| = π(θr − θ̃), |[urt]| = π(λr − λ̃),

|[prt]| = π(τr − τ̃), |[hrt]| = π(ηr − η̃). (14)

in (11), we get

π(θr − θ̃) + ρ0 λ̃ + 2(θλ + ρ0r λ + u0rθ)

+ u0 θ̃ +
1
r ((m − 1)ρ0λ) +

1
r ((m − 1)u0θ) = 0,

π(λr − λ̃) + (λ2 + 2u0r λ) + u0 λ̃ +
η̃
ρ0

+
ξ̃
ρ0

− 1
ρ20

(θξ + p0rθ + ρ0r ξ )

− 1
ρ20

(ηθ + h0rθ + ρ0rη) = 0,

π(ξr − ξ̃ ) + u0 ξ̃ +
(︂
1 +

ρ0a20
p0

)︂
(λξ + u0r ξ + p0r λ)

+ ρ0a20
(︂
λ̃ +

(m − 1)λ
r

)︂

+
p0H0

(1 − µρ0)2(1 + b̃ρ0)
2 (λθ + u0rθ + ρ0r λ)

+
(m − 1)u0

r

(︃
ρ0a20ξ
p0

+
p0H0θ

(1 − µρ0)2(1 + b̃ρ0)
2

)︃
= 0,

π(ηr − η̃) + u0η̃ + 3(λη + u0rη + h0r λ)

+ 2h0 λ̃ +
1
r (2(m − 1)h0λ)

+
1
r (2(m − 1)u0η) = 0. (15)

After eliminating η̃, θ̃, and ξ̃ , and using (9), (15), and
π = Z0ρ0 + u0, Bernoulli type of transport equation for λ
is obtained as follows:

2dλdt + Σ1λ + Σ2λ2 = 0, (16)

where

Σ1 = 3u0r +
3ρ0Z0h0r

2h0
+

2(m − 1)
r

(︂
u0 +

Z0ρ0
2

)︂

+
(︂
1 +

ρ0a20
p0

)︂(︂
u0r +

Z0p0r
a20

)︂
+
mZ0ρ0
r

+
H0p0

(1 − µρ0)2(1 + b̃ρ0)
2

(︂
Z0ρ0r
a20

+
u0r
a20

)︂

+
mu0
r

(︂
a20ρ0
p0

+
H0p0

(1 − µρ0)2(1 + b̃ρ0)
2a20

,

Σ2 = 4 +
ρ0a20
p0

+
p0H0

(1 − µρ0)2(1 + b̃ρ0)
2a20

. (17)

The amplitude of the acceleration waves, also known
as discontinuity waves characterized by a discontinuity in
a normal derivative of the field, satisfies a transport equa-
tion of Bernoulli type. One can easily find a brief explana-
tion of the discontinuity waves and its applications from
[25–30] and conclude that the transport equation for the
discontinuities follows the Bernoulli-type equation.

4 Particular Case
To obtain the value of λ, we need the values of flow param-
eters p0, ρ0, u0, and h0 ahead of wavefront Ξ. We consider
the following form of values:

u0(x, t) = y(t)r, ρ0 = ρ0(t),

p0 = p0(t), h0 = h0(t), (18)
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where the particle velocity linearly depends on the spatial
coordinate at equilibrium state. This state can be visual-
ized in terms of an atmosphere filled with a gas, which
has the spatially uniform pressure variations on account
of particle motion [31].

In view of (18), we integrate (1) to obtain the values of
ρ0, p0, u0, and h0 as

y(t) = y0c{1 + (t − t0c )y0c}
−1, (19)

ρ0(t) = ρ0c{1 + (t − t0)y0c}
−m , (20)

h0(t) = h0c{1 + (t − t0c )y0c}
−2m , (21)

p0 = p0c{1 + y0c (t − tc)}
−m(Γµ−b̃)

(µ−b̃)

(1 − b̃ρ0)−1(1 − µρ0)
−(Γµ−b̃)
(µ−b̃) , (22)

where y0c , ρ0c , and h0c denote the reference values of the
flow variables velocity, density, and magnetic pressure,
respectively, at t = tc.

5 Behaviour of the Velocity
Gradient

Now,we consider the following dimensionless variables to
compute the velocity gradient:

r*0 =
r0

t0ca0c
, t* =

t
t0c

, y* = yt0c , ρ*
0 =

ρ0
ρ0c

,

p*
0 =

p0
ρ0ca20c

, h*
0 =

h0
ρ0ca20c

, a*
0 =

a0
a0c

,

b* = ρ0cb, λ* = t0c λ. (23)

Using (23), we obtain the transport (16) after suppress-
ing the asterisk sign as follows:

2dλdt + ϕ1λ + ϕ2λ2 = 0,

ϕ1 = 3y +
3h0rρ0Z0

2h0
+

2(m − 1)
r

(︂
u0 +

Z0ρ0
2

)︂

+
(︂
1 +

ρ0a20
p0

)︂
y +

mZ0ρ0
r

+
H0p0y

(1 − µρ0)2(1 + b̃ρ0)
2a20

+ my
(︃
a20ρ0
p0

+
H0p0

(1 − µρ0)2(1 + b̃ρ0)
2a20

)︃
,

ϕ2 = 4 +
ρ0a20
p0

+
p0H0

(1 − µρ0)2(1 + b̃ρ0)
2a20

. (24)

Integrating (16) with respect to t, we obtain the value
of λ as follows:

λ =
λ0ψ1(t)

1 + λ0ψ2(t)
, (25)

where ψ2 =
∫︀ t
t0 ϕ1(s)ψ1(s)ds, ψ1 = exp(−

∫︀ t
t0 ϕ2(s)ds),

and λ0 = λ(t0). From (25), it may be noted that at some
critical time t = tc where 1 + λ0ψ2(t) = 0, the solution
(25) breaks down. This indicates the presence of an accel-
eration wave at an instant tc, i.e. a compression wave
culminates into a shock in a finite time tc onlywhen the ini-
tial discontinuity associated with the wave becomes more
than a critical value. Numerical integration of (25) is car-
ried out using (19–22) for 1 ≤ t < ∞ to study the effects
of nonideal gas, dust particles, and the initial magnetic
field on the jump discontinuity [ur], and the results are
depicted graphically in Figures 1–6. Parameters of themix-
ture (alumina Al2O3 or glass) are within the following
range: dust particle size is in the order of 1–10 µm, the
material density of solid particles ρsp = 2.5g/cm3, and
the mass fraction (concentration) of solid particles in the
mixture is varied from kp = 0.0 to kp = 0.6. This casemay
be realized in an air flow with a suspension of alumina or
glass particles. The diameter of small solid particles used
in the present study d = 10 µm is larger than the shock
wave thickness, which is of the order of 0.066 µm. It can
be assumed that the small solid particles are unaffected
when they pass through the shock fronts. Also, the parti-
cle size 1–10 µm corresponds to interplanetary dust. The
values involved for computation are taken as h0c = 0.01,
β = 1, kp = 0.6, G = 1000, b = 0.0009, and γ = 1.4. The
values β = 1, γ = 1.4 may correspond to the mixture of
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Figure 1: Flow profiles of velocity gradient [ur ] for different values of
m with k0 = 0.1, β = 1.0, kp = 0.6, G = 1000, β = 1.0, y0c = 0.1,
ρ0c = 100, p0c = 0.01, h0c = 0.01, and γ = 1.4.
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Figure 2: Flow profiles of velocity gradient [ur ] for different values
of kp with k0 = 0.1, β = 1.0, b = 0.0009, G = 1000, y0c = 0.1,
ρ0c = 100, p0c = 0.01, h0c = 0.01, and γ = 1.4.
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Figure 3: Flow profiles of velocity gradient [ur ] for different values
of β with k0 = 0.1, kp = 0.6, b = 0.0011, G = 1000, y0c = 0.1,
ρ0c = 100, p0c = 0.01, h0c = 0.01, and γ = 1.4.

glass particles. When G = 10, small solid particles of den-
sity equal to 10 times that of the perfect gas in the mixture
occupy a significant portion of the volume, which lowers
the compressibility of the medium remarkably. Then, an
increase in kp further reduces the compressibility, which
causes an increase in the distance between the shock front
and the piston and a decrease in the shock strength. In
the case of G = 100, small solid particles of density equal
to 100 times that of the perfect gas in the mixture occupy
a very small portion of the volume, and therefore com-
pressibility is not loweredmuch, but the inertia of themix-
ture is increased significantly due to the particle load. An
increase in kp from 0.2 to 0.4 for G = 100 means that the
perfect gas in the mixture constituting 80% of the total
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Figure 4: Flow profiles of velocity gradient [ur ] for different val-
ues of b with k0 = 0.1, β = 1.0, kp = 0.6, G = 1000, y0c = 0.1,
ρ0c = 100, p0c = 0.01, h0c = 0.01, and γ = 1.4.
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Figure 5: Flow profiles of velocity gradient [ur ] for different values
of G with k0 = 0.1, β = 1.0, kp = 0.6, b = 0.0011, y0c = 0.1,
ρ0c = 100, p0c = 0.01, h0c = 0.01, and γ = 1.4.

mass and occupying 99.75% of the total volume now con-
stitutes 60% of the total mass and occupies 99.34% of the
total volume. Due to this fact, the density of the perfect gas
in the mixture is highly decreased, which overcomes the
effect of incompressibility of the mixture. The same case
can be considered for G = 1000. For a detailed study, one
can follow [20]. The obtained numerical solutions are con-
sistent with the asymptotic results in the neighbourhood
of t = ∞. From Figures 1 to 6, it is observed that λ goes up
as t goes down and tends to zero as t tends to infinity.

Figure 1 shows the variation of the velocity gradient
with different values ofm. Figures 2–6 show the effects of
parameters β,b,G, kp, and h0 on λ form = 1. An increment
in the value of the parameters kp, β, and G gives a rise in
velocity gradient λ, and an increment in the value of the
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Figure 6: Flow profiles of velocity gradient [ur ] for different values
of h0 with k0 = 0.1, β = 1.0, kp = 0.6, b = 0.0011, G = 1000,
y0c = 0.1, ρ0c = 100, p0c = 0.01, and γ = 1.4.

parameter of nonidealness b causes a decrement in λ. An
increase in the initial magnetic field leads to a decrease in
the velocity gradient λ.

6 Results and Conclusion
In this article, the evolutionary behaviour of steepening
of waves in a dusty gas in the presence of axial magnetic
field is studied. It is observed that the jumps in the gradi-
ent of flow variables such as jumps in velocity gradient,
pressure gradient, and density gradient are related. With
the help of compatibility conditions and singular surface
theory, the transport equation for jump in velocity gradi-
ent has been evaluated for the particular case, where the
velocity at equilibrium reference state is considered to be
linearly dependent on the spatial coordinate. A Bernoulli-
type equation has been satisfied by the jump in velocity
gradient. From the analytic solution of the obtained trans-
port equation, it is observed that for λ0 > 0, λ(t) tends to
zero as t tends to infinity, which implies that the shock
wave decays and dies out eventually. However, λ0 < 0
implies that the solution (25) breaks down at some critical
time t = tc, where 1 + λ0ψ2(t) = 0. This instantly indi-
cates the formation of a shock wave at tc. For the gases
with different values of the parameters b, β, Kp, and G, the
time required for this breakdown is not the same. The time
required for the formation of shock decreases as b and ini-
tial magnetic field increase and decreases as the value of
any of the parameters β, Kp, and G increase.

Figure 1 represents the variation of [ur] with planar
(m = 1) and cylindrical (m = 2) symmetry. It is observed
that the velocity gradient decreases as m increases and

tends to zero at a faster rate. Also, the velocity gradient
slows down as t goes up and tends to zero as t tends to
infinity. From Figure 2, it may be concluded that as the
value of the parameter kp increases without the presence
of magnetic field, the velocity gradient increases, which
shows the same behaviour of results reported by Chadha
and Jena [15], and when kp = 0, it is observed that as the
value of initial magnetic field h0c increases, the velocity
gradient decreases, which shows the same behaviour of
[ur] reported in [32]. The effects of nonidealness parame-
ters β, b, and G for cylindrically symmetric flow on shock
formation are shown graphically through Figures 3–5. As
the values of the parameters β and G increase, the flow
profile of λ = [ur] increases, whereas an increment in the
value of b leads to a fall in λ. Figure 6 represents that
as the initial magnetic field increases, the velocity gra-
dient decreases. On the basis of all the obtained results
shown in Figures 1–6, it may be concluded that our results
are in good agreement with the results reported in [15]
and [33].

The potential applications of shock wave in magne-
togasdynamics in a dusty gas are in active rocket exper-
iments in near-Earth space and production of transient
atmospheres of atmosphere-less cosmic bodies (Moon,
Mercury, asteroid, and comet) as a result of impacts of
large meteoroids or manmade projectiles with these bod-
ies. This study can also be related to some questions being
investigated in astrophysical plasmas as follows:

Shocks from supernova explosions – The layer of dust
behind the supernova shock is observed usually. The
problem is to verify whether the layer of dust is related
to the process of dust condensation behind the shock
wavefront.

Star formation in shocked molecular clouds – One
believes that most of new stars are formed in dust-
molecular clouds, and shock waves initiate this process.
They create an increase in density sufficient for the gravi-
tational self-compression (Jeans instability). The observa-
tions show that the presence of dust is well correlatedwith
star formations. In particular, there are direct observations
of star formation in dusty clouds.
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