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Abstract: The measurement problem and the absence of

macroscopic superposition are two foundational problems

of quantum mechanics today. One possible solution is

to consider the Ghirardi–Rimini–Weber (GRW) model of

spontaneous localisation. Here, we describe how sponta-

neous localisation modifies the path integral formulation

of density matrix evolution in quantum mechanics. We

provide twonewpedagogical derivations of theGRWprop-

agator.We then showhow the vonNeumann equation and

the Liouville equation for the density matrix arise in the

quantum and classical limit, respectively, from the GRW

path integral.

Keywords: Path Integrals; Quantum Theory; Spontaneous

Localisation.

1 Introduction
Nonrelativistic quantum mechanics is a general frame-

work for all systems moving at speeds negligible in

comparison to the speed of light. The theory is immensely

successful for having predicted phenomena, which have

been experimentally verified extensively in the past 100

years. However, there are some fundamental questions

about the theory that still remain unanswered.

One of these is the measurement problem, which is

essentially about how the collapse of a state occurs and
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why is the outcome given by the Born rule [1]. Yet another

is the absence of macroscopic superpositions. Quantum

mechanics predicts that any system can be in a superposi-

tion of “states,” but strangely, the effect is not easy to see

at large length scales. Today, there is an ongoing effort to

study macroscopic superpositions experimentally as well

as theoretically [2].

Several proposals have been suggested to address

these problems. However, the only experimentally verifi-

able modifications are the spontaneous collapse theories

[3, 4],wheremeasurements are not considered special acts

and are instead built into the evolution of the state. These

theories are being experimentally tested bymeasuring the

excess energy produced due to spontaneous localisation

[5–7]. Recently, an anomalous energy gain was detected

using ultracold cantilevers [8] whose origin remains to be

understood.We look at the simplest of these, theGhirardi–

Rimini–Weber (GRW) model of quantum mechanics, from

the path integral perspective.

First derived by Pearle and Soucek [9] in an alterna-

tive way, the GRW propagator is a generalisation of the

Feynman propagator and accounts for the pertinent phe-

nomenological modifications. In this article, we present

two pedagogical derivations of this propagator, which we

believe would be new additions to the literature. In partic-

ular, as we will see, the correction to the standard prop-

agator amounts to adding a damping term to it. This has

possible repercussions for applications of path integral to

quantum field theory. In addition, these methods can eas-

ily be extended to systems obeying the Lindblad equation,

which is ubiquitous in the study of open quantum systems

as the GRWmaster equation is in Lindblad form. Thus, the

applicability of this article is broader than just the GRW

model, and it could improve our understanding of systems

obeying the laws of standard quantummechanics as well.

We hope that our derivations would serve as an instruc-

tive source for the interested reader, beyond being a useful

addition to the growing literature of collapse models.

1.1 Introducing the Model

The idea of spontaneous localisation, and collapsemodels

in general, has been extensively studied in recent years as

a possible approach to solve the quantum measurement
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problem and explain the absence of macroscopic position

superpositions. This was first proposed by Pearle in the

1970s [3] and subsequently by other authors in [10] and

generalised to the case of identical particles in the CSL

model [11]. The proposal is that every quantum object in

nature undergoes spontaneous localisation to a region of

size rc, at random times given by a Poisson process with

a mean collapse rate λ. Between every two collapses, the

wave function obeys Schrödinger evolution. The collapse

rate can be shown to be proportional to the number N of

nucleons in the object, and we write λ = Nλ
GRW

, where

λ
GRW

is the collapse rate for a nucleon. Thus, λ
GRW

and

rC are two new constants of nature, whose values must be

fixed by experiment. Formally, the two postulates of the

GRWmodel are stated as follows:

Postulate 1. Given the wave function ψ (x1, x2,...,xN)
of an N particle quantum system in the Hilbert space

ℒ2

(R3N
), the nth particle undergoes spontaneous localisa-

tion to a random position x as described by the following
jump operator:

ψt(x1, x2, . . . xN) → Ln(x)ψt(x1, x2, . . . xN)
||Ln(x)ψt(x1, x2, . . . xN)||

(1)

The jump operator Ln(x) is a linear operator, which is
defined to be the normalised Gaussian:

Ln(x) =
1

(πr2C)
3/4

e−(q̂n−x)2/2r2C
(2)

Here, q̂n is the position operator for the nth particle of
the system, and the random variable x is the spatial posi-
tion towhich the jump occurs. rC, which is thewidth of the
Gaussian, is a new constant of nature.

The probability density for the nth particle to jump to

the position x is assumed to be given by:

pn(x) ≡ ||Ln(x)ψt(x1, x2, . . . xN)||2 (3)

Also, it is assumed that the jumps are distributed in

time as a Poissonian process with frequency λ
GRW

. This is

the second new constant of nature, in the model.

For an unentangled wave function, we may write

ψt(x1, x2, . . . xN) =
∏︀
n ϕn(xn), where ϕn(xn) is the wave

function for nth particle. Therefore, we have

pn(x) =
∫︁

d

3xn|Ln(x)ϕn(xn)|2

=
∫︁

d

3xn[l(x,xn)]2|ϕn(xn)|2 (4)

where l(x,xn) is the position representative of the operator
Ln(x), a Gaussian localised at x. Because it is an operator

on nth particle’s space, integrals over all other degrees of
freedom are trivial. Further note that∫︁

d

3x[l(x, x′)]2 = 1 (5)

This ensures that

∫︀
pn(x)d3x = 1. On the surface of

the definition, this may not be obvious. The result follows

similarly for the entangled states.

Postulate 2. In between any two successive jumps,

the wave function evolves according to the Schrödinger

equation.

With these postulates, we can calculate the evolution

of the densitymatrix that represents the state of the system

as [4]

d

dt ρ(t) = − i
~ [H, ρ(t)] − λ(ρ(t) −

∫︁
d

3xLn(x)ρLn(x)) (6)

This can be rewritten in Lindblad form as

d

dt ρ(t) = − i
~ [H, ρ(t)] +

∫︁
d

3xλ(Ln(x)ρLn(x)

− 1

2

{[Ln(x)]2, ρ(t)}) (7)

Thus, the GRW equation is an example of a Lindblad

equation, and the following methods to derive the path

integral can also be used to derive the path integral for

any open quantum system satisfying the Lindblad master

equation.

For the above model, the process of spontaneous

localisation serves to provide an exponential damping of

the exponential oscillations in the path integral ampli-

tude. Inevitably, thedamping is important formacroscopic

systems, but insignificant for microscopic ones.

2 The GRW Path Integral and Its
Derivation

The path integral formulation of quantum mechanics is a

description of quantum theory that generalises the action

principle of classical mechanics. It replaces the classical

notion of a single, unique classical trajectory for a sys-

tem with a sum, or functional integral, over infinity of

quantum-mechanically possible trajectories to compute a

quantum amplitude. As mentioned in the Introduction,

the GRW path integral has been previously derived by

Pearle and Soucek [9]; here we give two alternative deriva-

tions of their result and then discuss the classical and

quantum limits of the GRW path integral. (For further

applications of path integrals to collapse models, see also

[12–14]).
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2.1 Method 1

2.1.1 Introduction

Standard techniques [15] can be used to derive the

propagator starting from the Schrödinger equation. How-

ever, these techniques cannot directly be used for mixed

states represented by density matrices. Hence, we first

purify the state vector [16] so that it obeys Schrödinger-like

evolution with an effective Hamiltonian. The methods fol-

lowed in [15] can then be directly applied to this pure state

ket. Such a method of purification of a density matrix to

simplify its treatment can also be used when deriving the

path integral of amore general class of open quantum sys-

tem as described in the Introduction as this method does

not depend on any property of the GRW equation other

than the fact that it preserves trace.

2.1.2 Getting the Hamiltonian Form

The GRWmaster equation for a single particle [4, 11] is

dρ
dt = − i

~ (Hρ − ρH) − λ
(︂
ρ −

∫︁
d

3rLrρLr
)︂

(8)

where H is the Hamiltonian for Schrödinger evolution of

the system, and

Lr =
1

𝒩 exp

(︃
− (q̂ − r)2

2r2C

)︃
(9)

is the collapse operator for the particle to localise around

r. λ is the collapse rate, and rC is the length scale to which
localisation takes place, as defined in the Introduction.

This master equation was first derived for the CSL model

[11], where the authors noted that for the one particle case

this equation is the same as for the GRW model, although

this is not true in general.

In order to convert (8) into an equation of the form

d|ψ⟩
dt = − i

~
˜H|ψ⟩ (10)

we define |ψ⟩ as

|ψ⟩ =
∑︁
m,n

ρmn|m⟩ ⊗ |n⟩ (11)

where ρmn = ⟨m|ρ|n⟩ are elements of the density matrix

ρ from (8). Here, the set of all |m⟩, |n⟩ forms an orthonor-

mal basis in the single particle Hilbert space. We note that

there is an isomorphism between |ψ⟩ as defined here and
ρ. Thus, knowing the evolution of |ψ⟩would give us all the

information about how ρ would evolve. Using Einstein’s

summation convention, we rewrite (8) as

dρmn
dt = − i

~ (Hmaρan − ρmaHan)

− λ
(︂
ρmn −

∫︁
d

3rLrmaρabLrbn
)︂

(12)

From (10) and (11), it follows that the equation

dρmn
dt = − i

~
˜H
mabn

ρab (13)

must also hold. Comparing (12) and (13), we get

˜H = (H⊗ I− I⊗HT

)− (i~λI⊗ I)+ i~λ
∫︁

d

3rLr ⊗LTr (14)

So, |ψ(t)⟩ evolves as

|ψ(t)⟩ = exp(−i ˜Ht/~)|ψ(0)⟩ (15)

This gives us the evolution of ρ(t) via (11), and the

above equation can be used to derive the propagator and

the path integral.

2.1.3 Derivation of the Path Integral

The total time t = T can be divided into N intervals such

that ϵ = T/N, and the finite time propagator in (15) can be

written as

U =
[︂
exp

(︂
−iϵ
~

(︁
H ⊗ I − I ⊗ HT

)︁

− λϵ
(︂

I ⊗ I −
∫︁

d

3rLr ⊗ LTr
)︂)︂]︂N

(16)

As N → ∞ and ϵ → 0, we can make the approxima-

tion

U ≈

[︂
exp

(︂
−iϵ
~ (H ⊗ I − I ⊗ HT

)

)︂

× exp

(︂
−λϵ(I ⊗ I −

∫︁
d

3rLr ⊗ LTr )
)︂]︂N

(17)

Introducing resolution of the identity

∞∫︁
−∞

dxkϵdykϵ|xkϵ⟩|ykϵ⟩⟨xkϵ|⟨ykϵ| (18)

between every time step, we get N terms, each of the form

⟨xkϵ , ykϵ| exp
[︂

−iϵ
~ (H ⊗ I − I ⊗ HT

)

]︂

× exp

[︂
−λϵ

(︂
I ⊗ I −

∫︁
d

3rLr ⊗ LTr
)︂]︂

|x
(k−1)ϵ , y(k−1)ϵ⟩

(19)
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Evaluating one of these terms

⟨xkϵ , ykϵ| exp
[︂

−iϵ
~

(︁
H ⊗ I − I ⊗ HT

)︁]︂

× exp

[︂
−λϵ

(︂
I ⊗ I −

∫︁
d

3rLr ⊗ LTr
)︂]︂

|x
(k−1)ϵ , y(k−1)ϵ⟩

= ⟨xkϵ , ykϵ| exp
[︂
−iϵ
~

(︁
H ⊗ I − I ⊗ HT

)︁]︂
|x

(k−1)ϵ , y(k−1)ϵ⟩

exp

[︃
−λϵ

(︃
1 − exp

−(x
(k−1)ϵ − y

(k−1)ϵ)
2

4r2C

)︃]︃
(20)

The first exponent is simply the Feynman propagator¹

for Schrödinger evolution.² We now assume that the sys-

tem isnonrelativistic, andhence,Hamiltonian is quadratic

in the momentum, and the potential is position depen-

dent. Thus, taking all N terms, we get

U(xNϵ , yNϵ , x0, y0)

=
m

2πϵ~ ×
∞∫︁

−∞

N−1∏︁
n=1

m
2πϵ~dxnϵdynϵ

× exp

[︃ N∑︁
n=1

(︂
im
2~ϵ ((xnϵ − x

(n−1)ϵ)
2 − (ynϵ − y

(n−1)ϵ)
2

)

)︂

− iϵ
~

(︀
V(x

(n−1)ϵ) − V(y
(n−1)ϵ)

)︀
]

× exp

[︃ N∑︁
k=1

−λϵ
(︃
1 − exp

−(x
(k−1)ϵ − y

(k−1)ϵ)
2

4r2C

)︃]︃
(21)

=
m

2πϵ~

∞∫︁
−∞

N−1∏︁
n=1

m
2πϵ~dxnϵdynϵ

× exp

[︃ N∑︁
n=1

i
~ (S[xnϵ , x(n−1)ϵ] − S[ynϵ , y

(n−1)ϵ])

]︃

× exp

[︃ N∑︁
k=1

−λϵ
(︃
1 − exp

−(x
(k−1)ϵ − y

(k−1)ϵ)
2

4r2C

)︃]︃
(22)

In the continuum limit with N → ∞ while still keep-

ing Nϵ = T, the evolution of the density matrix element

1 The propagator is a function that specifies the probability ampli-

tude for a particle to travel from one place to another in a given time

or to travel with a certain energy and momentum.

2 Refer Shankar [15] Eq. (21.1.15).

thus becomes

ρ(xT , yT , T) =
∫︁

all paths

[Dxt][Dyt]

×exp

(︂
i
~ (S[xt , T, t = 0] − S[yt , T, t = 0])

)︂

×exp

⎡⎣−λ
T∫︁

0

dt
(︃
1 − exp

−(xt − yt)2

4r2C

)︃⎤⎦
ρ(x

0
, y

0
)dx

0
dy

0

(23)

where∫︁
[Dxt] = lim

N→∞

(︁ m
2π~ϵ

)︁
1/2

∫︁ N−1∏︁
n=1

(︁ m
2π~ϵ

)︁
1/2

dxn (24)

This is the same result as derived in [9]. Here, xt and yt
can be understood as individual paths that might be tra-

versed. Thus,

∫︀
all paths

[Dxt][Dyt] can be understood as an

integral over all such paths. The exponential in the sec-

ond line of the above equation serves as the GRW-induced

regulator of the Feynman path integral and improves the

understanding of the classical limit, as we will see in the

following section.

2.2 Method 2

2.2.1 Introduction

In this case, we use amore physicallymotivated approach.

We use the fact that after every time interval ϵ the wave
function has a probability λϵ to collapse. Thus, by taking
discrete time steps and using the above fact, we can derive

the propagator.

2.2.2 Derivation of the Path Integral

Consider ρ(x
0
, y

0
, t = 0) to be a density matrix at initial

time t = 0. We intend to find ρ(xT , yT , T) at final time

t = T. We divide the total time into smaller intervals such

that ϵ = T
N . So, we have

ρ(xϵ , yϵ , ϵ)

= A
∞∫︁

−∞

∞∫︁
−∞

exp

[︂
i
~

(︂
m
2

(︁ xϵ − x
0

ϵ

)︁
2

− V
(︁ xϵ + x

0

2

)︁)︂
ϵ
]︂

exp

[︂
− i

~

(︂
m
2

(︁ yϵ − y
0

ϵ

)︁
2

− V
(︁ yϵ + y

0

2

)︁)︂
ϵ
]︂

ρ(x
0
, y

0
, t = 0)dx

0
dy

0
(25)

= A
∞∫︁

−∞

∞∫︁
−∞

𝒫
1
ρ(x

0
, y

0
, t = 0)dx

0
dy

0
(26)
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where

𝒫i = Kρ(xi , yi , ϵi; xi−1
, yi−1

, ϵi−1
)

= exp

[︂
i
~

(︂
m
2

(︁ xi − xi−1

ϵ

)︁
2

− V
(︁ xi + xi−1

2

)︁)︁
ϵ
]︂

(27)

exp

[︂
− i

~

(︂
m
2

(︁ yi − yi−1

ϵ

)︁
2

− V
(︁ yi + yi−1

2

)︁)︁
ϵ
]︂

(28)

is density matrix propagator for infinitesimal time step

from ϵi−1
to ϵi = ϵi−1

+ ϵ. The above expression for

ρ(xϵ , yϵ , ϵ) represents standard Schrödinger evolution,³

where A is the appropriate normalisation constant to

recover von Neumann equation. Now from (8), we know

that at a given instance, say, t = ϵ, the probability of

collapse is λϵ, while that of it evolving according to

Schrödinger equation is 1 − λϵ. Thus, the new density

matrix after ϵ time becomes

ρ
new

(xϵ , yϵ , ϵ)

= (1 − λϵ)ρ
1

+ λϵ
∞∫︁

−∞

Lr(xϵ)ρ1Lr(yϵ)dr (29)

where ρ
1

= ρ(xϵ , yϵ , ϵ) and Lr(xϵ) = ⟨xϵ|Lr|xϵ⟩ are as

defined in (9). Here, as ρ
1
does not depend on r (it is a

function of xϵ , yϵ, x0, and y0), we can evaluate the above

integral by taking ρ
1
outside the integration. We get

∞∫︁
−∞

Lr(xϵ)ρ1Lr(yϵ)dr

=

⎛⎝ ∞∫︁
−∞

Lr(xϵ)Lr(yϵ)dr

⎞⎠ρ
1

(30)

=

⎡⎣ ∞∫︁
−∞

exp

(︃
− (xϵ − r)2

2r2C

)︃
exp

(︃
− (yϵ − r)2

2r2C

)︃
dr

⎤⎦ρ
1

(31)

= exp

[︃
− (xϵ − yϵ)2

4r2C

]︃
ρ
1

(32)

3 Refer to Shankar [15] Eq. (8.5.4).

Now, we can write⁴

ρ
new

(xϵ , yϵ , ϵ)

= (1 − λϵ)ρ
1

+ λϵ
[︃
exp

(︃
− (xϵ − yϵ)2

4r2C

)︃]︃
ρ
1

(33)

For simplicity, we write

Gi = exp

[︃
− (xiϵ − yiϵ)

2

4r2C

]︃

and thus

ρ
new

(xϵ , yϵ , ϵ) =
[︀
(1 − λϵ) + λϵG

1

]︀
ρ
1

(34)

We propagate again according to Schrödinger equa-

tion from time t = ϵ to time t = 2ϵ,

ρ(x
2ϵ , y2ϵ , 2ϵ) = A

∞∫︁
−∞

𝒫
2

[︀
(1 − λϵ) + λϵG

1

]︀
ρ
1
dxϵdyϵ

(35)

Substituting ρ
1
according to (25) and writing new

ρ
new

(x
2ϵ , y2ϵ , 2ϵ), we get

ρ
new

(x
2ϵ , y2ϵ , 2ϵ)

= A2((1 − λϵ) + λϵG
2
)

∞∫︁
−∞

∞∫︁
−∞

𝒫
2

(︀
(1 − λϵ) + λϵG

1

)︀
∞∫︁

−∞

∞∫︁
−∞

𝒫
1
ρ(x

0
, y

0
, t = 0)dx

0
dy

0
dxϵdyϵ (36)

Further, we can rearrange the terms as all the func-

tions 𝒫
1
,𝒫

2
, G

1
, and G

2
are commutative operations, so

this gives us

ρ
new

(x
2ϵ , y2ϵ , 2ϵ) = A2

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
−∞

𝒫
2
𝒫
1

(︀
(1 − λϵ)

+ λϵG
2

)︀(︀
(1 − λϵ) + λϵG

1

)︀
ρ(x

0
, y

0
, t = 0)dx

0
dy

0
dxϵdyϵ (37)

We repeat the above procedure N − 1 times. Tak-

ing continuum limit, N → ∞ gives us the final density

4 Note that now the function in (28) is commutative as it does not

contain any differential operations.
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matrix as

ρ(xT , yT , T)

= lim

N→∞

AN−1

∫︁
· · ·

∫︁ N−1∏︁
i=0

𝒫i

N−1∏︁
i=0

(︀
(1 − λϵ) + λϵGi

)︀
ρ(x

0
, y

0
, t = 0)dx

0
dy

0
· · · dx

(N−1)ϵdy(N−1)ϵ
(38)

We know that

lim

N→∞

N∏︁
i=1

𝒫i

= lim

N→∞

N∏︁
i=1

exp

{︃
i
~

[︃
m
2

(︂ xiϵ − x
(i−1)ϵ
ϵ

)︂
2

− V
(︂ xiϵ + x

(i−1)ϵ
2

)︂]︂
ϵ
}︂

exp

{︃
− i

~

[︃
m
2

(︂ yiϵ − y
(i−1)ϵ
ϵ

)︂
2

− V
(︂ yiϵ + y

(i−1)ϵ
2

)︂]︂
ϵ
}︂

(39)

= exp

{︃
lim

N→∞

N∑︁
i=1

i
~

[︃
m
2

(︂ xiϵ − x
(i−1)ϵ
ϵ

)︂
2

− V
(︂ xiϵ + x

(i−1)ϵ
2

)︂]︂
ϵ
}︂

exp

{︃
lim

N→∞

N∑︁
i=1

− i
~

[︃
m
2

(︂ yiϵ − y
(i−1)ϵ
ϵ

)︂
2

− V
(︂ yiϵ + y

(i−1)ϵ
2

)︂]︂
ϵ
}︂

(40)

= exp

⎧⎨⎩ i
~

T∫︁
0

L(xt)dt

⎫⎬⎭ exp

⎧⎨⎩− i
~

T∫︁
0

L(yt)dt

⎫⎬⎭ (41)

= exp

{︂
i
~ (S(xt , T, t = 0) − S(yt , T, t = 0))

}︂
(42)

where L(xt , T, t = 0) is the Lagrangian and S(xt , T, t = 0)

the action thus obtained. Expanding the second product

term gives us

lim

N→∞

N∏︁
i=1

(︀
(1 − λϵ) + λϵGi

)︀

= lim

N→∞

(1 − λϵ)N
∞∑︁
k=0

(︂ N∑︀
i=1

λGiϵ
)︂k

k!(1 − λϵ)k
(43)

= exp(−λT) exp
(︃

lim

N→∞

N∑︁
i=1

λGiϵ
)︃

(44)

= exp(−λT) exp

⎛⎝λ T∫︁
0

G(t)dt

⎞⎠
(45)

= exp(−λT) exp

⎡⎣λ T∫︁
0

exp

(︃
− (xt − yt)2

4r2C

)︃
dt

⎤⎦
(46)

Substituting these two terms back in (38), we get an

integral form solution of (8) given by

ρ(xT , yT , T)

=
∫︁

exp

(︂
i
~

(︀
S[xt , T, t = 0] − S[yt , T, t = 0]

)︀)︂

exp

⎛⎝−λ
T∫︁

0

(︃
1 − exp

{︃
− (xt − yt)2

4r2C

}︃)︃
dt

⎞⎠
[Dxt][Dyt]ρ(x0, y0, t = 0)dx

0
dy

0
(47)

where the integral in the above equation is defined in (24).

The above derived propagator is the same as what we got

using the previous method given in (23).

3 Classical and Quantum Limits of
GRW Path Integral

3.1 Quantum Limit

From (23) or (47), the path integral for the GRW model is

written as

ρ(xT , yT , T)

=
∫︁

all paths

exp

[︂
i
~

(︀
S(xt , T, t = 0) − S(yt , T, t = 0)

)︀]︂

exp

⎡⎣−λ
T∫︁

0

(︃
1 − e

−(xt−yt )
2

4r2C

)︃
dt

⎤⎦
ρ(x

0
, y

0
, t = 0)[Dxt][Dyt]dx0dy0

(48)

If we consider the limit λT → 0, i.e. we look at the

system at timescales (t = T) much smaller than the time

period of collapse (τ = 1/λ), then the nonoscillating part
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of the above given propagator could be approximated

as

exp

⎡⎣−λ
T∫︁

0

(︃
1 − e

−(xt−yt )
2

4r2C

)︃
dt

⎤⎦
≈ 1 (49)

This makes the propagator of GRW look exactly like

that for normal quantummechanics,

ρ(xT , yT , T)

=
∫︁

all paths

exp

[︂
i
~

(︀
S(xt , T, t = 0) − S(yt , T, t = 0)

)︀]︂

ρ(x
0
, y

0
, t = 0)[Dxt][Dyt]dx0dy0

(50)

From here, the standard quantum mechanical result

follows easily – we recall the calculation here, for sake

of completeness. We can write the above equation for

infinitesimal time interval ϵ as

ρ(xϵ , yϵ , ϵ) = A
∫︁

exp

⎡⎣ i
~

ϵ∫︁
0

(︂
mẋ2

2

− V(x)
)︂
dt

⎤⎦

exp

⎡⎣− i
~

ϵ∫︁
0

(︂
mẏ2

2

− V(y)
)︂
dt

⎤⎦
ρ(x

0
, y

0
, t = 0)dx

0
dy

0
(51)

where A is as defined in the previous section. Using the

following finite difference substitution

ẋ → xϵ − x
0

ϵ

x → x
0

+ xϵ
2

and using the standard substitution of ηx = x
0

− xϵ and
ηy = y

0
− yϵ and rearranging the terms, we have

ρ(xϵ , yϵ , ϵ)

= A
∫︁ ∫︁

e
i
~
mη2x
2ϵ e

−i
~

mη2y
2ϵ

exp

[︂
i
~

(︀
−V(x) + V(y)

)︀
ϵ
]︂

ρ(xϵ + ηx , yϵ + ηy , t = 0)dηxdηy (52)

The exponentials oscillate very rapidly as ϵ could be

made arbitrarily small. When such a rapidly oscillating

function multiplies a smooth function, the integral van-

ishes for the most part due to the random phase of the

exponential. Just as in the case of the path integration,

the only substantial contribution comes from the region

where the phase is stationary. The region of constructive

interference is

mη2

2~ϵ 6 π (53)

Now, Taylor expanding the terms in (52) up to the first

order in ϵ, i.e. up to order η2, we get

ρ(xϵ , yϵ , ϵ) = A
∫︁ ∫︁

e
i
~
mη2x
2ϵ e

−i
~

mη2y
2ϵ

(︂
1 − i

~V(x)ϵ +
i
~V(y)ϵ

)︂
ρ(xϵ + ηx , yϵ + ηy , t = 0)dηxdηy

= A
∫︁ ∫︁

e
i
~
mη2x
2ϵ e

−i
~

mη2y
2ϵ

(︂
1 − i

~V(x)ϵ +
i
~V(y)ϵ

)︂
(ρ(xϵ , yϵ , t = 0)

+
∂ρ
∂y |

(xϵ ,yϵ ,t=0)
ηy +

∂ρ
∂x |

(xϵ ,yϵ ,t=0)
ηx

+
∂2ρ
2∂y2 |

(xϵ ,yϵ ,t=0)
η2y

+
∂2ρ
2∂x2 |

(xϵ ,yϵ ,t=0)
η2x)dηxdηy

= A
∫︁ ∫︁

e
i
~
mη2x
2ϵ e

−i
~

mη2y
2ϵ
(ρ(xϵ , yϵ , t = 0)

− i
~V(x)ρ(xϵ , yϵ , t = 0)ϵ

+
i
~V(y)ρ(xϵ , yϵ , t = 0)ϵ

+
∂2ρ
2∂y2 |

(xϵ ,yϵ ,t=0)
η2y

+
∂2ρ
2∂x2 |

(xϵ ,yϵ ,t=0)
η2x

+
∂ρ
∂y |

(xϵ ,yϵ ,t=0)
ηy

+
∂ρ
∂x |

(xϵ ,yϵ ,t=0)
ηx)dηxdηy

(54)
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Evaluating the Gaussian integral and using A =√︁
−2ϵ~πi
m

√︁
2ϵ~πi
m , we get

ρ(xϵ , yϵ , ϵ) = ρ(xϵ , yϵ , t = 0)

− i
~V(x)ρ(xϵ , yϵ , t = 0)ϵ

+
i
~V(y)ρ(xϵ , yϵ , t = 0)ϵ

+
−i~
2m

∂2ρ
∂y2 |

(xϵ ,yϵ ,t=0)
ϵ

+
i~
2m

∂2ρ
∂x2 |

(xϵ ,yϵ ,t=0)
ϵ

= ρ(xϵ , yϵ , t = 0) − i
~ [H, ρ]ϵ (55)

which describes how a density operator evolves in time:

dρ
dt = − i

~ [H, ρ] (56)

Theabove equation is the vonNeumannequation, and

it describes the statistical state of a system in quantum

mechanics.We refer to the above equation as the statistical

quantum limit of GRWmodel.

3.2 Classical Limit

The following analysis is previously done by Ajanapon [17]

for the propagator of the density matrix in standard quan-

tummechanics.We heremake use of the same analysis for

the propagator of the GRW model. From (23) or (47), the

path integral for GRWmodel could be written as

ρ(xT , yT , T)

=
∫︁

all paths

exp

[︂
i
~

(︀
S(xt , T, t = 0) − S(yt , T, t = 0)

)︀]︂

exp

⎡⎣−λ
T∫︁

0

(1 − e
−(xt−yt )

2

4r2C )dt

⎤⎦
ρ(x

0
, y

0
, t = 0)[Dxt][Dyt]dx0dy0

(57)

Now we consider the limit λT ≫ 1, which could be

interpreted as waiting for a sufficiently long time, or

the collapse rate λ for the system is sufficiently large.

Large λ implies large mass as the collapse rate is directly

proportional to the number of entangled particles in the

system. As a result, large λ implies large action. On the

other hand, large time also results in large action. As a

result, large masses and large times are both representa-

tives of classical limit, which causes S to be large and thus
implies the limit S ≫ ~.

When a rapidly oscillating function is multiplied with

a smooth function, then the integral of their product could

be approximated by the smooth function at the station-

ary point of the rapidly oscillating function. This is com-

monly called the stationary phase approximation. Here,

xclt and yclt are the stationary paths for S(xt , T, t = 0) and

S(yt , T, t = 0), respectively, in the limit S ≫ ~. Thus, the
stationary phase approximation leads us to the following

equation:

ρ(xT , yT , T)

=
∫︁

exp

[︂
i
~

(︁
S(xclt , T, t = 0) − S(yclt , T, t = 0)

)︁]︂

exp

⎡⎣−λ
T∫︁

0

(1 − e
−(xclt −yclt )

2

4r2C )dt

⎤⎦
ρ(x

0
, y

0
, t = 0)dx

0
dy

0

(58)

For brevity, we here drop the notation for station-

ary paths and use xclt = xt and yclt = yt. The ρ(xT , yT , T)
in the above expression represents diagonal as well as

off-diagonal terms in position basis [9]. Now we look for

the off-diagonal terms of the final ρ, which are specified

by large (xt − yt). In the limit (xt − yt) ≫ rC, the non-

oscillating part of the propagator could be approximated

as

exp

⎡⎣−λ
T∫︁

0

(1 − e
−(xt−yt )

2

4r2C )dt

⎤⎦
≈ exp[−λT] (59)

This leads to damping of the off-diagonal terms of

the density matrix. Thus, in the limit λT ≫ 1, the inte-

gral can be considered to be vanished. This could also

be interpreted as destruction of interference in the sys-

tem as the off-diagonal terms are the primary represen-

tatives of interference. Now let us consider the diagonal

terms of the final ρ, specified by (xt − yt) ≈ 0. In the limit

(xt − yt) ≪ rC, the nonoscillating part of the propagator
could be approximated as

exp

⎡⎣−λ
T∫︁

0

(1 − e
−(xt−yt )

2

4r2C )dt

⎤⎦
≈ 1 (60)
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Now, we consider an infinitesimal time step ϵ.

S(xt , ϵ, t = 0) − S(yt , ϵ, t = 0)

=
m
2ϵ2 (xϵ − x

0
)

2ϵ − 1

2

[︀
V(xϵ) + V(x

0
)

]︀
ϵ

− m
2ϵ2 (yϵ − y

0
)

2ϵ +
1

2

[︀
V(yϵ) + V(y

0
)

]︀
ϵ (61)

=
m
ϵ

[︂
1

2

(xϵ + yϵ) − 1

2

(x
0

+ y
0
)

]︂
[︀
(xϵ − yϵ) − (x

0
− y

0
)

]︀
− ϵ

2

[︀
V(xϵ) − V(yϵ)

]︀
− ϵ

2

[︀
V(x

0
) − V(y

0
)

]︀
(62)

Motivated by the above expression, we implement the

following change of variables:

q̄t =
1

2

(xt + yt) (63)

∆t = (xt − yt) (64)

U(q̄t , ∆t) = V(q̄t +
1

2

∆t) − V(q̄t − 1

2

∆t) (65)

Thus, (58) could be written as

ρ(q̄ϵ , ∆ϵ , ϵ)

= A
∫︁

exp

[︂
i
~

(︁m
ϵ (q̄ϵ − q̄

0
)(∆ϵ − ∆

0
)

− ϵ
2

U(q̄ϵ , ∆ϵ) − ϵ
2

U(q̄
0
, ∆

0
)

)︁]︁
ρ(q̄

0
, ∆

0
, t = 0)dx

0
dy

0

(66)

As the state of a system is specified by position and

momentum in classical mechanics, we take the Fourier

transform of ∆ as given by

ρ(q̄t , pt , t) = A
∫︁
e(−ipt∆t)ρ(q̄t , ∆t , t)d∆t (67)

Thus, (66) in terms of pt could be written as

ρ(q̄ϵ , pϵ , ϵ)

= A
∫︁

exp

[︂
i
~ (∆0p0 − ∆ϵpϵ

+
m
ϵ (q̄ϵ − q̄

0
)(∆ϵ − ∆

0
)

− ϵ
2

U(q̄ϵ , ∆ϵ) − ϵ
2

U(q̄
0
, ∆

0
)

)︁]︁
ρ(q̄

0
, p

0
, t = 0)d∆

0
d∆ϵdx0dy0 (68)

The ρ(q̄t , pt , t) could be interpreted as thephase space
representation of the diagonal terms of the density matrix

in the limit S ≫ ~. As the ∆ϵ ≪ rC, U(q̄t , ∆t) could be

approximated by Taylor expanding and ignoring ∆

2

t and

its higher orders

U(q̄t , ∆t) ≈ ∆t
∂V
∂q (q̄t) (69)

Equation (68) could be further simplified by using the

above approximation,

ρ(q̄ϵ , pϵ , ϵ)

=
1

N′

∫︁
exp

[︂
i∆

0

~

(︂
p
0

− m
ϵ (q̄ϵ − q̄

0
) − ϵ

2

∂V
∂q (q̄0)

)︂]︂

exp

[︂
−i∆ϵm

~ϵ

(︂
q̄
0

− q̄ϵ +
ϵ
m pϵ +

ϵ2

2m
∂V
∂q (q̄ϵ)

)︂]︂
ρ(q̄

0
, p

0
, t = 0)d∆

0
d∆ϵdx0dy0 (70)

=
1

N′′

∫︁
δ
(︂
p
0

− m
ϵ (q̄ϵ − q̄

0
) − ϵ

2

∂V
∂q (q̄0)

)︂

δ
(︂
q̄
0

− q̄ϵ +
ϵ
m pϵ +

ϵ2

2m
∂V
∂q (q̄ϵ)

)︂
ρ(q̄

0
, p

0
, t = 0)dx

0
dy

0
(71)

=
1

N′′′ρ(q̄ϵ − ϵ
m pϵ , pϵ + ϵ ∂V∂q (q̄ϵ), t = 0) (72)

The above equation could also bewritten as follows by

changing the variables of ρ,

ρ
(︂
q̄
0

+
ϵ
m p0, p0 − ϵ ∂V∂q (q̄0), t = ϵ

)︂

=
1

N′′′ρ(q̄0, p0, t = 0) (73)

Now, Taylor expanding the left-hand side around the

point (q
0
, p

0
, t = 0) and equating orders of ϵ, we get, at

zeroth order,

N′′′ = 1 (74)

at first order,

∂ρ
∂t |

(q̄
0
,p

0
,t=0)

= −p
0

m
∂ρ
∂q̄ |

(q̄
0
,p

0
,t=0)

+
∂V
∂q̄ |

(q̄
0
)

∂ρ
∂p |

(q̄
0
,p

0
,t=0)

(75)

and dropping the subscript,

∂ρ
∂t = −{ρ, H} (76)
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where H = 1

2m p
2 + V(q̄). We refer to (76) as being the sta-

tistical classical limit of GRW. The above limit does not

depend on a specific form of the initial density matrix and

hence is a phase space representation of a general density

matrix following GRW evolution.

3.3 Absence of Macroscopic Position
Superpositions

To summarise the discussion this far, we first developed

a path integral formulation of the GRW model. We then

showed that this gives us the correct quantum and classi-

cal limits. We shall now illustrate some important features

of the classical limit through some examples. As we are

taking the classical limit, we would consider large action

and large number of nucleons (which implies large λ).
Hence, the stationary phase approximation shown in (58)

would be valid. If we consider the case of a free particle,

the stationary paths would be straight lines with ẋ(t) =
constant.

Let us consider an initial condition that is formed

by the superposition of two Gaussians separated by a

macroscopicdistance |a
1
−a

2
| ≫ rC. The resultingdensity

matrix would be

ρ(x
0
, y

0
, t = 0) =

2∑︁
i,j=1

Aije− (x
0

−ai )
2

r2 e−
(y
0

−aj )
2

r2

with r ≪ rC. Here, the coefficients Aij can be chosen such
that the density matrix is a valid one (i.e. it has unit trace,

it is positive semidefinite, and it is Hermitian). Putting this

into (58), we get

ρ(xt , yt , T)

=
∫︁

exp

⎡⎣−λ
T∫︁

0

(1 − e
−(xclt −yclt )

2

4r2C )dt

⎤⎦
exp

[︂
i
~

(︁
S(xclt , T,= 0) − S(yclt , T, t = 0)

)︁]︂
2∑︁

i,j=1

Aij exp
[︃

− (x
0

− ai)
2

r2

]︃
exp

[︃
−
(y

0
− aj)

2

r2

]︃
dx

0
dy

0

(77)

We can see that the terms of the initial density

matrix

A
12
e− (x

0
−a

1
)

2

r2 e− (y
0

−a
2
)

2

r2 + A
21
e− (x

0
−a

2
)

2

r2 e− (y
0

−a
1
)

2

r2

would have |xclt − yclt | ≫ rC for a large time. Hence,

the final density matrix would have these terms damped

exponentially as

exp

⎛⎝−λ
T∫︁

0

(1 − e
−(xclt −yclt )

2

4r2C )dt

⎞⎠
≈ e−λT

Additionally, in the remaining termswhere both paths

start in the same Gaussian, the paths must finally also

remain within a distance, which is of the order rC. Thus,
the so-called off-diagonal terms are destroyed, while the

approximately diagonal terms are preserved. Note that the

system transforms from a state with the superposition of

two Gaussians to a statistical ensemble of the two Gaus-

sianswith probabilitiesA
11
andA

22
, respectively. Note also

that this statistical ensemble is different from a super-

position as this represents classical probabilities, which

do not interfere. In this way, GRW destroys macroscopic

superpositions.

4 Discussion and Conclusion
In our work, we have derived the GRW propagator in two

new ways. As mentioned in the Introduction, the GRW

propagator amounts to adding a damping term to the

standard propagator that destroys macroscopic superpo-

sitions. We note that in this approach the transition from

GRW to classical and quantum mechanics is quite nat-

urally obtained. In order to see the transition to stan-

dard quantum mechanics, we took the limit λT ≪ 1 of

the path integral for the GRW model and were left with

quantummechanics for a density matrix, i.e. the von Neu-

mann equation. In order to see the transition to classical

mechanics, we took the limit λT ≫ 1 in the path inte-

gral for the GRW model and were left with the classical

Liouville equation.

Our study suggests methods for generalising sponta-

neous localisation to the relativistic case, via the path inte-

gral representation of quantum field theory. What we see

in (23) is that spontaneous localisation is equivalent to

modifying the standard path integral by a regulator. In

relativistic quantum field theory, we replace space–time

coordinates by quantum fields over space–time, so that

the action function S(x, T) is replaced by a functional,

S(ϕ(x, T)).We propose to introduce a regulator, analogous

to the one introduced in the present article, and investi-

gate how it might incorporate spontaneous localisation in

quantum field theory.
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