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Abstract: The measurement problem and the absence of
macroscopic superposition are two foundational problems
of quantum mechanics today. One possible solution is
to consider the Ghirardi—Rimini-Weber (GRW) model of
spontaneous localisation. Here, we describe how sponta-
neous localisation modifies the path integral formulation
of density matrix evolution in quantum mechanics. We
provide two new pedagogical derivations of the GRW prop-
agator. We then show how the von Neumann equation and
the Liouville equation for the density matrix arise in the
quantum and classical limit, respectively, from the GRW
path integral.

Keywords: Path Integrals; Quantum Theory; Spontaneous
Localisation.

1 Introduction

Nonrelativistic quantum mechanics is a general frame-
work for all systems moving at speeds negligible in
comparison to the speed of light. The theory is immensely
successful for having predicted phenomena, which have
been experimentally verified extensively in the past 100
years. However, there are some fundamental questions
about the theory that still remain unanswered.

One of these is the measurement problem, which is
essentially about how the collapse of a state occurs and
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why is the outcome given by the Born rule [1]. Yet another
is the absence of macroscopic superpositions. Quantum
mechanics predicts that any system can be in a superposi-
tion of “states,” but strangely, the effect is not easy to see
at large length scales. Today, there is an ongoing effort to
study macroscopic superpositions experimentally as well
as theoretically [2].

Several proposals have been suggested to address
these problems. However, the only experimentally verifi-
able modifications are the spontaneous collapse theories
[3, 4], where measurements are not considered special acts
and are instead built into the evolution of the state. These
theories are being experimentally tested by measuring the
excess energy produced due to spontaneous localisation
[5-7]. Recently, an anomalous energy gain was detected
using ultracold cantilevers [8] whose origin remains to be
understood. We look at the simplest of these, the Ghirardi—
Rimini-Weber (GRW) model of quantum mechanics, from
the path integral perspective.

First derived by Pearle and Soucek [9] in an alterna-
tive way, the GRW propagator is a generalisation of the
Feynman propagator and accounts for the pertinent phe-
nomenological modifications. In this article, we present
two pedagogical derivations of this propagator, which we
believe would be new additions to the literature. In partic-
ular, as we will see, the correction to the standard prop-
agator amounts to adding a damping term to it. This has
possible repercussions for applications of path integral to
quantum field theory. In addition, these methods can eas-
ily be extended to systems obeying the Lindblad equation,
which is ubiquitous in the study of open quantum systems
as the GRW master equation is in Lindblad form. Thus, the
applicability of this article is broader than just the GRW
model, and it could improve our understanding of systems
obeying the laws of standard quantum mechanics as well.
We hope that our derivations would serve as an instruc-
tive source for the interested reader, beyond being a useful
addition to the growing literature of collapse models.

1.1 Introducing the Model

The idea of spontaneous localisation, and collapse models
in general, has been extensively studied in recent years as
a possible approach to solve the quantum measurement
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problem and explain the absence of macroscopic position
superpositions. This was first proposed by Pearle in the
1970s [3] and subsequently by other authors in [10] and
generalised to the case of identical particles in the CSL
model [11]. The proposal is that every quantum object in
nature undergoes spontaneous localisation to a region of
size r¢, at random times given by a Poisson process with
a mean collapse rate A. Between every two collapses, the
wave function obeys Schrodinger evolution. The collapse
rate can be shown to be proportional to the number N of
nucleons in the object, and we write A = NAgrw, Where
Agrw is the collapse rate for a nucleon. Thus, Agrw and
r¢ are two new constants of nature, whose values must be
fixed by experiment. Formally, the two postulates of the
GRW model are stated as follows:

Postulate 1. Given the wave function ¥ (X, X3,...,XN)
of an N particle quantum system in the Hilbert space
L2(R?Y), the n™ particle undergoes spontaneous localisa-
tion to a random position x as described by the following
jump operator:

La(x)y(X1, X2, ... Xy)
) L 0w %0, D

Pe(x1, X0, ...

The jump operator L,(x) is a linear operator, which is
defined to be the normalised Gaussian:
L, @ »/r @)

3/4
nrt)

La(x) =
(

Here, {n is the position operator for the n'™ particle of
the system, and the random variable x is the spatial posi-
tion to which the jump occurs. r¢, which is the width of the
Gaussian, is a new constant of nature.

The probability density for the nth particle to jump to
the position x is assumed to be given by:

pn(x) ILn ()1, X2, .. XN €)

Also, it is assumed that the jumps are distributed in
time as a Poissonian process with frequency Agrw. This is
the second new constant of nature, in the model.

For an unentanged wave function, we may write
Ye(X1, X2, ... Xy) =, Pn(Xn), where ¢n(Xy) is the wave
function for n® particle. Therefore, we have

Z

pn(x) =
z
= Ixallx,x)jpnxn)j® )

X Ln(X) pnxn)j?

where I(X,Xy) is the position representative of the operator
Ln(x), a Gaussian localised at x. Because it is an operator
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on n'™ particle’s space, integrals over all other degrees of

freedom are trivial. Further note that
Z

Exix, x))? =1 5)

This ensures that R pn(x)d3x = 1. On the surface of
the definition, this may not be obvious. The result follows
similarly for the entangled states.

Postulate 2. In between any two successive jumps,
the wave function evolves according to the Schrodinger
equation.

With these postulates, we can calculate the evolution
of the density matrix that represents the state of the system
as [4]

d i z
GPO= ZIHp®] Ap®)  xLaGpLa(x)) (6)

This can be rewritten in Lindblad form as
Z

Spr= LiHp01+  CxALaWpL0)

LI, p(0) )

Thus, the GRW equation is an example of a Lindblad
equation, and the following methods to derive the path
integral can also be used to derive the path integral for
any open quantum system satisfying the Lindblad master
equation.

For the above model, the process of spontaneous
localisation serves to provide an exponential damping of
the exponential oscillations in the path integral ampli-
tude. Inevitably, the damping is important for macroscopic
systems, but insignificant for microscopic ones.

2 The GRW Path Integral and Its
Derivation

The path integral formulation of quantum mechanics is a
description of quantum theory that generalises the action
principle of classical mechanics. It replaces the classical
notion of a single, unique classical trajectory for a sys-
tem with a sum, or functional integral, over infinity of
quantum-mechanically possible trajectories to compute a
quantum amplitude. As mentioned in the Introduction,
the GRW path integral has been previously derived by
Pearle and Soucek [9]; here we give two alternative deriva-
tions of their result and then discuss the classical and
quantum limits of the GRW path integral. (For further
applications of path integrals to collapse models, see also
[12-14])).
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2.1 Method 1
2.1.1 Introduction

Standard techniques [15] can be used to derive the
propagator starting from the Schrédinger equation. How-
ever, these techniques cannot directly be used for mixed
states represented by density matrices. Hence, we first
purify the state vector [16] so that it obeys Schrodinger-like
evolution with an effective Hamiltonian. The methods fol-
lowed in [15] can then be directly applied to this pure state
ket. Such a method of purification of a density matrix to
simplify its treatment can also be used when deriving the
path integral of a more general class of open quantum sys-
tem as described in the Introduction as this method does
not depend on any property of the GRW equation other
than the fact that it preserves trace.

2.1.2 Getting the Hamiltonian Form

The GRW master equation for a single particle [4, 11] is

z

dp = d? rL,pL, (8)

i
dt —(Hp pH) A p

where H is the Hamiltonian for Schrédinger evolution of
the system, and

Ly = 1 exp 9

N 2r¢
is the collapse operator for the particle to localise around
r. Ais the collapse rate, and r¢ is the length scale to which
localisation takes place, as defined in the Introduction.
This master equation was first derived for the CSL model
[11], where the authors noted that for the one particle case
this equation is the same as for the GRW model, although
this is not true in general.
In order to convert (8) into an equation of the form

diyi _

dt (10)

L fjyi
we define jii as
- - x - -
wi= Pmn)mi

m,n

jni (11)
where pmn = hmjpjni are elements of the density matrix
p from (8). Here, the set of all jmi, jni forms an orthonor-
mal basis in the single particle Hilbert space. We note that
there is an isomorphism between jii as defined here and
p. Thus, knowing the evolution of jiyi would give us all the
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information about how p would evolve. Using Einstein’s
summation convention, we rewrite (8) as

d .
l::{;m = %(Hmapan pmaHan)
Z
A pmn dBTeraPaerbn (12)
From (10) and (11), it follows that the equation
d, i~
lér;m = :Hmabn Pab (13)

must also hold. Comparing (12) and (13), we get
Z

N+i~A  d’rL, LY (14)

H=H 1 1 HY (@(~-Al

So, ji(t)i evolves as

jWY@®i = exp( iHt/~)jp(0)i (15)

This gives us the evolution of p(t) via (11), and the
above equation can be used to derive the propagator and
the path integral.

2.1.3 Derivation of the Path Integral

The total time ¢t = T can be divided into N intervals such
that € = T/N, and the finite time propagator in (15) can be
written as

1€ HT

U= exp

Ae 11 d’rL, LT (16)
As N ¥ oo and € ¥ 0, we can make the approxima-

tion

Us exp —(H 1 | HY)
z N
exp Ae(l |1 d3rL, LI) 17)
Introducing resolution of the identity
Zoo
Axkedy kel X ke 1]V ke INXke]NY kel (18)

oo

between every time step, we get N terms, each of the form

. i€
NXke, Viel €XP T(H [ HT)

z

exp Ae | | d*rL, L? X Des Yk el

(19)
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Evaluating one of these terms

hXkes Vielexp —= H 1 1 H'
Z
exp Ae | | dBI’Lr LI jX(k 1)6,)/(]( 1)€i
. i€ T . .
=MXke, Yrelexp — H | 1 H  jXg pe Y el
L=
Xk ne Y o)
exp Ae 1 exp >
4ré

(20)

The first exponent is simply the Feynman propagator!
for Schrodinger evolution.? We now assume that the sys-
tem is nonrelativistic, and hence, Hamiltonian is quadratic
in the momentum, and the potential is position depen-
dent. Thus, taking all N terms, we get

U(XNe, YNes> X0, Vo)

Zoo
=M Mldx d
2me~ =1 2me~ "€ Yne

S

im
ﬁ((xne X(n 1)e)2 (Vne Yn 1)e)2)

n=1

i€
— V(X(n 1)5) V()’(n 1)6)]

" 1
X X 2
exp Ae 1 exp O ve Yae ) (21)
4r2
k=1 c
Zoo
_om S m
2me~ ne1 2me~ ¢ Yne
" #
i
exp :(S[Xneyx(n 1)e] S[J/ne,J/(n 1)e])
n=1
" #
X X 2
exp e 1 exp ( k Ve Y 1)e) (22)
4r2
k=1 c

In the continuum limit with N ¥ oo while still keep-
ing Ne = T, the evolution of the density matrix element

1 The propagator is a function that specifies the probability ampli-
tude for a particle to travel from one place to another in a given time
or to travel with a certain energy and momentum.

2 Refer Shankar [15] Eq. (21.1.15).
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thus becomes

p(XT’ YT, T) = [DXt][DYt]
all paths
exp é(S[xh T,t=0] Sy, T,t=0])
2 7T , 13
expd A dt 1 expLz‘Vt) 5
4re
0
p(xo, yo)dxodyo 23)
where
Z Z
125 M1 1/2
[Dx]= lim - Mk, (24)
N¥oo 27T~€ 2n~€

n=1

This is the same result as derived in [9]. Here, x; and y;
can be unders&ood as individual paths that might be tra-
versed. Thus, paths[DXf][Dyf] can be understood as an
integral over all such paths. The exponential in the sec-
ond line of the above equation serves as the GRW-induced
regulator of the Feynman path integral and improves the
understanding of the classical limit, as we will see in the
following section.

2.2 Method 2

2.2.1 Introduction

In this case, we use a more physically motivated approach.
We use the fact that after every time interval € the wave
function has a probability Ae to collapse. Thus, by taking
discrete time steps and using the above fact, we can derive
the propagator.

2.2.2 Derivation of the Path Integral

Consider p(xo, yo, t = 0) to be a density matrix at initial
time t = 0. We intend to find p(x7, y7, T) at final time
t = T. We divide the total time into smaller intervals such
that € = L. So, we have

p(xe, Ve, €)
2o 2o , .
I m Xe Xo Xe + Xo
P 7 T 2
i mye yo ? Ye + Yo
=z v
exp = S - 5 €
p(xo, yo, t = 0)dxodyo (25)
7o 7o
=A P1p(x0, Yo, t = 0)dxodyo (26)
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where

e
I

= Kp(xi,)/iyei;xi 1,Yi 1,€i 1)

: 2
1 m X; Xi
=ep - 3 T

Xi+Xi 1

v 2
k @)
m . . 2
exp > Vi €)’z 1
|74 Vi +2)’1 1 (28)

is density matrix propagator for infinitesimal time step
from €; 1 to €, =€; 1 + €. The above expression for
p(xe, Ye, €) represents standard Schrédinger evolution,?
where A is the appropriate normalisation constant to
recover von Neumann equation. Now from (8), we know
that at a given instance, say, t = €, the probability of
collapse is Ae, while that of it evolving according to
Schrodinger equation is 1~ Ae. Thus, the new density
matrix after € time becomes

Pnew(Xe, Ye, €)

Zoo
Ae)p1 + Ae Ly(xe)p1Li(ye)dr

oo

=(Q (29)

where p; = p(xe, ye, €) and Ly(xc) = hxcjLrjxci are as
defined in (9). Here, as p; does not depend on r (it is a
function of x, ye, X0, and yo), we can evaluate the above
integral by taking p;1 outside the integration. We get

Vil
Lr(Xe)PlLr(YE)dr
OZ°° 1
=@ Lr(Xe)Lr(J/e)drApl (30)
z (x r)z! (v r)2l .
— € €
= exp T exp 22 drop;
(31
" 2#
(Xe )/e)
= - 32
exp a2 p1 (32

3 Refer to Shankar [15] Eq. (8.5.4).

B. Bhatt et al.: Path Integrals, Spontaneous Localisation, Classical Limit =—— 135

Now, we can write*

Pnew(xe» Ve, €)

" 14
2
=(1 Ae)p1+ Ae exp M p1 (33)
4ré
For simplicity, we write
2
G; = exp (Xie z)he)
4re

and thus

Pnew(xe, Ve, €= (1 Ae)+AeGq P1 (34)

We propagate again according to Schrédinger equa-
tion from time t = € to time t = 2¢,

2

p(X2e, ¥2e,26) = A P2 (1 Ae) + AeGy prdxedye

(35)
Substituting p; according to (25) and writing new
Pnew(XZEa Yae, 2€), We get

pnew(XZE, Yoe,s 2¢)

=A% (1 Ae) + AeGa)
2o 7o
P, (1 Ae)+ AeGy
Vil

P1p(x0, Yo, t = 0)dxodyodxcdye (36)

co oo

Further, we can rearrange the terms as all the func-
tions Py, P2, G1, and G, are commutative operations, so
this gives us

Lo [oo [oo 2o
Pnew(XZe, Yae,s 2¢€) = AZ P,P; (1 Ae)
+2AeG, (1 Ae)+ AeGq
p(xo, yo, t = 0)dxodyodxedye (37

We repeat the above procedure N 1 times. Tak-
ing continuum limit, N ¥ oo gives us the final density

4 Note that now the function in (28) is commutative as it does not
contain any differential operations.
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matrix as X
=exp( AT)exp lim AG;e (44)
p(XT’yTs T) N!Wi=1
Z ZNt N Oz 1
= A}i. AV Pi (1 2e) + AeG; =exp( AT)exp@A G(t)dtA (45)
- i=0  i=0
0
p(xo, yo, t = 0)dxodyo - - - dX(y 1AV 1)e 2 7T , ! 3
(38) =exp( AT)exp41 exp M deS  (46)
We know that o 4re
¥
lim Pi . . .
NEo Substituting these two terms back in (38), we get an
- integral form solution of (8) given by
=1 ¥ exp Im Xe X e 2
N!ooizl ~ 2 € P(XT,)/Ty T)
z .
Xie ¥ X(i e c = exp L Slx¢, T,t=0] S[y:, T, t =0]
— =
- , O 4 C Hor 1
exp 1 m Yie Vi 1e exp@ 1 1 exp (x¢ 2)’!) dtA
~ 2 € 4re
0
4 Vs
HeZJume (39) [Dx(][Dydlp(xo, Yo, t = 0)dxodyo (47)
C X m xe X 1e 2 where the integral in the above equation is defined in (24).
= exp I\}l!“; =2 T e The above derived propagator is the same as what we got
=1 using the previous method given in (23).
Xie ¥ X(i 1)e
2
C 5 ) 3 Classical and Quantum Limits of
. i m Yie Yi e
exp lim - o> ——7— GRW Path Integral
i=1
y YietYi ve (40) 3.1 Quantum Limit
2
g 71 9 g 71 9 From (23) or (47), the path integral for the GRW model is
=exp _ é L(xy)dt _ exp _ é L(y)dt _  (41) written as
0 0 P(XT: ) T)
i z
=exp —(Sx¢, T,t=0) SO, T,t=0 42 i
p —(S(x ) SOy ) (42 _ exp é S T,t=0) SeT.t=0)
where L(x¢, T, t = 0)is the Lagrangian and S(x;, T, t = 0) all paths
2 1 3

the action thus obtained. Expanding the second product 7T . 2
Xt Yt

term gives us exp4 A 1 e “2 de5

' 0
1i'm (1 Ae) + AeG;

NEeo. | p(x0, Yo, t = 0)[Dx¢][Dy¢ldxodyo
k (48)
P 1Ge If we consider the limit AT ¥ 0, i.e. we look at the

1

= lim (1 AG)N i=1 3 system at timescales (t = T) much smaller than the time
N¥oo Ko K(1  Ae)k period of collapse (t = 1/A), then the nonoscillating part



DE GRUYTER

of the above given propagator could be approximated
as

2 1 3
ZT (x¢ Y[)z -

exp4 A 1 e “t
0

dtd~1 (49)

This makes the propagator of GRW look exactly like
that for normal quantum mechanics,

p(XTy ) T)
z .
= exp é Sx¢, T,t=0) Sy, T, t=0)
all paths
p(xo, Yo, t = 0)[Dx¢][Dy]dxodyo (50)
From here, the standard quantum mechanical result
follows easily — we recall the calculation here, for sake

of completeness. We can write the above equation for

infinitesimal time interval € as

z %z 3
mx

pixe,ye,©) =A expdt T
0
2 3

, L€ .5
% V(y) dt5

V(x) dt5

exp4 é
0
p(xo, yo, t = 0)dxodyo (51)

where A is as defined in the previous section. Using the
following finite difference substitution

xu Xe Xo
€
Xo + Xe
g 20" e
X2
and using the standard substitution of nx = xo  x¢ and
Ny =Yo Ve andrearranging the terms, we have
p(xe, Ye, €)
zz pmd o _pmry
= A e~ 2 e~ 2
exp é V) +V(y) €
p(Xe + Nx, Ye + 1y, t = 0)dnxdny (52)

The exponentials oscillate very rapidly as € could be
made arbitrarily small. When such a rapidly oscillating
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function multiplies a smooth function, the integral van-
ishes for the most part due to the random phase of the
exponential. Just as in the case of the path integration,
the only substantial contribution comes from the region
where the phase is stationary. The region of constructive
interference is

mirlen

2~¢ 63

Now, Taylor expanding the terms in (52) up to the first
order in €, i.e. up to order r[z, we get

ZZ
P(Xe,)/e, e) :A

2
iMoo _imy
e~ 2 e~ 2

1 éV(x)e + éV(y)e
p(Xe +Nx,Ye + Ny, t = O)dnxdﬂy

Z7Z
=A

2
imng o _imy

e~ 2 e~ 2

1 Lve+ Lvie (e, ye.t=0)

op. op.
+ a*yJ(xe,ye,t=0)’1y * 3 Ceye =0 1x

o’p . 2
* 2oy tere =0y

°p .
+ F)fzj(xh)%yt:o)rl)z()dr[xdny

zz
=A

2
i mng i My

e~z e~ % (p(xe,ye, t =0)
LV0p(xe, ye, t = 0)e

+ LV()p(xe, Ve, t = O)e

2%p . 2
+ zayzj(xe,ye,t=0)ny

aZ
A 2
zaxzj(xe,ye,tzo)rlx

+ (Lp
ayJ(xe,ye,tZO)rly

op.
+£J(xe,y5,t=0)nX)andny "
54
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Evalygting the Gaussian integral and using A =
2e~mi 2e~mi
:;1 m €mﬂl’ we get

p(xe, Ve, €) = p(Xe, e, t = 0)

%V(X)P(Xe, Ye, t =0)e

+ LV ()p(xe, ve, t = O)e

i~0°p.
2m oy deyet=0¢

i~ 0%p.
Im ox2 Jxeye.t=0)€
= p(xe, ye, t = 0) {[H,p]e (55)

which describes how a density operator evolves in time:

ol

p

ax (56)

i
The above equation is the von Neumann equation, and
it describes the statistical state of a system in quantum
mechanics. We refer to the above equation as the statistical
quantum limit of GRW model.

3.2 Classical Limit

The following analysis is previously done by Ajanapon [17]
for the propagator of the density matrix in standard quan-
tum mechanics. We here make use of the same analysis for
the propagator of the GRW model. From (23) or (47), the
path integral for GRW model could be written as

p(xr,yr, T)
Z .
= exp % Sx¢, T,t=0) Sy, T, t=0)
all paths
2 ZT (x¢ yt)z 3
expA A (1 e “t )dtD

0

p(xo, Yo, t = 0)[Dx¢][Dy]ldxodyo
(57)

Now we consider the limit AT 1, which could be
interpreted as waiting for a sufficiently long time, or
the collapse rate A for the system is sufficiently large.
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Large A implies large mass as the collapse rate is directly
proportional to the number of entangled particles in the
system. As a result, large A implies large action. On the
other hand, large time also results in large action. As a
result, large masses and large times are both representa-
tives of classical limit, which causes S to be large and thus
implies the limit S  ~.

When a rapidly oscillating function is multiplied with
a smooth function, then the integral of their product could
be approximated by the smooth function at the station-
ary point of the rapidly oscillating function. This is com-
monly called the stationary phase approximation. Here,
xfl and yfl are the stationary paths for S(x¢, T, t = 0) and
S(y¢, T, t = 0), respectively, in the limit S ~. Thus, the
stationary phase approximation leads us to the following
equation:

pxr,yr, T)
z .
= exp é S, T, t=0) Sy, T, t=0)
2 7T wl e
expA A (1 e “t )ded
0

p(xo, yo, t = 0)dxodyo

(58)

For brevity, we here drop the notation for station-

ary paths and use xfl = x¢ and yfl = y¢. The p(x7, y7, T)

in the above expression represents diagonal as well as

off-diagonal terms in position basis [9]. Now we look for

the off-diagonal terms of the final p, which are specified

by large (x; y¢). In the limit (x; y;) rc, the non-

oscillating part of the propagator could be approximated
as

2 3
ZT (X[ y[)z

expA A (1 e “t
0

)dtd ~ exp[ AT]  (59)

This leads to damping of the off-diagonal terms of
the density matrix. Thus, in the limit AT 1, the inte-
gral can be considered to be vanished. This could also
be interpreted as destruction of interference in the sys-
tem as the off-diagonal terms are the primary represen-
tatives of interference. Now let us consider the diagonal
terms of the final p, specified by (x;  y:) = 0. In the limit

(x¢ ye)  rc, the nonoscillating part of the propagator
could be approximated as
2 3
zr ¢ yp?
expA A (1 e “t )dtd=1 (60)
0
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Now, we consider an infinitesimal time step €.

S(Xt’ eyt: 0) S()’t, €9t:O)

m 1
ﬁ(xe XO)Ze 5 V(xe) + Vixo) €

e yole+ 3 Vi) + Vo) € (6D
= % %(Xe +Ye) %(Xo + Yo)
(xe ve) (xo yo)

S V() Vi) S Vi) V(o) (62

Motivated by the above expression, we implement the

following change of variables:

_ 1
q: = E(Xt +y) (63)
Ae=xt i) (64)
_ _ 1 _ 1
U(ge, A)) = V(g + EAt) V(g: EAt) (65)
Thus, (58) could be written as

p(‘_Ie,Ae,E)
VA .
=4 exp = D@ qode 80
B (66)
€ € !
EU(Qe,Ae) EU(L_]O;AO)

P(C_]O, AO, t= O)dX()dyO

As the state of a system is specified by position and
momentum in classical mechanics, we take the Fourier
transform of A as given by

Z
p@@npt)=A e "o, A, OdA,  (67)

Thus, (66) in terms of p; could be written as

P(Ge, Pe, €)
Z .
i
=A exp —(Aopo Acpe

+§(qe Go)Ae  Ao)
i

€ _ € _
EU(CIc, Ae) EU(QO, Ao)

p(g0, po, t = 0)dAodAcdxodyo (68)
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The p(g:, pt, t) could be interpreted as the phase space
representation of the diagonal terms of the density matrix
in the limit S ~. As the A¢  rc, U(gs, A¢) could be
approximated by Taylor expanding and ignoring A? and
its higher orders

UGe, Ao ~ At‘g—g(m) 69)

Equation (68) could be further simplified by using the
above approximation,

P(Ge, pe, €)
_ 1 iAo m,_ _ eovV
=V €Xp — Do z(qtf. do) ETq(QO)
ex a 0. + E + ial(‘ )
p do dge mpe 2m 3q ge
p(go, po, t = 0)dAodAcdxodyo (70)
Z
=L s p @ a0 £%a
- N” pO € q€ QO 2 aq CIO
S g 0. + i + ial(‘ )
qdo de mpe 2m 3q de
p(go, po, t = 0)dxodyo (1)
1 _ ov _
= yPlde pepetes @) t=0 ()

The above equation could also be written as follows by
changing the variables of p,

p qo+ £po,po Eal(QO),t=€
m oq

— 1 - —
= WP(QO’pO, t=0) (73)

Now, Taylor expanding the left-hand side around the
point (go, po, t = 0) and equating orders of €, we get, at
zeroth order,

N =1 (74)

at first order,

pr _ = @alj _
EY: (Go,po,t=0) m 0q (Go,po,t=0)

ov. op.
* 3@ 3p)@o.po.=0) (75)
and dropping the subscript,

op
L= fp,H
5f 0, Hg (76)
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where H = ﬁ p? + V(g). We refer to (76) as being the sta-
tistical classical limit of GRW. The above limit does not
depend on a specific form of the initial density matrix and
hence is a phase space representation of a general density
matrix following GRW evolution.

3.3 Absence of Macroscopic Position
Superpositions

To summarise the discussion this far, we first developed
a path integral formulation of the GRW model. We then
showed that this gives us the correct quantum and classi-
cal limits. We shall now illustrate some important features
of the classical limit through some examples. As we are
taking the classical limit, we would consider large action
and large number of nucleons (which implies large 7).
Hence, the stationary phase approximation shown in (58)
would be valid. If we consider the case of a free particle,
the stationary paths would be straight lines with x(t) =
constant.

Let us consider an initial condition that is formed
by the superposition of two Gaussians separated by a

macroscopicdistanceja; azj  r¢.Theresulting density
matrix would be
X (xo al-)2 ()’o ﬂj)z
p(xo, Yo, t =0) = Aje — 7 e 7
i,j=1

withr  rc. Here, the coefficients A;; can be chosen such
that the density matrix is a valid one (i.e. it has unit trace,
it is positive semidefinite, and it is Hermitian). Putting this
into (58), we get

pxt, yt, T)

2
z T ("fl yfl)2

= expd A 1 e “t
0

)de5

exp — S, T,=0) SGLT,t=0)

" # " #
(xo ai)2 o 2

a;
rizj) dXOdyO

X
Aij exp

i,j=1
(77)

We can see that the terms of the initial density
matrix

(o ay)? 0o ay)?

(o a)? (o a1)?
Ape 2 e 2 2

+A21e 12 e r
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would have jx¢'  y€lj  rc for a large time. Hence,
the final density matrix would have these terms damped
exponentially as

(0]
zr gl yghy?

exp@ 1 (1 e “t
0

YAtA = e AT

Additionally, in the remaining terms where both paths
start in the same Gaussian, the paths must finally also
remain within a distance, which is of the order r¢. Thus,
the so-called off-diagonal terms are destroyed, while the
approximately diagonal terms are preserved. Note that the
system transforms from a state with the superposition of
two Gaussians to a statistical ensemble of the two Gaus-
sians with probabilities A1; and A, respectively. Note also
that this statistical ensemble is different from a super-
position as this represents classical probabilities, which
do not interfere. In this way, GRW destroys macroscopic
superpositions.

4 Discussion and Conclusion

In our work, we have derived the GRW propagator in two
new ways. As mentioned in the Introduction, the GRW
propagator amounts to adding a damping term to the
standard propagator that destroys macroscopic superpo-
sitions. We note that in this approach the transition from
GRW to classical and quantum mechanics is quite nat-
urally obtained. In order to see the transition to stan-
dard quantum mechanics, we took the limit AT 1 of
the path integral for the GRW model and were left with
quantum mechanics for a density matrix, i.e. the von Neu-
mann equation. In order to see the transition to classical
mechanics, we took the limit AT 1 in the path inte-
gral for the GRW model and were left with the classical
Liouville equation.

Our study suggests methods for generalising sponta-
neous localisation to the relativistic case, via the path inte-
gral representation of quantum field theory. What we see
in (23) is that spontaneous localisation is equivalent to
modifying the standard path integral by a regulator. In
relativistic quantum field theory, we replace space-time
coordinates by quantum fields over space-time, so that
the action function S(x, T) is replaced by a functional,
S(¢(x, T)). We propose to introduce a regulator, analogous
to the one introduced in the present article, and investi-
gate how it might incorporate spontaneous localisation in
quantum field theory.
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