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Abstract: The one-dimensional Ising model with vari-
ous boundary conditions is considered. Exact expres-
sions for the thermodynamic and magnetic properties
of the model using different kinds of boundary condi-
tions [Dirichlet (D), Neumann (N), and a combination of
Neumann–Dirichlet (ND)] are presented in the absence
(presence) of amagnetic field. The finite-size scaling func-
tions for internal energy, heat capacity, entropy, magneti-
sation, and magnetic susceptibility are derived and anal-
ysed as function of the temperature and the field.We show
that the properties of the one-dimensional Ising model is
affected by the finite size of the system and the imposed
boundary conditions. The thermodynamic limit in which
the finite-size functions approach the bulk case is also
discussed.
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1 Introduction
Finite-size scaling has been developed intensively during
the last few decades [1–4], and it has become a standard
tool in the studies of critical systems. As soon as one has
a finite system, one must consider the question of bound-
ary conditions on the outer surfaces or “walls” of the sys-
tem. As the boundary conditions affect only a small part
of the system, we expect that as long as the system is
finite we can observe some differences if we choose differ-
ent boundary conditions, but as soon as we take the ther-
modynamic limit, these differences become irrelevant.
The boundary conditions dependence of the finite-scaling
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functions is an interesting subject in condensed matter
physics and statisticalmechanics. Analytical results about
the effect of boundary conditions on the finite-size scal-
ing functions are scarce [5–8]. To understand the effects of
boundary conditions on finite-size scaling, it is valuable
to study model systems, especially those that have exact
results.

The Ising model [9–11] is a well-known and well-
studied model for describing the magnetic system, where
a spin variable that takes two possible values lives on each
lattice site, which interact onlywith its nearest neighbours
ofmagnetism.Although themagnetic and thermodynamic
properties of the Isingmodel were investigated for an arbi-
trary lattice size N, usual focus of analysis has been in the
thermodynamic limit.

The present article will be devoted to the exact solu-
tions of the Ising model in the absence (presence) of a
magnetic field. We will focus on the dependence of the
finite size behaviour on the boundary conditions. It has
been shown that the behaviour of the finite-size scal-
ing functions for free energy, internal energy, heat capac-
ity, entropy, magnetisation, and magnetic susceptibility
depend on the boundary conditions and are different from
that of the infinite size case.

The plan of the article is as follows: In Section 2,
we briefly review the model and write the basic equa-
tion for the partition function. In Section 3, the finite-
size scaling functions of the thermal properties of the
model in the absence of the magnetic field are calculated
and analysed under different kinds of boundary condi-
tions. In Section 4, we study and investigate the magnetic
properties of the model in the presence of the magnetic
field under Neumann–Dirichlet boundary conditions. In
Section 5, we discuss the bulk properties of the model in
the thermodynamic limit. The article closes with conclud-
ing remarks given in Section 6.

2 The Model
We consider the one-dimensional Ising model of N
spins (σi , i = 1, . . . , N) with ferromagnetic (J > 0)
coupling and with various boundary conditions. The
interaction energy of a given configuration of spins σi
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is given by

−E(τ)({σi}) = J
N−1∑︁
i=1

σiσi+1+ J(σ0σ1+σNσN+1)+h
N∑︁
i=1

σi

(1)

The first term in the right-hand side of (1) describes
the interaction between the spins in the system, whereas
the second term is the boundary term, which depends on
the boundary conditions (denoted by the superscript τ); it
describes the interaction of the spins in the region with a
specified configuration outside the system. The third term
describes the effect of an external field h on the spins of
the system.

As usual, the partition function of the Ising model is
given by the sum over all spin configurations:

Z(τ)(T, h) =
∑︁
{σi}

exp[−βE(τ)({σi})] (2)

where β = 1/kBT is the inverse temperature, kB is the
Boltzmann constant, and T is the temperature. We are
going to consider three different boundary conditions:
Dirichlet–Dirichlet, Neumann–Neumann, andNeumann–
Dirichlet boundary conditions. Here we use the classic
terminology for the boundary conditions; i.e. we use the
terms Dirichlet andNeumann instead of free (or open) and
fixed, respectively.

Under Dirichlet–Dirichlet (τ = D) boundary condi-
tions for a lattice spin system,wemeanhere the casewhen
the interaction of the systemwith the “surroundingworld”
is modelled by fixing to zero value the spin configuration
outside the system (i.e. no neighbours at the edge of the
system),

σ0 = 0 and σN+1 = 0 (3)

Under Neumann–Neumann (τ = N) boundary condi-
tions, in this case the interaction ismodelled by setting the
surrounding spins to be equal to their nearest neighbours
inside the system, i.e.

σ0 = σ1 and σN+1 = σN (4)

Under Neumann–Dirichlet (τ = ND) boundary condi-
tions (mixed boundary conditions), we mean

σ0 = σ1 and σN+1 = 0 (5)

In the next section we study the finite-size scaling
behaviour of the one-dimensional Ising model in the
absence of an external field (h = 0).

3 Finite-Size Scaling Functions in
the Absence of the External Field

By direct evaluation of the summation in the partition
function (2) under the influence of the boundary condi-
tions in the case of nonzero field, one obtains the finite-
size free energy at finite values of N

−βF(τ)(T, 0) = lnZ(τ)(T, 0)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Nln2 + (N − 1)ln(cosh βJ) for τ = D,

(N + 1)ln(2 cosh βJ) + ln
[︁
1 + (tanh βJ)N+1

]︁
for τ = N,

Nln(2 cosh βJ) + ln
[︁
1 + (tanh βJ)N

]︁
for τ = ND.

(6)

In the thermodynamic limit N → ∞, we obtain the
bulk free energy

f (T, 0) = lim
N→∞

−βF(τ)(T, 0)
N = ln(2 cosh βJ) (7)

where the boundary conditions do not affect the proper-
ties of macroscopic systems and their effect only on finite
systems. Now all the thermodynamical properties of the
model could be defined by the partition function and the
finite-size free energy or one of its derivatives. The main
thermal properties are the internal energy U, the heat
capacity C, and the entropy S:

U(τ)(T) = − ∂
∂β ln Z, C(τ)(T) = − 1

kBT2
∂
∂β U

(τ)(T)

and S(τ)(T) = − ∂
∂β F

(8)

By using (6) and (8), one easily obtains the following
exact finite-size scaling functions:

U(τ)(T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−J(N − 1) tanh βJ for τ = D,

−J(N + 1) tanh βJ
[︃
1 + (tanh βJ)N−1

1 + (tanh βJ)N+1

]︃
for τ = N,

−JN tanh βJ
[︃
1 + (tanh βJ)N−2

1 + (tanh βJ)N

]︃
for τ = ND.

(9)

C(D)(T) = kB(N − 1)(βJsechβJ)2, (10)

C(N)(T) = kB(N − 1)(βJsechβJ)2 ×⎧⎪⎨⎪⎩
1 + N

[︁
(tanh βJ)N−1 − (tanh βJ)N+1

]︁
− (tanh βJ)2N[︁

1 + (tanh βJ)N+1
]︁2

⎫⎪⎬⎪⎭,

(11)
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C(ND)(T) = kBN(βJsechβJ)2 ×⎧⎪⎨⎪⎩
1+ (N−1)

[︁
(tanh βJ)N−2− (tanh βJ)N

]︁
− (tanh βJ)2N−2[︁

1 + (tanh βJ)N
]︁2

⎫⎪⎬⎪⎭
(12)

and

S(D)(T) = kB ln 2+ kB(N − 1)
[︀
ln(2 cosh βJ) − βJ tanh βJ

]︀
,

(13)

S(N)(T) = kB ln
{︁
(2 cosh βJ)N+1

[︁
1 + (tanh βJ)N+1

]︁}︁
− kB(N + 1)βJ tanh βJ

[︃
1 + (tanh βJ)N−1

1 + (tanh βJ)N+1

]︃
,

(14)

S(ND)(T) = kB ln
{︁
(2 cosh βJ)N

[︁
1 + (tanh βJ)N

]︁}︁
− kBNβJ tanh βJ

[︃
1 + (tanh βJ)N−2

1 + (tanh βJ)N

]︃
. (15)

Note that the energy per spin U(T)/(N − 1), heat
capacity per spin C(T)/(N − 1), and the entropy per
spin S(T)/(N − 1) are independent of the size with the
Dirichlet–Dirichlet boundary conditions.

The exact results of the finite size properties of the
one-dimensional Ising model versus temperature T (we
take kB = 1) for different values of the size N = 2, 4 and 6
in the case ofNeumann–Dirichlet boundary conditions are
presented in Figures 1–3. The dependence on the different
boundary conditions is shown in Figures 4–6.

Results show that the internal energy is affected by
increasing N and becomes constant and converges to zero

Figure 1: The internal energy as a function of temperature in the
case of Neumann–Dirichlet boundary conditions for N = 2, 4,
and 6.

Figure 2: Heat capacity versus temperature when Neumann–
Dirichlet boundary conditions are applied, for N = 2, 4, and 6.

Figure 3: The entropy as a function of temperature in the case of
Neumann–Dirichlet boundary conditions for N = 2, 4, and 6.

at higher temperature values (Fig. 1). Figure 2 shows the
temperature dependence of the heat capacity for differ-
ent values of N. We notice that the heat capacity exhibits
peak increases by increasing N. The entropy temperature
dependence at differentN is shown in Figure 3. At low tem-
perature, the entropy becomes constant rapidly, andwhen
T → 0, entropy goes to zero.

The use of the boundary conditions leads to a size
dependence of the internal energy, the heat capacity, and
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Figure 4: Internal energy in the presence of different boundary
conditions for N = 4.

Figure 5: Heat capacity in the presence of different boundary
conditions for N = 4.

the entropy (Figs. 4–6). We see that the properties belong-
ing to the different boundary conditions are clearly dis-
tinct, thus demonstrating explicitly the boundary condi-
tions dependence of the finite size properties of themodel.

4 Finite-Size Scaling Functions in
the Presence of the External Field

In this section, our concentration will be in the one-
dimensional Ising model with Neumann–Dirichlet

Figure 6: The entropy in the presence of different boundary
conditions for N = 2.

boundary conditions in the presence of an external mag-
netic field. We now rewrite the partition function in the
following form:

Z(ND)(T, H) =
∑︁

σ1=±1
. . .

∑︁
σN=±1

[︁
eKσ1σ2+ H

2 (σ1+σ2)
]︁

[︁
eKσ2σ3+ H

2 (σ2+σ3)
]︁
. . .

[︁
eKσNσ1+ H

2 (σN+σ1)
]︁

(16)

whereK = βJ andH = βh are the reduced spin–spinnear-
est neighbour coupling energy and the reduced magnetic
field. The partition function in this case can be calculated
by using the transfer matrix method [12, 13]. The matrix
elements Ti, j of the transfer matrix T may be written as
follows:

Ti,i+1 = eKσiσi+1+ H
2 (σi+σi+1) (17)

The matrix elements of T can be computed directly
from (17):

T =

⎛⎝ T(+1, +1) T(+1, −1)
T(−1, +1) T(−1, −1)

⎞⎠ =

⎛⎝ eK+H e−K

e−K eK−H

⎞⎠
(18)

The partition function in (16) may now be written as
follows:

Z(ND)(T, H) = Tr(T) =
∑︁
i
λNi (19)



M.E. Amin et al.: Investigation of the Finite Size Properties of the Ising Model | 179

where λi are the eigenvalues of T. They may be easily
computed as T is 2 × 2. The characteristic equation is

det(T−λI) = λ2−λ(2eK coshH)+(e2K−e−2K) = 0 (20)

which gives the two eigenvalues

λ1,2 = eK
[︂
cosh(H) ±

√︁
sinh2(H) + e−4K

]︂
(21)

In this case, the finite-size free energy is given by

F(ND)(T, H) = −KBT
[︃
N ln λ1 + ln

(︃
1 +

(︂
λ2
λ1

)︂N
)︃]︃
(22)

In the thermodynamic limitN → ∞, the term (λ2/λ1)N

will tend to zero as λ2/λ1 < 1. Hence, one obtains the bulk
free energy:

f (T, H) = −kBT ln λ1

= −J − kBT ln
[︂
cosh(H) +

√︁
sinh2(H) + e−4K

]︂
(23)

Now all the properties of the model in the presence
of the magnetic field can be obtained, but our focus will
be devoted to studying the magnetic properties such as
the magnetisation M(T, H) and the magnetic susceptibil-
ity χ (T, H). By direct calculations, the finite-size scal-
ing functions of M(T, H) and χ (T, H) take the following
form:

M(ND)(T, H) = −∂F(ND)

∂H

= N sinh(H)√︁
sinh2(H) + e−4K

[︃
1 − (λ2/λ1)N

1 + (λ2/λ1)N

]︃
(24)

χ(ND)(T, H) = −∂2F(ND)

∂H2

=
βN cosh(H)e−4K

[sinh2(H) + e−4K]
3/2

[︃
1 − (λ2/λ1)N

1 + (λ2/λ1)N

]︃

+
4βN2 sinh2(H)
sinh2(H) + e−4K

(λ2/λ1)N[︁
1 + (λ2/λ1)N

]︁2 (25)

The behaviour of the magnetisation and the suscep-
tibility as a function of the field under the effect of the
temperature (T = 1, 3 and 5) are given in Figures 7 and 8
and in the presence of different sizes (N = 2, 4 and 6) are
given in Figures 9 and 10.

Figure 7:Magnetisation as a function of magnetic field at size N = 2
for different temperature T = 1, 3, and 5.

Figure 8:Magnetic susceptibility as a function of the field at size
N = 2 for different values of temperature T = l, 3, and 5.

We observe that the magnetisation behaviour with
the change of the magnetic field is smoother with the
increase in the temperature and becomes a step function
in the limit of T → 0 corresponding to a ferromagnetic
phase (Fig. 7).

The magnetic field dependence of the susceptibility is
plotted in Figure 8 for different values of the temperature.
The susceptibility peaks show that the maximum of χ (T,
H) is larger for low temperature.
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Figure 9:Magnetisation as a function of magnetic field at
temperature T = 10 for different size N = 2, 4, and 6.

Figure 10:Magnetic susceptibility as a function of magnetic field at
temperature T = 10 for different size N = 2, 4, and 6.

The effect of the size of the system on the magneti-
sation is observed in Figure 9. It is clear that increasing
the size is accompanied by shifting the maximum value
of the magnetisation. The same result was obtained for
susceptibility (Fig. 10).

5 Bulk Properties of the Model
In the thermodynamic limit N → ∞, the finite-size scal-
ing functions of the one-dimensional Ising model reduce

to the bulk properties (intensive functions) in the well-
known forms:

u(T) = lim
N→∞

U(τ)(T)
N = −J tanh βJ,

c(T) = lim
N→∞

C(τ)(T)
N = kB(βJsechβJ)2,

s(T) = lim
N→∞

S(τ)(T)
N = kB

[︀
ln(2 cosh βJ)

− βJ tanh βJ
]︀
,

m(T, H) = lim
N→∞

M(ND)(T, H)
N =

sinh(H)√︁
sinh2(H) + e−4K

,

x(T, H) = lim
N→∞

χ(ND)(T, H)
N =

β cosh(H)e−4K

[sinh2(H) + e−4K]
3/2 .

(26)

The behaviour of the finite-size properties per spin
in the case of Neumann–Dirichlet boundary conditions
for N = 50, 100 and 200 compared with the bulk value
N = ∞ (26) is plotted in Figures 11–14. Figure 11 indicates
that the internal energy per spin increases with N, but
the increases slow down for larger values of N where the
curve forN = 200 approximatesN = ∞much better than
N = 50. Again, the heat capacity per spin for N = 200
approaches the bulk value (Fig. 12). For the entropy per
spin, the same behaviour is given in Figure 13; increasing
size of the systemwill lead it to approach bulk value. In the
presence of magnetic field, one has two eigenvalues; one

Figure 11: Internal energy per spin under Neumann–Dirichlet bound-
ary conditions for N = 50, 100, and 200 compared with the bulk
value N = ∞.
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Figure 12: Heat capacity per spin under Neumann–Dirichlet bound-
ary conditions for N = 50, 100, and 200 compared with the bulk
value N = ∞.

Figure 13: The entropy per spin under Neumann–Dirichlet boundary
conditions for N = 50, 100, and 200 compared with the bulk value
N = ∞.

of them is larger than the other. For small values of N, the
two eigenvalues should be taken into account for compu-
tation of the magnetisation and the susceptibility (24 and
25), but for large values of N, the ratio λ2/λ1 is neglected.
In Figure 14, we notice that the finite size of the magneti-
sation per spin for largeN is in exact agreement with those
of the infinite case.

Figure 14:Magnetisation per spin under Neumann–Dirichlet bound-
ary conditions for N = 50, 100, and 200 compared with the bulk
value N = ∞.

6 Conclusions
The one-dimensional Ising model of finite sizes is consid-
ered. We investigated the effect of the finite size and the
boundary conditions on the properties of the model. The
thermodynamic properties such as internal energy, heat
capacity, and entropy are derived exactly in the absence of
magnetic field. It has been shown that the finite-size scal-
ing of the thermodynamic properties is different from that
of the infinite case and depends on the boundary condi-
tions. Themagnetic properties of themodel are studied by
using the transfer matrix method. We have performed the
magnetisation and magnetic susceptibility as a function
of the field under the effect of different temperatures and
different sizes. We have shown that when the size of the
system is limited the finite-size effect seems important as
the deviation of the finite-size properties from the bulk val-
ues is large, and the deviation vanishes when N becomes
large. Our results are consistent with the previous results
on the one-dimensional Ising model.
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