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Abstract: A system of hyperbolic differential equations
outlining one-dimensional planar, cylindrical symmetric
and spherical symmetric flow of a relaxing gas with dust
particles is considered. Singular surface theory used to
study different aspects of wave propagation and its culmi-
nation to the steepened form. The evolutionary behavior
of the characteristic shock is studied. A particular solution
of the governing system of equations is used to discuss the
steepened wave form, characteristic shock and their inter-
action. The results of the interaction between the steep-
ened wave front and the characteristic shock using the
general theory of wave interaction are discussed. Also, the
influence of relaxation and dust parameters on the steep-
ened wave front, the formation of a characteristic shock,
reflected and transmitted waves after interaction and a
jump in shock acceleration are investigated.

Keywords: Characteristic Shock; Relaxing Dusty Gas; Sin-
gular Surface Theory.

1 Introduction

Waves are a natural outcome of technical progression, so
are the discontinuities. As the environment is inundated
with waves, the study of the interaction of a wave with
discontinuities is likely to have a positive impact on the
propagation of waves. The topic carries a high empirical
utility that makes it an interesting area to explore further.
A wave can be viewed as a surface which moves in accor-
dance with some flow variables describing the material
medium. Some interrelated discontinuities are also carried
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along by the surface, which arise out of the flow variables
or their derivatives.

Singular surface theory of the first order uses the
approach that the functions itself are continuous and
undergo jump discontinuity in at least one of its first order
derivatives. In a recent paper, this theory was used to
study wave propagation and its termination into discon-
tinuities in three different contexts of flow of a non-ideal
dusty gas, and further among other results, the effects
of the ratio of species densities and the ratio of specific
heat on shock formation were shown [1]. The nonlinear
theory of wave propagation was discussed by Varley and
Cumberbatch [2] and the propagation of weak discontinu-
ities in different materials using singular surface theory
has been studied by many authors from an applicative
point of view [3-5]. The studies of concern from the pre-
computer era to date, have been the interaction of these
weak discontinuities with shock wave using the general
theory of wave interaction. The work done by Jeffrey [6, 7]
on the problem of interaction has been further extended
by many authors. Radha et al. [8] studied the general
theory for problems of wave interactions leading to the
results obtained by Boillat and Ruggeri [9]. Boillat and Rug-
geri [10] studied the characteristic shock and constructed
examples to analyze the same for completely and strictly
exceptional systems. For a clear understanding one may
refer the fundamental works carried out in [9-13]. Men-
trelli et al. [14], taking into consideration a perfect gas,
studied the interaction between a shock and an accelera-
tion wave with varying shock strength. Many more results
have been concluded using the theory in different material
media [15-22]. In dusty gases, self similar solutions and
converging shocks followed by wave propagation were dis-
cussed in [23-26]. Recently, Shah and Singh studied the
collision between a blast wave and a steepened wave in
dusty real reacting gases [27], and the interaction of a sin-
gular surface with a strong shock in reacting polytropic
gases [28].

The relaxation mechanism in gas is basically the
rate of process of attaining equilibrium through non-
equilibrium which occurs due to some external forces and
the time taken to get the equilibrium state back is known
as the relaxation time [29-31]. In general, the energy in
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a gas molecule is distributed among translational modes,
vibrational modes, and rotational modes. The time taken
by a particular mode to attain equilibrium is called the
relaxation time of that mode. The relaxation times for
translational and rotational modes are very short, whereas
the same for vibrational modes is much longer [32]. Hence,
the propagation of waves in a vibrationally relaxing gas
depends on the relaxation time.

In this paper, we discuss the interaction of a singu-
lar surface with a characteristic shock in a relaxing gas
with dust particles. It is imperative to highlight some of
the assumptions being made to formulate the system of the
fluid flow [33-36]. It is considered that the solid particles
are spherical in nature with uniform size and the specific
heat of the gas and the dust particles are constant. We have
further assumed that the volume occupied by the solid
particles in the mixture is negligible. Using the singular
surface approach, the transport equation for the jump in
first order derivative of the velocity, which is of a Bernoulli-
type equation is obtained. The solution of the transport
equation is discussed considering a particular case. The
evolution of a characteristic shock in the medium is dis-
cussed considering the same particular case as in the case
of the singular surface. Next, the interaction between the
singular surface with the characteristic shock resulting in
reflected and transmitted waves and the jump in the shock
wave acceleration is studied. The results obtained are ana-
lyzed for various dust parameters along with the relax-
ation effects involved in the flow by performing numerical
calculations and depicting the same.

2 Basic Equations

The system of partial differential equations representing
the one-dimensional, unsteady flow of a dusty relaxing
gas with planar (m = 0) and non-planar, i.e. cylindrical
symmetry (m = 1) or spherical symmetry (m = 2) with the
assumptions made for dust particles in [36, 37] is given by:

pt+upx+pux+$:0

1
ut"'””x"’;px =0,

r 1
pt+upx+pa2 ux+@ = ﬁp(),

ot + uox = Q, o)

along with the equation of the state

(1  kp)pRT

T 7 @

p:

DE GRUYTER

where t is the time, u is the flow velocity along thex-
axis, p and p are the density and pressure of the

gas—particle mixture, o is the viprational energy, Q =
1 p(1 2) pe(l Z.) — yY(1+68p) —
T OerC T T 0 T gy 47

1/2
% , R the specific gas constant, T the temper-

ature, and Z = Vsp/V is the volume fraction. If otherwise
not stated a variable as a subscript indicates a partial
derivative with respect to that variable. However, the vari-
able with ‘e’ as a subscript denotes the initial value of the
variable in the equilibrium state.

Here, Vsp and V are the volumetric extension of the
solid particles and total volume of the mixture, respec-
tively; the parameters c and 1 specifies the ratio of vibra-
tional specific heat to the specific gas constant and the
relaxation time, k, = @sp/¢ is the mass fraction of the
solid particles in the gas mixture, § = k,/(1  kp), B =
Csp/Cp, Yy = cp/cv, 8 = kp/psp where Z in terms of k, can
be written as Z = 0p, entailing ¢sp and ¢ as the total
mass of the solid particles and the mixture, respectively,
csp as the specific heat of solid particles, c¢p the specific
heat of the gas at constant pressure, and ¢, the specific
heat of the gas at constant volume. Also, we make use
of an added variable G = psp/pg, the ratio of the density
of the solid particles to the species density of the gas, to
compare the behavior of the flow variables as the time
proceeds.

It may be noted that the equations of states for the
gas and solid particles are given by pg = pgRT and psp =
constant, respectively, where pg is the pressure of the gas.
As the presence of dust particles have negligible contri-
butions to the pressure of the mixture due to the larger
particle size, it is assumed that p; = p [34]. The densities
of the gas, solid particles and the mixture are related to
each other as per the following:

_ 1 2)pg _Z
p - 1 kp ’ p - Ep sp-

If the flow is vibrationless or translationally active,
i.e. either in equilibrium (0 = 0) presupposing ¢ = 0. +

c ‘% % as the equilibrium value of o, or

frozen (0 = const) as 7 ¥
thereby implying Q = 0.

The system of (1) can also be written in the matrix
form as:

oo, no relaxation is involved

Ui+ AUx =f, €)
where U= (p,u,p,0)", f= 22,0, {FghpQ~+
2 tr
’"P;’ ¥ 'Q and
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© u p 0O 1 Also,
0 1/p O . . L — o= .
A= g 0 pzz up 0 §, (4) J[pXX]J =p, J[uxx]J = (1(1), j[pxx]] = f,ij[(fxx]] =n,
00 0 u iloxli = Viox P, jlunli = V(@ a®),
ilpxdi = V('fx z), loxelj = V(rlx ﬁ) €]

in which tr represents transposition.

Differentiating system (1) with respect to x and evalu-
ating behind the wave front @, we get:

3 Transport Equation for the Jump

o o o ilpxeli + 2jluxpxli + uojlpxxli + pojluxxlj

Discontinuity mu m
O:ir Ti PO i

+ TJ[Px]J + Tl[ux]l =0,

Let us consider flow variables p, u, p, and ¢ to be neces-

sarily continuous while allowing discontinuities in their

derivatives across the surface associated with a prop- + ij[p,(,(]j izj[pxpx]j =0,

agating wave and denoted by x = £(f) the equation of

luxeli + uojluxxlj + jluxuxlj

the wavt? fron.t @. l?or.(l‘) to be a c.haracterlstlc surface, ilpxli+ 1+ pdo 0 Jluxpxlj + uojlpxxlj
the moving discontinuities of the first and second order Po
must satisfy the geometrical and kinematical compatibil- 5 . . m. ) 9po 3
ity conditions. The compatibility conditions were derived +poas jlunli+ ;J[u"h 1 J[u"p ]
by Hadamad [38] usu‘lg the Lagrangl‘an parémeters rather muo  po a(z) o 890 ao o
than the space coordinates as Eulerian variables. He also + X po [pxli + ﬁl[ﬂx]l
considered an extension of the relations using Lagrangian T 1
parameters giving the discontinuities in the second and = a9 )fQOJ[Px]J + po((Qplojlpxli
higher derivatives of quantities under the assumption that o
only the quantities themselves are continuous over ®. The +(Qp),ilpxli + (Qo)oiloxli) + Po8Qojlpxli ,
conditions were later presented by Thomas using Eulerian 1 6po)
variables [39, 40], which are as follows: iloxelj + jluxoxlj + uojloxxlj
s s o = ((Qp)oilpxli + (Qp)oilpli + (Qadojloxli). ©
ilHj =B, j[Hdi= VB, j[Hxlj=B,
ilHxlj=V(Bx B), ) Use of (8) in (9) yields
where H takes the value of any of the flow variables, B V(ox p)+2((p + pox)a™ + pugy)
is a function defined on the surface @, provideg B&O + Uop + po@ L m (Uop + po aM)y =0
implying the existence of discontinuity and V = £ is the X

speed with which ® propagates. If W is any vanable then V@® a®)+upa® + (aV)?

[[W]] =W W, means the jump in W across the wave 1- 1 )
= = + + +2 =0,
front ® and Wy and W represents the values of W just p § p3 (b(5 + o) + poxé) 4 tox
ahead and just behind ®. _ poad .
As for an advancing wave V is positive, the evaluating Ve O+ 1+ Do (@(§ + pox) + ox)
system (1) on the inner boundary of @ gives ) !
+ uné + 2 Tl) + 7)710(
Uo§ +poap a
— w__1
V=ay+u, a’'=-—" —p and =0, (6)
podopo OO (@ gy + ™0 + o)
(1 6po) X
on using the following jump values muopoajé T 1
-+ =
® XPpo (1 6po)
ilpdi=p, ludi=a®, jpdi=¢ jlodi=n. c 0
J-[Px.l ps | x.J | JEP;)XJ.f. iloxli=n pQo+ < PP (1 gpo)e +(,f1>o %OP) ,
ilodi= Vp, jludi= va?, jpdi= Ve, po po

jlodi="vn. M aWoo ao=7 0 6o (10)
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Further, eliminating p, a® and £ from (10) we obtain
the following Bernoulli type of transport equation [6]
for a

da™ I'+1 )2 M _
a + T Opo (&) +0a” =0, (11)
where
1
O =g 3+ -+ LOP0
1 6po (1 6po)ad
1
+ m uol’ uol"epo
x 1 6po a3(1 I9p0)2
T'6po a Tpox
+ - e —
pox poao(1  Bpo)>  Po (1 Bpo)poao
L T Qo L T 1A Bpo)c
2
(1 6po) ad(1 6po) T

3.1 AParticular Case

Using the following form of flow variables just ahead of the
wave front ®

uo(x, t) = “()x, po = po(t), po = po(t), ao = 0oo(t),
(12)
we integrate the governing system of (1) and hence obtain
po(t) = poe(1 + (¢t toe)0e) ™7,
() = “0e(1 +(t  toe)0e) ' (13)
and
%+ (m+1)r . T 1c o
dt 1 6po T
(T 1)p0 Cpe(l 9Pe)
———=— (0g O+ ———"" =0,
W@ Gpo) 0 ) pe
doo | (g0 0e)
dt T
¢ pod_Bpo) ped Bpe) _ (14)
T Po Pe

where po. and ‘o, are the reference values of density and
velocity at t = tg.. Using the variables in the dimension-
less form

* X * t o* . * Po
= s = = tOe, pO = —
toe@oe toe Poe
* _ Do * _ 0o * _ 4o
0 — 2 0— 5> ap = —,
Poedp, age Aoe
* My — (1) *_ T
0 =poel, (a7) =toea”, T = —,
toe
p* _ Pe * De * _ Oe
e — e — 2 e — 3 »
Poe Poeqge age
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and then suppressing the asterisk sign, the transport (11)
reduces to

da r+1 (12 )
2 + + Q = 1
i 1 Opg (™) a 0, (15
where
1
Q=3+ 4 1"0p02 +_mr
1 6po (1 6po)ai 1 6po
L mao m‘FGpg 4 T 1
X (1 6po)’ad (1 6po)
Qo LT 1A 6po)c
a}(1  6po) 1T

The value of x appearing in the coefficient Q in (15)
is computed using the relation % = ug + ap from (6).

Integrating (15), we obtain the following solution

(0] 7t 1
aP(p) = agl) exp@ Qw)dwA
to
g zt r+1 2 1
1
1+a —_ w)dw , (16
1T 5a gpy MW o 19

to

withn(t) =exp 3 Rti Qw)dw .

Also, numerical integration of (15) using (13) and (14)
is performed for 1 6 t 6 oo and the results showing the
behavior of jump in the velocity gradient are analyzed by
plotting ") against 1/t. The analysis yields the following
conclusions:

(i) In the case of rarefaction wave, i.e a(()l) > 0,

16) signifies that n(t) ¥ 0 along with I(t) =
t F+1
to 2(1 0p0)

as t approaches infinity for all the possible range of

values of parameters involved in the flow such as
kp, B, G, ¢, and 7 and hence concluding that with
an increase in the time the wave flattens and even-
tually dies out. The behavior is shown graphically
in Figures 1-4 for variations with the parameters kj,
B, G, and 1. It is observed that an increase in any
of the parameters kp, 8, or G leads to an increase
in a/ agl). As from the expression for Q in (1), an
increase in the relaxation parameter c is equivalent
to a decrease in the parameter 7, we have not added
any figures showing variations with c. The presence
of dust particles in the system drives the velocity
gradient to increase thereby taking more time to con-
verge to zero. However, an opposite trend is noticed
with an increase in the parameter 1.

n(w)dw < oo resulting in a™(t) ¥ 0
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Figure 1: Variation of a® /a{ with 1/t influenced by the parameter
k, wherem =1, ¢ = 0.01, G = 1000, 8 = 0.5, T = 10.
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Figure 2: Variation of a® /a{ with 1/t influenced by the parameter 8

wherem =1, ¢ = 0.01, G = 1000, k, = 0.6, T = 10.
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Figure 3: Variation of a®/a{ with 1/t influenced by the parameter G
wherem =1,c = 0.01, k, = 0.6, 8 = 0.5, T = 10.

(i) For a compression wave (agl) < 0) the solution given

by (16) breaks down when 1 + agl)l (t) equals zero

at some time t = t., implying the existence of steep-

ened wave in a finite time only.
We study in detail the following cases arising

from (16):

1. The condition ‘jagl)j / a(cl) < 1’, where a(cl) =
1/Ifoog leads to a™ ¥ 0 pointing towards the
existence of flattened wave as time advances.

2. For ‘ja(()l)j/ aW > 1°, 9 a finite time ¢ such that
I(t) = 1/jal’j and jaVj ¥ oo as t ¥ t.. This

0.6 -

1),,(1
o /(.c(O )

04 r

02r

0 e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1/t

Figure 4: Variation of or(l)/orf)l) with 1/t influenced by the parameter t

wherem =1, G = 1000, 8 = 0.5, ¢ = 0.01, k, = 0.6.

yields the existence of a shock wave in a finite time
only at an instant ¢.

3. For ‘jagl)j / a(cl) = 1°, the wave behaves in the same
way as in (1).

These discussed outcomes for compression
waves are illustrated in Figures 5-12. It is again
observed that an increase in any of the parame-
ters kp, B or G leads an increase in a® / agl) for

the interval a(cl) 6 agl) < 0, and a decrease in

“““ k,=0.2
0.8 ——-k =04 T
—k,=06
- 06F i
%
T o4t 1
02 ,
0 ) ) ‘ -
1 15 2 25 3 35 4

Figure 5: Variation of a®/a® with t influenced by the parameter

kp in the case of ag) > 0 wherem = 1,7 =10, ¢ = 0.01, 8 = 0.5,
G = 1000.
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1.0001
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Figure 6: Variation of a® /a{ with t influenced by the parameter

kp in the case of 018) < Owherem =1,7=10,c = 0.01, 8 = 0.5,
G = 1000.
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Figure 7: Variation of a®/a with t influenced by the parameter 8,

in the case of orf)i) > 0wherem =1,c = 0.01, k, = 0.6, T = 10,
G = 1000.
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Figure 8: Variation of a“)/ag) with t influenced by the parameter 8

in the case of 0{8) < Owherem =1,c = 0.01, k, = 0.6, T = 10,
G = 1000.
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Figure 9: Variation of a®/a{’

in the case of orf;) > 0wherem =1,k, = 0.6,c = 0.01, 3 = 0.5,
T =10.

with t influenced by the parameter G

a®/all for the interval al! 6 al < 0; how-
ever, an increase in the variable 7 leads to an
opposite trend.
(iii) Also the behavior of a(l)/afjl) is observed to be
decreasing and approaching to zero as time increases
eventually to infinity.
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a(‘)/zz(o‘)

Figure 10: Variation of a® /al® with t influenced by the parameter G
in the case of ag) < Owherem =1,k, = 0.6,c = 0.01, 3 = 0.5,
T =10.
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Figure 11: Variation of a®/a{’ with t influenced by the parameter t,

in the case of ag) > O0whenm =1,c = 0.01, k, = 0.6, 8 = 0.5,
G = 1000.
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Figure 12: Variation of a®/a{®

1, in the case of af)l) <Owhenm =1,c=0.01,k, = 0.6, 3 = 0.5,
G =1000.

with t influenced by the parameter

4 Characteristic Shock

Characteristic shock arises when the characteristic sur-
face and the shock surface both occur simultaneously and
the shock surface velocity, both behind and ahead of the
shock, coincides with a latent root of the system [11, 41].
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Characteristic shock exists when the corresponding eigen-
value is linearly degenerate (also referred to as excep-
tional). Mathematically it states:

rA% R4 = o,

where r represents the gradient operator, RO the right
eigenvectors with respect to the eigenvalue A® having
multiplicity m; with j =1,..., m;. In particular, for the
conservative hyperbolic system of equations, a wave with
eigenvalue having multiplicity m > 1 is always excep-
tional (linearly degenerate) [9, 13]. The eigenvalues of the
matrix A in (4) are:

AY = +a), A% =u(adoubleroot) and

B =w a. 17)

As the multiplicity of A2 = yis 2, this implies the exis-
tence of characteristic shock with speed 9 = u. Further,
the eigenvectors of A are given by:

L® = (0, pa, 1,0), RY = (1/(2a2), 1/(2pa), 1/2, 0)"",
1@ — ( az’ 0,1,0), R2V — (a 2, 0,0, O)tr,

1?2 =(0,0,0, 1), R*?= (0,0, 0, 1),

L9 =(, pa,1,0),

R® = (1/@2a?), 1/(2pa),1/2,0)". (18)

Considering X as the value just behind the character-
istic shock and X ahead of the characteristic shock, let
[X]=X X is the jump in X along the characteristic
shock. Here, the Rankine-Hugoniot jump conditions are
[ul =0, [p] =0, [p] = {, and [0] = w where { and w are
unknown functions of t to be determined.

On forming the jump across the characteristic shock
in usual manner one obtains:

d[Uu]

av’
ar + [L]F = L[f] + [LIf+,

L (19)
where d/dt = 0/dt + uo/dx is the material derivative
operator.

Using (19), the transport equations for { and w are

obtained as follows

ac _ mu {@+69) {26 60 1)
dt xo 1 6 ) 1 e 9
T 1p
* P0G+ 6 00 cPel fpelpe o
+w( 6p) pw@d 6Hp)g,
da)_ 1 Cp(
@ T YT D 20)
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Using (12) in (20) and applying the following dimen-
sionless variables in the resulting equation:

{=¢lpo, P=plpo, @=wpolpo,
6 = gpo/po, P =p/po,
t=tlto, t=1/to, ‘="‘to,

00 = 0opo/Po, 0Oe = Oepo/Po,

and then suppressing the hat sign, we obtain the following
equations

¢ _ ¢
= T 00 9 1+6¢ 200+ m(1+60)
r 1p
T B0 O)(((oe cpe(l  Bpe)/pe ©
+w(l 6p) pw@ 6p)),
dw 1 cp§
@ D .

The simultaneous differential (21) are solved using (13)
and (14) together with the initial conditions at time t = 1to
study the evolutionary behavior of a characteristic shock.
The results are depicted in Figures 13-20 for cylindrical
(m = 1) flows. The profiles for other geometries, i.e. planar
(m = 0) and spherical (m = 2) flows are found to be sim-
ilar to the cylindrical case and hence are not plotted. The
calculations are performed by taking y = 1.4, 6y = 0.005,
¢o = 0.01, wo = 0.01. The value of { and w across the
characteristic shock line tends to zero as time proceeds.
As observed from Figures 13-16, with rise in the values of
kp, B, or T leads to arise in {, whereas a rise in G leads to a
fall in {. From the Figures 17-20, it is observed that a rise
in the values of kp, B, or G, gives a fall to the parameter w
and arise in T gives a rise to w.

0.01
oo ke = 0.2
0.008 k=04
—k,=06
0.006 -
o
0.004 -
0.002 -
0.26 0.27 0.28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1/t

Figure 13: Variation of J vs. 1/t influenced by the parameter k,
wherem = 1,¢ = 0.01, 8 = 0.5, 7 = 10, G = 1000.
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Figure 14: Variation of ¢ vs. 1/t influenced by the parameter 8 where
m =1,G = 1000, c = 0.01, k, = 0.6, T = 10.

0.01

0.008

0.006 -

0.004 -

0.002 -

‘0.71 0.715 0.72
I I I I I I

0.8 0.9 1

Figure 15: Variation of  with 1/t influenced by the parameter G

wherem = 1,8 = 0.5,¢c =

0.01

0.01, k, = 0.6, T = 10.
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Figure 16: Variation of ¢ with 1/t influenced by the parameter t
wherem =1, ¢ = 0.01, G = 1000, k, = 0.6, § = 0.5.
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Figure 18: Variation of w vs. 1/t influenced by the parameter

wherem =1, k, = 0.6, ¢ = 0.01, = 10, G = 1000.
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Figure 19: Variation of w vs. 1/t influenced by the parameter G

wheret =10, m = 1,¢ = 0.01, k, = 0.6, 8 = 0.5.
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Figure 20: Variation of w vs. 1/t influenced by the parameter t
where k, = 0.6, 8 = 0.5, G = 1000,c = 0.0, m = 1.

5 Interaction Between Singular
Surface and Characteristics

Shock

With disturbances prevailing in every system, it is very
obvious to study the impact of those disturbances or shock
on the waves traveling in different material media when
they interact with each other. In order to investigate the
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effect of the interaction between the singular surface trav-
eling along the fastest characteristic with the characteris-
tics shock, we adopted the method discussed in [16] for
the interaction between shock waves and weak discon-
tinuities. We consider the system of (1) in the following
generalized conservation form behind and ahead of the
shock:

Gt(X, t9 U) + FX(X, t’ U) = K(X9 ty U)’

G*l‘(Xa t, U*) + F*X(Xi t, U*) = K*(X, t, U*)5 (22)
where U and U represent the solution vectors behind
and ahead of the characteristic shock, respectively,
and G, F and K are given by the following column
vectors

tr

_ p(1  6p)  u’
G= p)pu’p p(r 1) + 2 ’pa ’
1 6p) u’ p v
F= opu, u2+,up(7+f+*,u0 >
puspu’ Fp.pu e Sk D p
2
K= _Mmpu _mpu
X X
mu p(l_6p) W p
pQ+x p(T 1)+2+p ’
muog
pQ -

Let us consider the two adjacent intervals I, and I«
in accordance with the initial line, i.e. the characteristic
shock:

I, =fxjdi < x < Xx1:t=1ty0;
Iy = fXjX1 <x<dpt= tog, (23)
where d; and d, are the constants chosen assuring the
propagation of the wave surface in the defined domain of
determinacy R. The solution vectors U and U are contin-
uous in the region behind and ahead of the characteris-
tic shock denoted by Ry and R,x, respectively, with the
initial conditions U(x, to) = ¢(x) and Ux(x, to) = ¢=(x),
but, on the other hand, discontinuous across the char-
acteristic shock or the initial line that divides R. Let
M(xm, tm) be the point where the fastest wave, i.e. the sin-
gular surface originating from (xo, to) and moving along
the characteristic % = AW denoted as ¢(x, t) = 0 inter-
acts with the characteristic shock propagating with speed
9 = u. After the interaction, the new wavefront from the
point M moves along the characteristic % =AW and
is represented as ¢+(x, t) = 0. The jumps in Uy across
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the incident, reflected and transmitted waves at M, are
given by:

b .
al(tm)REP,
k=1

X
o) ()RS, AP ) =
k=1

M) =

Ai(T) M) = ﬁg)(tm)Rs(l,k)’
k=1

(24)

with subscript s denoting the values calculated at the point
M. The evolutionary equations determining the jump in
the shock acceleration j[V]j and the amplitudes ag) and

gf) of reflected and transmitted waves are given by the
following system of algebraic equations [9]:

DL G )
ad(v  AG)*REY
i=p q+1 k=1

iVi(G  Go)s + (rG)s
1

' T
BV AD)RLGH
k=1

. >
(r G*)s
j=1

3C .
= (re)s oD  A@)*REY. (25)

k=1

Lax’s [42] evolutionary conditions formulated as

A <pt Ve <A<y <pV <. <@

Wqp Ve <A<yl Ve <2, (26)
are satisfied for the index I, where 1 6 1 6 p, i.e.

and A% <A® <AV <.
27)

/1(3) < /((2) <V< A(l)

This implies that when the incident wave (singular
surface) moving with velocity AW at time ¢ = ¢y, collides
with the characteristic shock, a reflected wave and a trans-
mitted wave are generated moving with velocity A® and
AW, respectively. The jump in the shock acceleration j[V]j
and the amplitudes of reflected and transmitted wave, i.e.
a® and BV at time ¢ = ty can be evaluated from the
following set of equations:

(G GasjlVlj+ (r6)sRO (v - A9)%a®
(r'GasRO(W  AL)y?2pm

= (r6)RPW A2, (28)
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Substituting the values from (17), (18) and (22), we
obtain the following system of algebraic equations

240 +a® pV= o,

i+ @a® @+a)p® = @w+aa®,

8 e Y Py
TPy e L0
L

2({ox + wp+ + {w)j[V]j + oa® a*ﬁ(l) = oa". (29)

It may be noted that the above system equations is
an over determined system, which occurs in the case of a
characteristic shock. Solving the system of (29), we obtain
the values to be:

B0 = 21 6p)a’ e
a-f(1 6pla+(1 6p+6)ag ’
vl = (1 6p)a2 1 6p+ 6()a3 (1)
(a-f(1 Op)a+ (1 6Op+ 6)ag ’
- @ 6p+6dax (1 6bpla
= A ep+e0m+a Opa (30)

As observed from (31), the amplitude of reflected wave
Y, amplitude of the transmitted wave a®), and jump in
the shock acceleration j[ V/]j are directly proportional to the
amplitude of the incident wave a'", thereby implying that
any increase or decrease in aD will lead to an increase or
decrease in BV, a®), and j[V]j. Also as expected, in the
absence of the incident wave, there is neither a jump in
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the shock acceleration nor do reflected and transmitted
waves exist. As it is evident from (31), the parameters ﬁ(l),
a®, and j[V]j also vary with the dust parameters sepa-
rately from aW_ The variations of the parameters with ky,
B, and G are shown in Table 1: (a), (b), and (c), respec-
tively. It is observed that depending on the incident wave
being expansive (compressive), the reflected and trans-
mitted waves are compressive (expansive), and the shock
decelerates (accelerates) after the impact. The parameters
BY, a®, and j[V']j increase with an increase in ky, and
in the case of agl) > 0 and decrease in the case of agl) <0;
however, an opposite trend is noticed in the case of an
increase in G.

6 Results and Conclusion

The interaction between a propagating c discontinuity
and an established shock across the discontinuity line give
rise to reflected and transmitted waves as well as produc-
ing the jump in shock wave acceleration. In this paper,
we considered the system of partial differential equations
classifying the one-dimensional, inviscid, unsteady flow
of a relaxing gas with dust particles and with varied wave-
front curvature. The main aim of this work was to study
the effects of dust and relaxation parameters on the inci-
dent discontinuity (i.e. the singular surface), characteristic
shock and their interaction in the medium.

We considered the evolution and propagation of the
singular surface in the medium and as expected, it is
observed that the the amplitude of the jump in the velocity
gradient satisfies the Bernoulli type transport equation. A
particular case was considered to solve the transport equa-
tion numerically and to study the effects of dust particles
and relaxation. The results are depicted and were found

Table 1: (a)—(c): Variations in amplitudes a® (transmitted waves), 8O (reflected waves) and j[V]j (shock acceleration) in the influence of

dust parameters k,, 8 and G in cylindrically symmetric flow.

a® B jwlj
a® >0 a® <o a® >0 a® <o a® >0 a® <o

@
kp 0.2 0.00209196 0.00099233 0.773758 0.367039 0.563106 0.267114
0.4 0.00232379 0.00108927 0.793081 0.371757 0.577673 0.270784
0.6 0.00248798 0.00118179 0.793908 0.376489 0.577791 0.274451

(b)
B 0.1 0.00242578 0.00113514 0.772793 0.361627 0.563347 0.263617
0.5 0.00248798 0.00118179 0.793908 0.376489 0.577791 0.274451
1.0 0.00255018 0.0011849 0.812423 0.377479 0.592236 0.275173

©
G 100 0.00248798 0.00118179 0.793908 0.376489 0.577791 0.274451
1000 0.00205617 0.00097668 0.793856 0.377082 0.57748 0.274303
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to be consistent with the anticipation. As t approaches
infinity for all the possible range of values of parame-
ters involved in the flow such as kp, B, G, c, and 7, the
wave flattens and dies out eventually. It is observed that
an increase in any of the parameters kp, , or G leads
an increase in V). However, opposite behavior is noticed
with an increase in the parameter 7. It is also observed that
an increase in any of the parameters ky, f, or G leads to an
increase in a¥/a{ for the interval alY 6 a{’ < 0, and
a decrease in a'/ agl) for the interval agl) 6 o <o;
however, an increase in the variable 7 leads to an opposite
trend.

The characteristic shock propagating in the medium
is considered and it is observed that the values of jump
in density and vibrational energy across the characteris-
tic shock approach to zero as time tends to infinity. It is
observed that with rise in the values of ky, 8, or 7 leads to
a rise in {, whereas a rise in G leads to a fall in jump in
density. Also, a rise in the values of kp,  or, G, gives a fall
to the parameter w and a rise in T gives a rise to jump in
vibrational energy.

The interaction between the singular surface and the
characteristic shock is considered and it is observed that
the amplitudes of the reflected wave, the transmitted
wave and jump in the shock acceleration are directly pro-
portional to the amplitude of the incident wave, i.e. a
jump in the velocity gradient ab, thereby implying any
increase or decrease in the incident wave will lead to an
increase or decrease in the amplitudes of the reflected
wave, the transmitted wave and jump in the shock accel-
eration. In the absence of the incident wave, there shall
be neither a jump in the shock acceleration nor any
reflected and transmitted waves. It is also observed that
the amplitudes of the reflected wave, the transmitted
wave and jump in the shock acceleration vary with the
dust parameters separately from the incident wave. It
is observed that depending on the incident wave being
expansive (compressive), the reflected and transmitted
waves are compressive (expansive), and the shock decel-
erates (accelerates) after the impact. The amplitudes of
the reflected wave, the transmitted wave and jump in the
shock acceleration increase with an increase in ky or 8 in
the case of a(()l) > 0 and decrease in the case of agl) <0;
however, an opposite trend is noticed in the case of an
increase in G.
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