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Abstract: A system of hyperbolic differential equations
outlining one-dimensional planar, cylindrical symmetric
and spherical symmetric flow of a relaxing gas with dust
particles is considered. Singular surface theory used to
study different aspects of wave propagation and its culmi-
nation to the steepened form. The evolutionary behavior
of the characteristic shock is studied. A particular solution
of the governing system of equations is used to discuss the
steepened wave form, characteristic shock and their inter-
action. The results of the interaction between the steep-
ened wave front and the characteristic shock using the
general theory of wave interaction are discussed. Also, the
influence of relaxation and dust parameters on the steep-
ened wave front, the formation of a characteristic shock,
reflected and transmitted waves after interaction and a
jump in shock acceleration are investigated.

Keywords: Characteristic Shock; Relaxing Dusty Gas; Sin-
gular Surface Theory.

1 Introduction
Waves are a natural outcome of technical progression, so
are the discontinuities. As the environment is inundated
with waves, the study of the interaction of a wave with
discontinuities is likely to have a positive impact on the
propagation of waves. The topic carries a high empirical
utility that makes it an interesting area to explore further.
A wave can be viewed as a surface which moves in accor-
dance with some flow variables describing the material
medium. Some interrelateddiscontinuities are also carried
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along by the surface, which arise out of the flow variables
or their derivatives.

Singular surface theory of the first order uses the
approach that the functions itself are continuous and
undergo jump discontinuity in at least one of its first order
derivatives. In a recent paper, this theory was used to
study wave propagation and its termination into discon-
tinuities in three different contexts of flow of a non-ideal
dusty gas, and further among other results, the effects
of the ratio of species densities and the ratio of specific
heat on shock formation were shown [1]. The nonlinear
theory of wave propagation was discussed by Varley and
Cumberbatch [2] and the propagation of weak discontinu-
ities in different materials using singular surface theory
has been studied by many authors from an applicative
point of view [3–5]. The studies of concern from the pre-
computer era to date, have been the interaction of these
weak discontinuities with shock wave using the general
theory of wave interaction. The work done by Jeffrey [6, 7]
on the problem of interaction has been further extended
by many authors. Radha et al. [8] studied the general
theory for problems of wave interactions leading to the
results obtainedbyBoillat andRuggeri [9]. Boillat andRug-
geri [10] studied the characteristic shock and constructed
examples to analyze the same for completely and strictly
exceptional systems. For a clear understanding one may
refer the fundamental works carried out in [9–13]. Men-
trelli et al. [14], taking into consideration a perfect gas,
studied the interaction between a shock and an accelera-
tion wave with varying shock strength. Many more results
have been concluded using the theory in differentmaterial
media [15–22]. In dusty gases, self similar solutions and
converging shocks followedbywave propagationwere dis-
cussed in [23–26]. Recently, Shah and Singh studied the
collision between a blast wave and a steepened wave in
dusty real reacting gases [27], and the interaction of a sin-
gular surface with a strong shock in reacting polytropic
gases [28].

The relaxation mechanism in gas is basically the
rate of process of attaining equilibrium through non-
equilibriumwhich occurs due to some external forces and
the time taken to get the equilibrium state back is known
as the relaxation time [29–31]. In general, the energy in
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a gas molecule is distributed among translational modes,
vibrational modes, and rotational modes. The time taken
by a particular mode to attain equilibrium is called the
relaxation time of that mode. The relaxation times for
translational and rotationalmodes are very short,whereas
the same for vibrationalmodes ismuch longer [32]. Hence,
the propagation of waves in a vibrationally relaxing gas
depends on the relaxation time.

In this paper, we discuss the interaction of a singu-
lar surface with a characteristic shock in a relaxing gas
with dust particles. It is imperative to highlight some of
the assumptions beingmade to formulate the systemof the
fluid flow [33–36]. It is considered that the solid particles
are spherical in nature with uniform size and the specific
heat of the gas and the dust particles are constant.Wehave
further assumed that the volume occupied by the solid
particles in the mixture is negligible. Using the singular
surface approach, the transport equation for the jump in
first order derivative of the velocity,which is of a Bernoulli-
type equation is obtained. The solution of the transport
equation is discussed considering a particular case. The
evolution of a characteristic shock in the medium is dis-
cussed considering the same particular case as in the case
of the singular surface. Next, the interaction between the
singular surface with the characteristic shock resulting in
reflected and transmittedwaves and the jump in the shock
wave acceleration is studied. The results obtained are ana-
lyzed for various dust parameters along with the relax-
ation effects involved in the flow by performing numerical
calculations and depicting the same.

2 Basic Equations
The system of partial differential equations representing
the one-dimensional, unsteady flow of a dusty relaxing
gas with planar (m = 0) and non-planar, i.e. cylindrical
symmetry (m = 1) or spherical symmetry (m = 2) with the
assumptionsmade for dust particles in [36, 37] is given by:

ρt + uρx + ρux +
mρu
x = 0,

ut + uux +
1
ρ px = 0,

pt + upx + ρa2
(︁
ux +

mu
x

)︁
= − (Γ − 1)

(1 − θρ)ρQ,

σt + uσx = Q, (1)

along with the equation of the state

p =
(1 − kp)ρRT

1 − Z , (2)

where t is the time, u is the flow velocity along thex-
axis, ρ and p are the density and pressure of the
gas–particle mixture, σ is the vibrational energy, Q =
1
τ

{︁
σe + c

(︁
p(1−Z)

ρ − pe(1−Ze)
ρe

)︁
− σ

}︁
, Γ = γ(1+δβ)

1+δβγ , a =(︁
Γp

ρ(1−Z)

)︁1/2
, R the specific gas constant, T the temper-

ature, and Z = Vsp/V is the volume fraction. If otherwise
not stated a variable as a subscript indicates a partial
derivative with respect to that variable. However, the vari-
able with ‘e’ as a subscript denotes the initial value of the
variable in the equilibrium state.

Here, Vsp and V are the volumetric extension of the
solid particles and total volume of the mixture, respec-
tively; the parameters c and τ specifies the ratio of vibra-
tional specific heat to the specific gas constant and the
relaxation time, kp = φsp/φ is the mass fraction of the
solid particles in the gas mixture, δ = kp/(1 − kp), β =
csp/cp, γ = cp/cv, θ = kp/ρsp where Z in terms of kp can
be written as Z = θρ, entailing φsp and φ as the total
mass of the solid particles and the mixture, respectively,
csp as the specific heat of solid particles, cp the specific
heat of the gas at constant pressure, and cv the specific
heat of the gas at constant volume. Also, we make use
of an added variable G = ρsp/ρg, the ratio of the density
of the solid particles to the species density of the gas, to
compare the behavior of the flow variables as the time
proceeds.

It may be noted that the equations of states for the
gas and solid particles are given by pg = ρgRT and ρsp =
constant, respectively, where pg is the pressure of the gas.
As the presence of dust particles have negligible contri-
butions to the pressure of the mixture due to the larger
particle size, it is assumed that pg = p [34]. The densities
of the gas, solid particles and the mixture are related to
each other as per the following:

ρ =
(1 − Z)ρg
1 − kp

, ρ =
Z
kp

ρsp .

If the flow is vibrationless or translationally active,
i.e. either in equilibrium (σ = σ) presupposing σ = σe +
c
(︁
p(1−Z)

ρ − pe(1−Ze)
ρe

)︁
as the equilibrium value of σ, or

frozen (σ = const) as τ → ∞, no relaxation is involved
thereby implying Q = 0.

The system of (1) can also be written in the matrix
form as:

Ut + AUx = f , (3)

where U = (ρ, u, p, σ)tr, f =
(︁

−mρu
x , 0,−

(︁
(Γ−1)
(1−θρ)ρQ +

mρa2u
x

)︁
, Q

)︁tr
and



S. Mittal and J. Jena: Interaction of a Singular Surface with a Characteristic Shock | 121

A =

⎛⎜⎜⎜⎝
u ρ 0 0
0 u 1/ρ 0
0 ρa2 u 0
0 0 0 u

⎞⎟⎟⎟⎠, (4)

in which tr represents transposition.

3 Transport Equation for the Jump
Discontinuity

Let us consider flow variables ρ, u, p, and σ to be neces-
sarily continuous while allowing discontinuities in their
derivatives across the surface associated with a prop-
agating wave and denoted by x = ε(t) the equation of
the wave front Φ. For Φ to be a characteristic surface,
the moving discontinuities of the first and second order
must satisfy the geometrical and kinematical compatibil-
ity conditions. The compatibility conditions were derived
by Hadamad [38] using the Lagrangian parameters rather
than the space coordinates as Eulerian variables. He also
considered an extension of the relations using Lagrangian
parameters giving the discontinuities in the second and
higher derivatives of quantities under the assumption that
only the quantities themselves are continuous over Φ. The
conditions were later presented by Thomas using Eulerian
variables [39, 40], which are as follows:

|[Hx]| = B, |[Ht]| = −VB, |[Hxx]| = B,
|[Hxt]| = V(Bx − B), (5)

where H takes the value of any of the flow variables, B
is a function defined on the surface Φ, provided B ̸= 0
implying the existence of discontinuity and V = dε

dt is the
speed with which Φ propagates. IfW is any variable then
|[W]| = W − W0 means the jump in W across the wave
front Φ and W0 and W represents the values of W just
ahead and just behind Φ.

As for an advancing wave V is positive, the evaluating
system (1) on the inner boundary of Φ gives

V = a0+u0 , α(1) =
1

ρ0a0
ξ =

a0
ρ0

ρ and η = 0, (6)

on using the following jump values

|[ρx]| = ρ, |[ux]| = α(1), |[px]| = ξ , |[σx]| = η,

|[ρt]| = −Vρ, |[ut]| = −Vα(1), |[pt]| = −Vξ ,
|[σt]| = −Vη. (7)

Also,

|[ρxx]| = ρ, |[uxx]| = α(1), |[pxx]| = ξ , |[σxx]| = η,

|[ρxt]| = V(ρx − ρ), |[uxt]| = V(α(1)x − α(1)),
|[pxt]| = V(ξx − ξ ), |[σxt]| = V(ηx − η). (8)

Differentiating system (1) with respect to x and evalu-
ating behind the wave front Φ, we get:

|[ρxt]| + 2|[uxρx]| + u0|[ρxx]| + ρ0|[uxx]|

+
mu0
x |[ρx]| +

mρ0
x |[ux]| = 0,

|[uxt]| + u0|[uxx]| + |[uxux]|

+
1
ρ0

|[pxx]| − 1
ρ20

|[pxρx]| = 0,

|[pxt]| +
(︂
1 +

ρa20
p0

)︂
|[uxpx]| + u0|[pxx]|

+ ρ0a20
(︁

|[uxx]| +
m
x |[ux]|

)︁
+

θρ0a20
1 − θρ0

|[uxρx]|

+
mu0
x

(︂
ρ0a20
p0

|[px]| +
θρ0a20
1 − θρ0

|[ρx]|
)︂

= − (Γ − 1)
(1 − θρ0)

{Q0|[ρx]| + ρ0((Qρ)0|[ρx]|

+(Qp)0|[px]| + (Qσ)0|[σx]|) +
ρ0θQ0|[ρx]|
(1 − θρ0)

}︂
,

|[σxt]| + |[uxσx]| + u0|[σxx]|

= ((Qρ)0|[ρx]| + (Qp)0|[px]| + (Qσ)0|[σx]|). (9)

Use of (8) in (9) yields

V(ρx − ρ) + 2((ρ + ρ0x)α(1) + ρu0x)

+ u0ρ + ρ0α(1) +
m
x (u0ρ + ρ0α(1)) = 0,

V(α(1)x − α(1)) + u0α(1) + (α(1))2

+
1
ρ0

ξ − 1
ρ20

(ρ(ξ + p0x) + ρ0xξ ) + 2α(1)u0x = 0,

V(ξx − ξ ) +
(︂
1 +

ρ0a20
p0

)︂
(α(1)(ξ + p0x) + u0xξ )

+ u0ξ + ρ0a20

(︃
α(1) +

mα(1)

x

)︃

+
Γθp0

(1 − θρ0)2
((α(1) + u0x +

mu0
x )ρ + ρ0xα(1))

+
mu0ρ0a20ξ

xp0
= − (Γ − 1)

(1 − θρ0)(︂
ρQ0 +

c
τ

(︂
−p0ρ
ρ0

+ (1 − θρ0)ξ
)︂

+
ρ0θQ0ρ
(1 − θρ0)

)︂
,

α(1)σ0x − a0η =
c
τ

(︂
−p0ρ
ρ0

+ (1 − θρ0)ξ
)︂
. (10)
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Further, eliminating ρ, α(1) and ξ from (10) we obtain
the following Bernoulli type of transport equation [6]
for α(1)

2dα
(1)

dt +
(︂

Γ + 1
1 − θρ0

)︂
(α(1))2 + Θα(1) = 0, (11)

where

Θ = u0x

(︃
3 +

Γ
1 − θρ0

+
Γθp0

(1 − θρ0)2a20

)︃

+
m
x

(︃
u0Γ

1 − θρ0
+ a0 +

u0Γθp0
a20(1 − θρ0)2

)︃

+ ρ0x

(︃
Γθp0

ρ0a0(1 − θρ0)2
− a0

ρ0

)︃
+

Γp0x
(1 − θρ0)ρ0a0

+
(Γ − 1)
(1 − θρ0)

(︂
Q0

a20(1 − θρ0)
+

(Γ − 1)(1 − θρ0)c
τΓ

)︂
.

3.1 A Particular Case

Using the following formof flowvariables just ahead of the
wave front Φ

u0(x, t) = ℓ(t)x, ρ0 = ρ0(t), p0 = p0(t), σ0 = σ0(t),
(12)

we integrate the governing system of (1) and hence obtain

ρ0(t) = ρ0e(1 + (t − t0e)ℓ0e)−(m+1),

ℓ(t) = ℓ0e(1 + (t − t0e)ℓ0e)−1, (13)

and

dp0
dt +

(︂
(m + 1)Γℓ

1 − θρ0
+

(Γ − 1)c
τ

)︂
p0

− (Γ − 1)ρ0
τ(1 − θρ0)

(︂
(σ0 − σe) +

cpe(1 − θρe)
ρe

)︂
= 0,

dσ0
dt +

(σ0 − σe)
τ

− c
τ

(︂
p0(1 − θρ0)

ρ0
− pe(1 − θρe)

ρe

)︂
= 0, (14)

where ρ0e and ℓ0e are the reference values of density and
velocity at t = t0e. Using the variables in the dimension-
less form

x* =
x

t0ea0e
, t* =

t
t0e

, ℓ* = ℓt0e , ρ*0 =
ρ0
ρ0e

,

p*0 =
p0

ρ0ea20e
, σ*0 =

σ0
a20e

, a*0 =
a0
a0e

,

θ* = ρ0eθ, (α(1))* = t0eα(1), τ* =
τ
t0e

,

ρ*e =
ρe
ρ0e

, p*e =
pe

ρ0ea20e
, σ*e =

σe
a20e

,

and then suppressing the asterisk sign, the transport (11)
reduces to

2dα
(1)

dt +
(︂

Γ + 1
1 − θρ0

)︂
(α(1))2 + Ωα(1) = 0, (15)

where

Ω = ℓ

(︃
3 +

Γ
1 − θρ0

+
Γθp0

(1 − θρ0)2a20
+

mΓ
1 − θρ0

)︃

+
ma0
x +

mℓΓθp0
(1 − θρ0)2a20

+
(Γ − 1)
(1 − θρ0)(︂

Q0
a20(1 − θρ0)

+
(Γ − 1)(1 − θρ0)c

τΓ

)︂
.

The value of x appearing in the coefficient Ω in (15)
is computed using the relation dx

dt = u0 + a0 from (6).
Integrating (15), we obtain the following solution

α(1)(t) = α(1)0 exp

⎛⎝−1
2

t∫︁
t0

Ω(w)dw

⎞⎠
⎧⎨⎩1 + α(1)0

t∫︁
t0

(︂
Γ + 1

2(1 − θρ0)

)︂
η(w)dw

⎫⎬⎭
−1

, (16)

with η(t) = exp
(︁

−1
2

∫︀ t
t0 Ω(w)dw

)︁
.

Also, numerical integration of (15) using (13) and (14)
is performed for 1 6 t 6 ∞ and the results showing the
behavior of jump in the velocity gradient are analyzed by
plotting α(1) against 1/t. The analysis yields the following
conclusions:
(i) In the case of rarefaction wave, i.e α(1)0 > 0,

(16) signifies that η(t) → 0 along with I(t) =∫︀ t
t0

(︁
Γ+1

2(1−θρ0)

)︁
η(w)dw < ∞ resulting in α(1)(t) → 0

as t approaches infinity for all the possible range of
values of parameters involved in the flow such as
kp, β, G, c, and τ and hence concluding that with
an increase in the time the wave flattens and even-
tually dies out. The behavior is shown graphically
in Figures 1–4 for variations with the parameters kp,
β, G, and τ. It is observed that an increase in any
of the parameters kp, β, or G leads to an increase
in α(1)/α(1)0 . As from the expression for Q in (1), an
increase in the relaxation parameter c is equivalent
to a decrease in the parameter τ, we have not added
any figures showing variations with c. The presence
of dust particles in the system drives the velocity
gradient to increase thereby takingmore time to con-
verge to zero. However, an opposite trend is noticed
with an increase in the parameter τ.
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Figure 1: Variation of α(1)/α(1)0 with 1/t influenced by the parameter
kp wherem = 1, c = 0.01, G = 1000, β = 0.5, τ = 10.
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Figure 2: Variation of α(1)/α(1)0 with 1/t influenced by the parameter β
wherem = 1, c = 0.01, G = 1000, kp = 0.6, τ = 10.
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Figure 3: Variation of α(1)/α(1)0 with 1/t influenced by the parameter G
wherem = 1, c = 0.01, kp = 0.6, β = 0.5, τ = 10.

(ii) For a compression wave (α(1)0 < 0) the solution given
by (16) breaks down when 1 + α(1)0 I(t) equals zero
at some time t = tc, implying the existence of steep-
ened wave in a finite time only.

We study in detail the following cases arising
from (16):
1. The condition ‘|α(1)0 |/α(1)c < 1’, where α(1)c =

1/I{∞} leads to α(1) → 0 pointing towards the
existence of flattened wave as time advances.

2. For ‘|α(1)0 |/α(1)c > 1’, ∃ a finite time tc such that
I(tc) = 1/|α(1)0 | and |α(1)| → ∞ as t → tc. This

1/t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.6

0.8

1

τ = 10
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α
(1

) /α
(1

)
0

Figure 4: Variation of α(1)/α(1)0 with 1/t influenced by the parameter τ
wherem = 1, G = 1000, β = 0.5, c = 0.01, kp = 0.6.

yields the existence of a shockwave in a finite time
only at an instant tc.

3. For ‘|α(1)0 |/α(1)c = 1’, the wave behaves in the same
way as in (1).

These discussed outcomes for compression
waves are illustrated in Figures 5–12. It is again
observed that an increase in any of the parame-
ters kp, β or G leads an increase in α(1)/α(1)0 for
the interval −α(1)c 6 α(1)0 < 0, and a decrease in

t
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Figure 5: Variation of α(1)/α(1)0 with t influenced by the parameter
kp in the case of α(1)0 > 0 wherem = 1, τ = 10, c = 0.01, β = 0.5,
G = 1000.
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Figure 6: Variation of α(1)/α(1)0 with t influenced by the parameter
kp in the case of α(1)0 < 0 wherem = 1, τ = 10, c = 0.01, β = 0.5,
G = 1000.
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Figure 7: Variation of α(1)/α(1)0 with t influenced by the parameter β,
in the case of α(1)0 > 0 wherem = 1, c = 0.01, kp = 0.6, τ = 10,
G = 1000.
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Figure 8: Variation of α(1)/α(1)0 with t influenced by the parameter β
in the case of α(1)0 < 0 wherem = 1, c = 0.01, kp = 0.6, τ = 10,
G = 1000.
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Figure 9: Variation of α(1)/α(1)0 with t influenced by the parameter G
in the case of α(1)0 > 0 wherem = 1, kp = 0.6, c = 0.01, β = 0.5,
τ = 10.

α(1)/α(1)0 for the interval α(1)0 6 −α(1)c < 0; how-
ever, an increase in the variable τ leads to an
opposite trend.

(iii) Also the behavior of α(1)/α(1)0 is observed to be
decreasing and approaching to zero as time increases
eventually to infinity.
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Figure 10: Variation of α(1)/α(1)0 with t influenced by the parameter G
in the case of α(1)0 < 0 wherem = 1, kp = 0.6, c = 0.01, β = 0.5,
τ = 10.

t

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

τ = 10

τ = ∞

α
(1

) /α
(1

)
0

Figure 11: Variation of α(1)/α(1)0 with t influenced by the parameter τ,
in the case of α(1)0 > 0 whenm = 1, c = 0.01, kp = 0.6, β = 0.5,
G = 1000.
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Figure 12: Variation of α(1)/α(1)0 with t influenced by the parameter
τ, in the case of α(1)0 < 0 whenm = 1, c = 0.01, kp = 0.6, β = 0.5,
G = 1000.

4 Characteristic Shock
Characteristic shock arises when the characteristic sur-
face and the shock surface both occur simultaneously and
the shock surface velocity, both behind and ahead of the
shock, coincides with a latent root of the system [11, 41].
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Characteristic shock exists when the corresponding eigen-
value is linearly degenerate (also referred to as excep-
tional). Mathematically it states:

∇λ(i).R(i,j) = 0,

where ∇ represents the gradient operator, R(i,j) the right
eigenvectors with respect to the eigenvalue λ(i) having
multiplicity mi with j = 1, . . . ,mi. In particular, for the
conservative hyperbolic system of equations, a wave with
eigenvalue having multiplicity m > 1 is always excep-
tional (linearly degenerate) [9, 13]. The eigenvalues of the
matrix A in (4) are:

λ(1) = (u + a), λ(2) = u (adoubleroot) and

λ(3) = (u − a). (17)

As themultiplicity of λ(2) = u is 2, this implies the exis-
tence of characteristic shock with speed ϑ = u. Further,
the eigenvectors of A are given by:

L(1) = (0, ρa, 1, 0), R(1) = (1/(2a2), 1/(2ρa), 1/2, 0)tr ,

L(2,1) = (−a2, 0, 1, 0), R(2,1) = (−a−2, 0, 0, 0)tr ,

L(2,2) = (0, 0, 0, 1), R(2,2)= (0, 0, 0, 1)tr ,

L(3) = (0,−ρa, 1, 0),

R(3) = (1/(2a2),−1/(2ρa), 1/2, 0)tr . (18)

Considering X as the value just behind the character-
istic shock and X* ahead of the characteristic shock, let
[X] = X − X* is the jump in X along the characteristic
shock. Here, the Rankine-Hugoniot jump conditions are
[u] = 0, [p] = 0, [ρ] = ζ , and [σ] = ω where ζ and ω are
unknown functions of t to be determined.

On forming the jump across the characteristic shock
in usual manner one obtains:

Ld[U]dt + [L]dU
*

dt = L[f ] + [L]f*, (19)

where d/dt = ∂/∂t + u∂/∂x is the material derivative
operator.

Using (19), the transport equations for ζ and ω are
obtained as follows

dζ
dt = −mu

x0

(︂
ζ (1 + θζ )

1 − θ(ρ − ζ )

)︂
+ ux

(︂
ζ (2θρ − θζ − 1)
1 − θ(ρ − ζ )

)︂
+

(Γ − 1)ρ
τΓp(1 − θρ + θζ ){ζ (σe − cpe(1 − θρe)/ρe − σ

+ ω(1 − θρ)) − ρω(1 − θρ)},

dω
dt = −1

τ

{︂
ω +

cpζ
ρ(ρ − ζ )

}︂
. (20)

Using (12) in (20) and applying the following dimen-
sionless variables in the resulting equation:

ζ̂ = ζ /ρ0, p̂ = p/p0, ω̂ = ωρ0/p0,

σ̂ = σρ0/p0, ρ̂ = ρ/ρ0,

t̂ = t/t0, τ̂ = τ/t0, ℓ̂ = ℓt0,

σ̂0 = σ0ρ0/p0, σ̂e = σeρ0/p0,

and then suppressing the hat sign,we obtain the following
equations

dζ
dt = −

(︂
ζ ℓ

1 − θ(ρ − ζ )

)︂
(1 + θζ − 2ρθ + m(1 + θζ ))

+
(Γ − 1)ρ

τΓp(1 − θ(ρ − ζ )) (ζ (σe − cpe(1 − θρe)/ρe − σ

+ ω(1 − θρ)) − ρω(1 − θρ)),

dω
dt = −1

τ

{︂
ω +

cpζ
ρ(ρ − ζ )

}︂
. (21)

The simultaneousdifferential (21) are solvedusing (13)
and (14) togetherwith the initial conditions at time t = 1 to
study the evolutionary behavior of a characteristic shock.
The results are depicted in Figures 13–20 for cylindrical
(m = 1) flows. The profiles for other geometries, i.e. planar
(m = 0) and spherical (m = 2) flows are found to be sim-
ilar to the cylindrical case and hence are not plotted. The
calculations are performed by taking γ = 1.4, σ0 = 0.005,
ζ0 = 0.01, ω0 = 0.01. The value of ζ and ω across the
characteristic shock line tends to zero as time proceeds.
As observed from Figures 13–16, with rise in the values of
kp, β, or τ leads to a rise in ζ , whereas a rise in G leads to a
fall in ζ . From the Figures 17–20, it is observed that a rise
in the values of kp, β, or G, gives a fall to the parameter ω
and a rise in τ gives a rise to ω.
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Figure 13: Variation of ζ vs. 1/t influenced by the parameter kp
wherem = 1, c = 0.01, β = 0.5, τ = 10, G = 1000.
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Figure 14: Variation of ζ vs. 1/t influenced by the parameter β where
m = 1, G = 1000, c = 0.01, kp = 0.6, τ = 10.
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Figure 15: Variation of ζ with 1/t influenced by the parameter G
wherem = 1, β = 0.5, c = 0.01, kp = 0.6, τ = 10.
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Figure 16: Variation of ζ with 1/t influenced by the parameter τ
wherem = 1, c = 0.01, G = 1000, kp = 0.6, β = 0.5.
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Figure 17: Variation of ω vs. 1/t influenced by the parameter kp
wherem = 1, G = 1000, c = 0.01, β = 0.5, τ = 10.
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Figure 18: Variation of ω vs. 1/t influenced by the parameter β
wherem = 1, kp = 0.6, c = 0.01, τ = 10, G = 1000.
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Figure 19: Variation of ω vs. 1/t influenced by the parameter G
where τ = 10,m = 1, c = 0.01, kp = 0.6, β = 0.5.
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Figure 20: Variation of ω vs. 1/t influenced by the parameter τ
where kp = 0.6, β = 0.5, G = 1000, c = 0.01,m = 1.

5 Interaction Between Singular
Surface and Characteristics
Shock

With disturbances prevailing in every system, it is very
obvious to study the impact of those disturbances or shock
on the waves traveling in different material media when
they interact with each other. In order to investigate the
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effect of the interaction between the singular surface trav-
eling along the fastest characteristic with the characteris-
tics shock, we adopted the method discussed in [16] for
the interaction between shock waves and weak discon-
tinuities. We consider the system of (1) in the following
generalized conservation form behind and ahead of the
shock:

Gt(x, t, U) + Fx(x, t, U) = K(x, t, U),

G*t(x, t, U*) + F*x(x, t, U*) = K*(x, t, U*), (22)

where U and U* represent the solution vectors behind
and ahead of the characteristic shock, respectively,
and G, F and K are given by the following column
vectors

G =
(︂
ρ, ρu, ρ

(︂
p(1 − θρ)
ρ(Γ − 1) +

u2

2

)︂
, ρσ

)︂tr

,

F =
(︂
ρu, ρu2 + p, ρu

(︂
p(1 − θρ)
ρ(Γ − 1) +

u2

2 +
p
ρ

)︂
, ρuσ

)︂tr

,

K =
(︂

−mρu
x , −mρu2

x ,

− ρ
(︂
Q +

mu
x

(︂
p(1 − θρ)
ρ(Γ − 1) +

u2

2 +
p
ρ

)︂)︂
,

ρ
(︁
Q − muσ

x

)︁)︁tr
.

Let us consider the two adjacent intervals Iu and Iu*
in accordance with the initial line, i.e. the characteristic
shock:

Iu = {x|d1 < x < x1 : t = t0};
Iu* = {x|x1 < x < d2; t = t0}, (23)

where d1 and d2 are the constants chosen assuring the
propagation of the wave surface in the defined domain of
determinacy R. The solution vectors U and U* are contin-
uous in the region behind and ahead of the characteris-
tic shock denoted by Ru and Ru*, respectively, with the
initial conditions U(x, t0) = ϕ(x) and U*(x, t0) = ϕ*(x),
but, on the other hand, discontinuous across the char-
acteristic shock or the initial line that divides R. Let
M(xm , tm) be the point where the fastest wave, i.e. the sin-
gular surface originating from (x0, t0) and moving along
the characteristic dx

dt = λ(1) denoted as ϕ(x, t) = 0 inter-
acts with the characteristic shock propagating with speed
ϑ = u. After the interaction, the new wavefront from the
point M moves along the characteristic dx

dt = λ(1)* and
is represented as ϕ*(x, t) = 0. The jumps in Ux across

the incident, reflected and transmitted waves at M, are
given by:

∧1(M) =
n1∑︁
k=1

α(1)k (tm)R(1,k)s , ∧(R)
i (M) =

ni∑︁
k=1

α(i)k (tm)R
(i,k)
s ,

∧*(T)
i (M) =

n*i∑︁
k=1

β(i)k (tm)R
*(i,k)
s , (24)

with subscript sdenoting the values calculated at thepoint
M. The evolutionary equations determining the jump in
the shock acceleration |[V̇]| and the amplitudes α(i)k and
β(i)k of reflected and transmitted waves are given by the
following system of algebraic equations [9]:

|[V̇]|(G − G*)s + (∇G)s
p∑︁

i=p−q+1

(︃ mi∑︁
k=1

α(i)k (V − λ(i))2R(i,k)s

)︃

− (∇*G*)s
q∑︁

j=1

(︃ mj∑︁
k=1

β(j)k (V − λ(j)* )
2R*(j,k)s

)︃

= −(∇G)s
mi∑︁
k=1

α(i)k (V − λ(i))2R(i,k)s . (25)

Lax’s [42] evolutionary conditions formulated as

λ(p) < λ(p−1) < ... < λ(l+1) < V < λ(l) < ... < λ(1),

λ(p)* < λ(p−1)
* < ... < λ(l)* < V < λ(l−1)

* < ... < λ(1)* , (26)

are satisfied for the index l, where 1 6 l 6 p, i.e.

λ(3) < λ(2) < V < λ(1), and λ(3)* < λ(2)* < λ(1)* < V .
(27)

This implies that when the incident wave (singular
surface) moving with velocity λ(1) at time t = tm collides
with the characteristic shock, a reflectedwave and a trans-
mitted wave are generated moving with velocity λ(3) and
λ(1)* , respectively. The jump in the shock acceleration |[V̇]|
and the amplitudes of reflected and transmitted wave, i.e.
α(3) and β(1) at time t = tm can be evaluated from the
following set of equations:

(G − G*)s|[V̇]| + (∇G)sR(3)s (V − λ(3)s )2α(3)

− (∇*G*)sR*(1)s (V − λ(1)*s )
2β(1)

= −(∇G)sR(1)s (V − λ(1)s )2α(1). (28)
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Substituting the values from (17), (18) and (22), we
obtain the following system of algebraic equations

2ζ |[V̇]| + α(3) − β(1) = −α(1),

2uζ |[V̇]| + (u − a)α(3) − (u + a*)β(1) = −(u + a)α(1),

2
(︂
ζ u2

2 − pθζ
(Γ − 1)

)︂
|[V̇]| +

(︂(︂
u2

2 − pθ
(Γ − 1)

)︂
− ua

+
(︂
(1 − θρ)
(Γ − 1)

)︂
a2

)︂
α(3)

−
(︂(︂

u2

2 − pθ
(Γ − 1)

)︂
+ ua* +

(︂
1 − θ(ρ − ζ )

(Γ − 1)

)︂
a2*

)︂
β(1)

= −
(︂(︂

u2

2 − pθ
(Γ − 1)

)︂
+ ua +

(︂
(1 − θρ)
(Γ − 1)

)︂
a2

)︂
α(1),

2(ζ σ* + ωρ* + ζω)|[V̇]| + σα(3) − σ*β(1) = −σα(1). (29)

It may be noted that the above system equations is
an over determined system, which occurs in the case of a
characteristic shock. Solving the system of (29), we obtain
the values to be:

β(1) =
2(1 − θρ)a2

a*{(1 − θρ)a + (1 − θρ + θζ )a*}
α(1),

|[V̇]| =
(︂

(1 − θρ)a2 − (1 − θρ + θζ )a2*
ζ a*{(1 − θρ)a + (1 − θρ + θζ )a*}

)︂
α(1),

α(3) =
(︂
(1 − θρ + θζ )a* − (1 − θρ)a
(1 − θρ + θζ )a* + (1 − θρ)a

)︂
α(1). (30)

As observed from (31), the amplitude of reflected wave
β(1), amplitude of the transmitted wave α(3), and jump in
the shock acceleration |[V̇]| are directly proportional to the
amplitude of the incident wave α(1), thereby implying that
any increase or decrease in α(1) will lead to an increase or
decrease in β(1), α(3), and |[V̇]|. Also as expected, in the
absence of the incident wave, there is neither a jump in

the shock acceleration nor do reflected and transmitted
waves exist. As it is evident from (31), the parameters β(1),
α(3), and |[V̇]| also vary with the dust parameters sepa-
rately from α(1). The variations of the parameters with kp,
β, and G are shown in Table 1: (a), (b), and (c), respec-
tively. It is observed that depending on the incident wave
being expansive (compressive), the reflected and trans-
mitted waves are compressive (expansive), and the shock
decelerates (accelerates) after the impact. The parameters
β(1), α(3), and |[V̇]| increase with an increase in kp, and β
in the case of α(1)0 > 0 and decrease in the case of α(1)0 < 0;
however, an opposite trend is noticed in the case of an
increase in G.

6 Results and Conclusion
The interaction between a propagating C(1) discontinuity
and an established shock across the discontinuity line give
rise to reflected and transmitted waves as well as produc-
ing the jump in shock wave acceleration. In this paper,
we considered the system of partial differential equations
classifying the one-dimensional, inviscid, unsteady flow
of a relaxing gas with dust particles and with varied wave-
front curvature. The main aim of this work was to study
the effects of dust and relaxation parameters on the inci-
dent discontinuity (i.e. the singular surface), characteristic
shock and their interaction in the medium.

We considered the evolution and propagation of the
singular surface in the medium and as expected, it is
observed that the the amplitude of the jump in the velocity
gradient satisfies the Bernoulli type transport equation. A
particular casewas considered to solve the transport equa-
tion numerically and to study the effects of dust particles
and relaxation. The results are depicted and were found

Table 1: (a)–(c): Variations in amplitudes α(3) (transmitted waves), β(1) (reflected waves) and |[V̇]| (shock acceleration) in the influence of
dust parameters kp, β and G in cylindrically symmetric flow.

α(3) β(1) |[V̇ ]|

α(1)0 > 0 α(1)0 < 0 α(1)0 > 0 α(1)0 < 0 α(1)0 > 0 α(1)0 < 0

(a)
kp 0.2 0.00209196 −0.00099233 0.773758 −0.367039 −0.563106 0.267114

0.4 0.00232379 −0.00108927 0.793081 −0.371757 −0.577673 0.270784
0.6 0.00248798 −0.00118179 0.793908 −0.376489 −0.577791 0.274451

(b)
β 0.1 0.00242578 −0.00113514 0.772793 −0.361627 −0.563347 0.263617

0.5 0.00248798 −0.00118179 0.793908 −0.376489 −0.577791 0.274451
1.0 0.00255018 −0.0011849 0.812423 −0.377479 −0.592236 0.275173

(c)
G 100 0.00248798 −0.00118179 0.793908 −0.376489 −0.577791 0.274451

1000 0.00205617 −0.00097668 0.793856 −0.377082 −0.57748 0.274303
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to be consistent with the anticipation. As t approaches
infinity for all the possible range of values of parame-
ters involved in the flow such as kp, β, G, c, and τ, the
wave flattens and dies out eventually. It is observed that
an increase in any of the parameters kp, β, or G leads
an increase in α(1). However, opposite behavior is noticed
with an increase in the parameter τ. It is also observed that
an increase in any of the parameters kp, β, or G leads to an
increase in α(1)/α(1)0 for the interval −α(1)c 6 α(1)0 < 0, and
a decrease in α(1)/α(1)0 for the interval α(1)0 6 −α(1)c < 0;
however, an increase in the variable τ leads to an opposite
trend.

The characteristic shock propagating in the medium
is considered and it is observed that the values of jump
in density and vibrational energy across the characteris-
tic shock approach to zero as time tends to infinity. It is
observed that with rise in the values of kp, β, or τ leads to
a rise in ζ , whereas a rise in G leads to a fall in jump in
density. Also, a rise in the values of kp, β or, G, gives a fall
to the parameter ω and a rise in τ gives a rise to jump in
vibrational energy.

The interaction between the singular surface and the
characteristic shock is considered and it is observed that
the amplitudes of the reflected wave, the transmitted
wave and jump in the shock acceleration are directly pro-
portional to the amplitude of the incident wave, i.e. a
jump in the velocity gradient α(1), thereby implying any
increase or decrease in the incident wave will lead to an
increase or decrease in the amplitudes of the reflected
wave, the transmitted wave and jump in the shock accel-
eration. In the absence of the incident wave, there shall
be neither a jump in the shock acceleration nor any
reflected and transmitted waves. It is also observed that
the amplitudes of the reflected wave, the transmitted
wave and jump in the shock acceleration vary with the
dust parameters separately from the incident wave. It
is observed that depending on the incident wave being
expansive (compressive), the reflected and transmitted
waves are compressive (expansive), and the shock decel-
erates (accelerates) after the impact. The amplitudes of
the reflected wave, the transmitted wave and jump in the
shock acceleration increase with an increase in kp or β in
the case of α(1)0 > 0 and decrease in the case of α(1)0 < 0;
however, an opposite trend is noticed in the case of an
increase in G.
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