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Abstract: Bifurcation analysis of small-amplitude non-
linear and supernonlinear periodic ion-acoustic waves
(SNPIAWS) is reported in a three-constituent superther-
mal plasma composing of cold fluid ions and kappa-
distributed electrons of two temperatures (cold and hot).
Using the reductive perturbation technique, the plasma
system is studied under the Korteweg-de Vries (KdV)
and the modified KdV (mKdV) equations. Furthermore,
the KdV and mKdV equations are transformed into pla-
nar dynamical systems applying travelling wave trans-
figuration. Possible qualitative phase profiles for the
corresponding dynamical systems controlled by system
parameters (k, ac, a and f) are shown. Small-amplitude
SNPIAW solution for the mKdV equation is presented for
the first time. Small-amplitude nonlinear periodic ion-
acoustic wave (NPIAW) and ion-acoustic solitary wave
solutions (IASWS) for both the KdV and mKdV equations
are obtained. Effects of parameters x and a; on IASW,
NPIAW and SNPIAW solutions are investigated.

Keywords: Dynamical System; KdV Equation; Modified
KdV Equation; Reductive Perturbation Technique (RPT);
Small-Amplitude Supernonlinear Wave.

1 Introduction

A newly discovered class of waves known as supernon-
linear waves (SNWs), defined by the nontrivial topology
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of their phase portraits, was introduced by Dubinov and
Kolotkov [1]. SNWs exist in plasma systems composing
with at least three different plasma components. Phase
portrait profiles are complex for plasma systems having
more than three different components and result in more
interesting wave structures, such as SNWs. Trajectories
corresponding to such waves are evolved by number of
fixed points and separatrix present in phase plots. Hence,
any phase plot of SNWs consists of multiple periodic waves
in continuous form of nested phase trajectories without
selfintersection [2]. Dubinov and Kolotkov experimentally
studied ion-acoustic waves (IAWs) in SF6-Ar plasma [3]
and ion-acoustic supersolitons [4]. Verheest [5] studied
nonlinear acoustic waves in nonthermal plasmas com-
posed of positive and negative dusts. Baluku et al. [6]
examined ion-acoustic solitary wave solutions (IASWS) in
plasmas composed of two different temperature electrons.
Researchers [7-13] showed their huge interest in studying
SNWs. Verheest et al. [11] investigated ion-acoustic super-
solitons in multicomponent plasmas composing cold fluid
ions, kappa (x)-distributed cold and hot electrons. Ver-
heest et al. [14] confirmed the presence of supersolitons
in plasma systems having at least three types of particles.
Olivier et al. [15] reported the influences of collision in
SNWs. Ali et al. [16] studied SNWs under Sharma-Tasso-
Olver equation and obtained exact solutions. Dubinov and
Kolotkov [17] reported SNWs in astrophysical and labo-
ratory environments. Kamalam and Ghosh [18] reported
supersolitons in magnetised plasmas for low frequency
waves.

Reductive perturbation technique (RPT) plays a sig-
nificant part in the study of small-amplitude nonlinear
waves. Mathematically, RPT redefines space and timescale
[19] in fundamental model equations of systems that
describe long wavelength situation. Using RPT, model
equations are deduced to nonlinear evolution equations,
such as, the Korteweg-de Vries (KdV) equation, the Burgers
equation, etc. Many researchers [20-26] studied nonlin-
ear acoustic wave features implementing RPT. Hence, it is
important to note that RPT may be applied in the study of
small-amplitude SPWs in plasmas.

Over the decades, the study on plasma systems com-
posed of long-range correlations, was acknowledged by
highly energetic electrons detected in plasmas near Earth,
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containing complex shapes of lengthy tails that vigorously
drift away to the non-Maxwellian distribution. In 1955,
Renyi [27] introduced an alternative perspective defined as
x-distribution. The distribution (k) is convenient to exam-
ine active modelling of waves and instabilities in space
plasmas. This distribution extends righteous substitute of
the Maxwell distribution for portraying systems like space
plasmas. x-distribution at high velocities obeys the law of
inverse power [28]

no I'k+1) v? (k+1)
= + — 1
M= ST 172 LT e W
where v = v?x + V2 y+ v2z,0 stands for effective thermal
1 3
speed vy, = Ufn—BT 2 givenby §? = X = vtzh and x stands

for spectral index, which measure strength of superther-
mal elements [29, 30]. Thus, from (1), the normalised elec-
tron number density is
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e = k 3/2

This velocity distribution behaves like Maxwellian,
as x ¥ oo, Saini et al. [31] reported the characteristics
of IAWs in cold ions with kappa (x)-distributed elec-
trons. Baluku and Hellberg [32] reported solitary waves
and double layers of dust-acoustic waves in systems hav-
ing k-distributed electrons and ions. Ahmadihojatabad
et al. [33] studied the effects of superthermal electrons in
plasmas under magnetic effect. Sahu [34] expanded the
study of EAWs in superthermal plasmas. Recently, many
researchers [35-38] studied nonlinear acoustic waves in
different plasma systems consisting of superthermal elec-
trons. Applications of k-distribution are extensively found
in data examination of spacecraft observation on magne-
tospheric plasma sheet of Earth, Jupiter [35], etc.

Bifurcation is the change in qualitative structure of
flow in dynamical system due to variation in dynamic
parameters of plasma system [39]. Bifurcations are very
significant in dynamical systems as systems are allowed
for transitions and instabilities when some controlled
parameters of the systems are varied. Samanta et al. [40]
evaluated bifurcation of nonlinear travelling waves in
plasmas employing RPT for the first time. Some works
[10, 41-43] were reported on arbitrary amplitude super-
solitons of IAWs in multiconstituent plasmas. References
[44, 45] reported examination of nonlinear acoustic waves
in superthermal plasmas applying bifurcations in differ-
ent plasma systems. Saha and Tamang [46] presented
arbitrary amplitude supernonlinear periodic ion-acoustic
waves (SNPIAWSs) by implementing bifurcation analysis
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through direct approach. Very recently, Tamang and Saha
[47] and Prasad et al. [48] reported existence of arbitrary
amplitude SPWs using the concept of bifurcation theory.
Applying RPT, Verheest et al. [49] suggested existence of
superacoustic modified KdV (mKdV) solitons. However,
bifurcations of small-amplitude SNPIAWs have not been
reported theoretically in nonlinear plasma system which
consists of cold and hot temperature x-distributed elec-
trons to the best of our knowledge. Plasmas composed of
simultaneous cold and hot electrons were reported exper-
imentally [50, 51]. Therefore, the main aim of our work
is to examine existence of small-amplitude SNPIAWs in
superthermal plasma system implementing bifurcation
analysis of dynamical systems [52-54]. For this purpose,
we investigate IAWs in frameworks of the KAV and mKdV
equations employing RPT in a three-component plasma
system.

This work is arranged as: In section 2, fundamental
equations are considered. In section 3, derivations of the
KdV and mKdV equations are done. In section 4, dynam-
ical system of the KdV equation is formed. In section 5,
dynamical system of the mKdV equation is obtained. In
section 6, solutions for the KdV and mKdV equations are
obtained, and section 7 is for conclusions.

2 Fundamental Equations

We examine small-amplitude IAWs in a three-constituent
plasma system constituting of cold fluid ions and k-
distributed different temperature (hot and cold) electrons.
Propagation of IAWs is governed by fundamental equa-
tions [49]:

on 0 _
Y + &(nu) =0, 3)
ou ou _ 09
5 + ua = o’ (4)
62¢ é ! Kk+3 é ! k+1
_ QAc ap
W - f 1 X % +(1 f) 1 % n,
5)

where n, u, ¢ and f are, respectively, number density of
cold ions, velocity of ions, electrostatic potential and frac-
tional charge density of cold electrons. a; = %‘f and ay, =
%f’ where Tegs = ﬁ is effective temperature with
hot and cold electron temperatures Ty, and T¢, respectively
[50].

The considered plasma system is normalised by:
ng normalises n, Cs = "B% : normalises u, where kg
denotes the Boltzmann constant, m stands for ion mass,
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and e denotes strength of electron charge. % normalises

1
p,w 1= amncez - normalises ¢, where w stands for fre-
_  kgT. 13
quency of plasma and the Debye length Ap = 4,,’;0‘_,2 2

normalises x.

3 Derivations of the KdV and mKdV
Equations

To derive the KdV and mKdV equations, we consider fol-
lowing stretching by using RPT

&= e%(x vt) and 1= s%t, 6)
where € measures weakness of nonlinearity and v denotes
phase velocity of IAWs. Let us consider expansions for
dependent variables:

8
2n=1+£n1+£2n2+£3n3...

u=0+£u1+£2u2+£3u3...
S Pp=0+ep+P, +Ps....

@

Substituting (6), (7) in fundamental (3)-(5), one can

obtain following relations by comparing the coefficients of
3/2
€

ng = %ul, u; = %¢1, 8)
2 1
V= alfac+@1  fap)’ ©)

1
where a = : 2. By comparing the coefficients of &2,
2

following equations are obtained
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(12)
where b = K jz.Differentiating (12) w.r. to ¢ and elim-
2k 3

inating all higher order perturbed terms using (8)—(11), we
derive the required KdV equation as

op1 0p1 ¢y
oT AP e

o8 *Pop )

:0,

where A = V; 3 2b(fai+(1 fla;) andB = V—;
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Here, we observe numerically that for certain criti-
cal values such as, k = 4.7866, a. = 1.1, ap = 0.09 and
f = 0.2522, nonlinear coefficient A of the KdV equation
vanishes. For such set of values, the KdV equation is not
valid. Therefore, we derive the mKdV equation for IAWs
considering following stretching

E=¢ex vt) and T= et. (14)

Substituting (7) and (14) in fundamental (3)-(5), we

obtain following equations comparing the coefficients of

g2,

n, =ago(fac+ (1 Pay) bP3(fai+ 1  Pap), (15)
2
u2=% 2(]5712_'_(1)2 (16)

We also obtain following equations comparing the
coefficients of %,

V%’? aar‘zrl a—g(muz +nyu; +u3z) =0 (17)
au3 ouy o¢3
Ve e agl G =0 09)
2¢1
52 +n3 afac+Q  Pap)ps
2b fai+ (1 flag ($1¢2)
cfa+(1 faj ¢ =0. (19)

Differentiating (19) with respect to ¢, removing all
higher order perturbed terms using (15)—(18) and proceed-
ing in similar way as in case of the KdV equation, we get
the modified KAV (mKdV) equation

5471 2091 Fh1 _
+opi St + B E =0, (20)
where C = "2 2+ 2b(faz+(1 fap) 3c(fal+(1

( 1)( 3)
fla;) andc = ﬁ

4 Formation of Dynamical System
for the KdV Equation

Let us consider y = ¢ V7t as travelling wave transforma-
tion, where speed of travelling wave is denoted by V; (13)
becomes

d¢1 d¢1 d’ ¢

B = O (21)

A¢1
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Integrating (13) w.r. to y and using conditions ¢; ¥

0,31 w o, 9% Oasy oo, weget

>y » dy

P71 . 2)

d’¢; _ 1 A
a2 8 ' 3

Then, (22) is presented in form of dynamical system as:

8
340 _,

3_1’ A (23)
=22 yo Zo?

dy B 2

where we put ® = ¢, for simplicity.

4.1 Phase Plane Analysis

Mathematically, bifurcation in dynamical systems [39] is
a significant change in system due to variation in physi-
cal parameter of the system. Phase plane analysis using
bifurcation theory gives underlying feature of dynamical
systems. It is reported that any qualitative orbit in phase
plane corresponds to solution of travelling wave [46]. Con-
sidering the bifurcation analysis of dynamical systems,
qualitative phase portraits are presented for system (23)
with parameters k, f, a. and ay. Fixed points of the system
(23) are obtained by solving following equations simulta-
neously

do =0 and dz =0,

dx dy
which imply

A

1
=0and ®— V o =0,
z and ® 4 5

Y z=0and ® =0, ZITV

It is clear that the system (23) has two fixed points
Eo(dg, 0)and E1 (P4, 0), where @y = Oand @, = ZITV.The
Jacobian matrix J for any system

2 di = f(®, 2),

= d _

= a g((Da Z)’

is given by
o af(CD 2 of(@,z) T
g oz %

J= .
ag(CD z) 0g(d,z)
0z

(24)
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Using (24), the Jacobian matrix of the system (23) is

o 1

o 0 N
J= %(V AD) 0

and determinant of ] is expressed by M as

M= det](@,00= £(V AD),

where i =0, 1. If M < 0, then fixed point E;(®;, 0) is a
saddle node and for M > 0, fixed point E;(®;, 0) is a centre
[39]. With support of numerical computations, we display
qualitative phase portrait profiles in Figures 1 and 2 for the
system (23) relying on system parameters k and a; with
definite values of a., f and V.

In Figure 1, we display phase portrait profile for the
Kdv (13) for x =1.6,a;, =0.1, ac =1.1,f = 0.1, and
V =09. It is observed that there exists saddle point
at Eo(0, 0) and centre at E;(¢1,0). A nonlinear homo-
clinic orbit (NHO; o) about E(0, 0) enclosing fixed point
E1(¢p1,0) and nonlinear periodic orbit (NPO;o) enclos-
ing fixed point E;(¢1, 0) correspond to IASW and non-
linear periodic ion-acoustic wave (NPIAW) solutions,
respectively.

15F

-08 -06 -04 -02 O 02 04 06
(o]

-12 -1

Figure 1: Phase portrait of dynamical system (23) with k = 1.6, a;, =
0.1, a, =1.1,f = 0.1,and V = 0.9.

1.5
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Figure 2: Phase portrait of dynamical system (23) for k = 1.7, a, =
0.3,a, =1.1,f =0.0land V = 0.2.
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Similarly, in Figure 2, we obtain phase portrait pro-
file for the KAV (13) withk = 1.7, a5, = 0.3, ac = 1.1, f =
0.01 and V = 0.2. NHO, ¢ about Ey(0, 0) enclosing fixed
point E;1(¢1, 0) corresponds to IASW solution and NPO, o
enclosing fixed point E;(¢1,0) corresponds to NPIAW
solution.

5 Formation of Dynamical System
for the mKdV Equation

Similarly, using same transformation as in case of the KdV
(13) in (20), we obtain

d’¢p1 _ 1 C 3
&2 B V1 §¢1 (25)
Let us put @ = ¢;. (25) is equivalent to
8
zd®_,
dy 7

zdz _ 1 1740 Eqﬁ (26)
“dy B 3

5.1 Phase Plane Analysis

From Figures 1 and 2, it is evident that IASWs and NPIAWs
are possible for the KdV (13). Now, we present phase por-
trait profile of system (26) for the mKdV (20) with fixed
values of k, ay,, ac, f and V. For that purpose, fixed points
of the system (26) are obtained by solving following equa-
tions simultaneously

do dz _
a =0 and a =0,
which imply
_ 1 C_» _
z—Oand(DB 74 3<1> =0,
| gl
Y>z=0and ® =0, %
Therefore, there are three fixed points

Eo(®y, 0), E;(D1,0) and E,(D;, 0) of the system (26),

where

| g—

3V
—,and &, =
C an 2

| g
£

CD():O,CD1: C

Using (24), the Jacobian matrix J for the system (26) is
(@) 1

o 0 1
= %(V Co?) 0

)
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and determinant of J is expressed by
M= det](@;,0)= £(V COD),

wherei =0, 1, 2. If M < 0, then fixed point E;(®;, 0) is a
saddle node and for M > 0, fixed point E;(®;, 0) is a centre
[39]. Applying the phase plane analysis of dynamical sys-
tems [52-54], we plot phase portrait profile in ®-z plane in
Figure 3.

Through computation, we show phase portrait profile
of (26) for the mKdV (20) relying on system parame-
ters x, ay, ac, f and V in Figure 3. We observe a couple
of NHO,, enclosing one fixed point and no separatrix.
Any qualitative orbits in phase plane profile correspond
to a travelling wave solution. Here, NHO;, enclosing
fixed point E; corresponds to rarefactive IASWs. Similarly,
NHO,,0 enclosing fixed point E, corresponds to compres-
sive JASWs. NPO, o around E; and E; correspond to NPIAW
solutions. There also exists a class of supernonlinear peri-
odic orbit (SPOs;) enclosing fixed points Eo, E1 and E;
with one separatrix. SPO;; corresponds to SNPIAW solu-
tion of the mKdV (20). It is observed numerically that
small-amplitude SNPIAW features for the mKdV (20) exist
in the considered plasma system for range k¥ = 2.6 keep-
ing other parameters fixed as a; = 0.1, ac =1.1,f =
0.1 and V = 0.2. Also, it is interesting to obtain small-
amplitude SNPIAW features in the range 0 < aj, 6 0.17
with other parameters fixed as x = 3, a, = 1.1, f = 0.1
and V = 0.2.

6 lon-Acoustic Wave Solutions

We encountered existence of IASWS for the KdV and mKdV
equations from their respective phase profiles Figures 1-3.
Therefore, analytical IASW solutions for the KdV and
mKdV equations are obtained as:

0.08f '
0.06
0.04
0.02

N OFt=-
~0.02F\
-0.04 |
-0.06 |
-0.08 |

-1 -08 -06 -04 -02 0 02 04 06 08 1

[}

Figure 3: Phase portrait of dynamical system (26) for k = 3, a, =
0.1,ac =1.1,f =0.1and V = 0.2.
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The KdV (13) supports IASWS given by:

D= gsech2

2§ 4 @7)

* Difac + 1 Pay)
(x 3

faz+(1 f)aﬁ , Where amplitude is 3—1; and width

where P =
D
Z(biz

i 4
is 3.

1 — 3
5= 5

0.8

0.7} EE

’ v

!

0.6} ! .
,

05}
e 0.4} /

03} !
02} RN,
01} N

0 b= L L !

Figure 4: lon-acoustic solitary wave solution (IASWS) of the
Korteweg-de Vries (KdV) (13) for different values of x with a), =
0.1,ar =1.1,f =0.1and V = 0.9.

02f -~
o.18}
016 FE
0.14} '
012}

€ o1t '
0.08 | k
0.06 |
0.04 - /"
0.02 } ’,_xf e

0 o L
-10 -5 0 5 10

Figure 5: IASWS of the KdV (13) for distinct values of a;, with
k=1.7,a,=11,f =0.1and V = 0.9.
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Similarly, the mKdV (20) supports both compressive
and rarefactive IASWS:

r—_ r_ !
6V |74
o= Tsech 3 X (28)
where amplitude and width are given by ? and g,

respectively. By numerical analysis, we show effects of x
and ay on IASWS of (13) and (20).

In Figure 4, we present change in IASWS of the KdV
(13) with discrete values of x and system parameters as
ap=0.1,a, =1.1,f = 0.1 and V = 0.9. From Figure 4,
it is evident that when electrons evolve far away from
Maxwellian, IASWS become spiky. As a result, increase in
spectral index (k) of electrons shows decrease in ampli-
tude and increase in width of IASWS.

In Figure 5, variation on IASWS of the KdV (13) for
distinct values of a, with x = 1.7, ac = 1.1, f = 0.1 and
V = 0.9 is shown. It is observed that when tempera-
ture of hot electrons increases, correspondingly ratio ay
of effective temperature and hot electron temperature
decreases and this results in decreasing of amplitude and
increasing of width of IAW. As a result, IASW becomes
smooth.

We show effects of x in Figure 6a and ay, in Figure 6b
on NPIAW of the KdV (13). When spectral index (x) of
electrons is increased, amplitude and width of NPIAW
are enhanced. On the other hand, when temperature of
hot electrons is increased, the ratio a; of effective tem-
perature and hot electron temperature becomes relatively
low, as a result both amplitude and width of NPIAW
dwindle.

In Figure 7, changes in compressive and rarefactive
IASWS of the mKdV (20) for distinct value of x with other
parameters a; = 0.1, ac = 1.1,f = 0.1 and V = 0.2 are
shown. Here Figure 7 shows decrease in amplitude and
width of both compressive and rarefactive IASWS when
spectral index k of electrons is approaching to Maxwellian
limit.

a b
’
0.95 | 0.9
0.9}
0.85
0.85 | 08
08| '
% 0751 & 075
07} 0.7
0.65 | 0.65 /
0.6 0.6
055 L ‘ ‘ ‘ ‘ ‘ s ‘ ‘ s 0.55 . . . . . . . . .
232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272

X

x

Figure 6: Nonlinear periodic ionacoustic wave (NPIAW) solution of the KdV (13) for different values of x in (a) and aj, in (b) with a, = 1.1,

f=0.0land V = 0.2.
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In Figure 8, we observe changes in compressive and
rarefactive IASWS of the mKdV (20) for distinct values
of aj, with fixed values of other parameters x = 3, ac =
1.1,f = 0.1and V = 0.9. In this case, low temperature of
hot electrons enhances temperature ratio ay, which results
into increment of amplitude and decrease of width of both
compressive and rarefactive IASWS of the mKdV (20).

We display effects of parameters x and a; on NPIAW
for the mKdV (20) in Figure 9. When spectral index of
electrons (x) is approaching to Maxwell distribution, it
is observed that both amplitude and width of NPIAW
are decreasing (see Fig. 9a). However, in Figure 9b, we

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

-80 -60 -40 -20 80
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observe that with low temperature of hot electrons, NPIAW
becomes more smooth.

It is interesting to observe different class of waves
known as SNPIAW of small-amplitude for system (26)
obtained from the mKdV (20). Small-amplitude SNPIAW
solution for the mKdV (20) is obtained corresponding to
SPOs; presented in Figure 3. Variations of system param-
eters x and a; on small-amplitude SNPIAW of the mKdV
(20) are shown in Figures 10 and 11.

SPO;; present in Figure 3 corresponds to SNPIAW
solution which is shown by Figure 10. We display the effect
of x on SNPIAW solution of the mKdV (20) in Figure 10

T T T T T

-0.1
-0.2
-0.3
-0.4

-0.6
-0.7
-0.8
-0.9

-80 -60 -40 -20

Figure 7: () Compressive and (b) rarefactive IASW solutions of the modified KdV (20) for distinct values of k with a, = 0.1, a, = 1.1,

f=0.1andV =0.2.
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Figure 8: (a) Compressive and (b) rarefactive IASWS of the mKdV (20) for different ay, with k = 3, a, = 1.1,f = 0.1and V = 0.2.
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Figure 9: Effects of (a) x and (b) a, on NPIAW solution of the mKdV (20) with ac = 1.1,f = 0.1and V = 0.2.
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250 300 350 400 450 500 550 600 650 700 750
x

Figure 10: Effect of k on SNPIAW solution for system (26) of the
mKdV (20) with other system parametric data same as Figure 3.

1000 1100 1200 1300

x

800 900

Figure 11: Effect of o, on SNPIAW solution for system (26) of the
mKdV (20) with system parameters same as Figure 3.

with parametric data same as Figure 3. We observe that
amplitude and width of SNPIAWs are shortened when
spectral index (k) of electrons is increased.

In Figure 11, we present effect of a;, on small-
amplitude SNPIAW solution of the mKdV (20) with sys-
tem parametric data same as Figure 3. We observe from
Figure 11 that when temperature of hot electrons is
decreased, amplitude of small-amplitude SNPIAW flour-
ishes while its width diminishes.

7 Conclusions

A multicomponent plasma constituting of cold fluid ions,
k-distributed hot and cold electrons has been consid-
ered. A small-amplitude IAW has been studied under the
KdV and mKdV equations using RPT. Applying travelling
wave transformation, the KdV and mKdV equations have
been reduced to their corresponding dynamical systems
(23) and (26). Using bifurcation theory of dynamical sys-
tems, all qualitative phase portrait profiles for dynam-
ical systems (23) and (26) have been displayed. It has
been observed from phase portrait profiles that NHO; o
and NPO,, of dynamical system (23) obtained from the
KdV equation (13) support IASW and NPIAW solutions,
respectively. On the other hand, phase portrait profile
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consisting of NHO; o, NPO; o and SPOs5; of dynamical sys-
tem (26) obtained from the mKdV equation (20) supports
IASW, NPIAW and SNPIAW solutions. Using bifurcation
analysis through phase plane analysis, existence of small-
amplitude SNPIAW solution of the mKdV equation in the
considered plasma system has been reported for the first
time. Furthermore, influences of spectral index (x) and
ratio (ap) of effective temperature to hot electron tem-
perature have been shown on compressive and rarefac-
tive JASW, NPIAW and SNPIAW solutions of the mKdV
equation (20). It has been observed that when temper-
ature of hot electrons is low, small-amplitude SNPIAW
flourishes. When spectral index of electrons approaches
to Maxwellian limit, small-amplitude SNPIAW becomes
more smooth. Therefore, our result shows existence of
small-amplitude nonlinear and SNPIAWSs in plasmas com-
posing of x-distributed cold and hot electrons. System
parameters spectral index of electrons (x) and tempera-
ture ratio (ay) play key roles in bifurcation analysis of
small-amplitude nonlinear and supernonlinear periodic
ion-acoustic waves in superthermal plasmas.
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