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Abstract: An investigation of nonlinear ion acoustic
(IA) cnoidal waves in a magnetised quantum plasma is
presented by using spin evolution quantum hydrodynam-
ics model, in which inertial classical ions and degenerate
inertialess electrons with both spin-up and spin-down
states taken as separate species are considered. The
Korteweg–de Vries equation is derived using the reductive
perturbation method. Further, using the Sagdeev pseu-
dopotential approach, the solution for IA cnoidal waves
is derived with suitable boundary conditions. There is the
formation of only positive potential cnoidal, and in the
limiting case, positive solitary waves are observed. The
effects of density polarisation and other plasma parame-
ters on the characteristic features of cnoidal and solitary
waves have been analysed numerically. It is seen that the
spin density polarisation significantly affects the charac-
teristics of cnoidal structures as we move from strongly
spin-polarised (µ = 1) to a zero spin-polarisation case
(µ = 0). The results obtained in the present investigation
may be useful in comprehending various nonlinear excita-
tions in dense astrophysical regions, such aswhite dwarfs,
neutron stars, and so on.

Keywords: Cnoidal Waves; Ion Acoustic; Spin-up and
Spin-down Degenerate Electrons.

1 Introduction
In recent years, dense quantum plasmas have emerged
as an active field of research due to their great relevance
in different areas of practical importance, e.g. nanoscale

*Corresponding author: N. S. Saini, Department of Physics,
Guru Nanak Dev University, Amritsar 143005, India,
E-mail: nssaini@yahoo.com
Nimardeep Kaur and Rupinder Kaur: Department of Physics,
Guru Nanak Dev University, Amritsar 143005, India, E-mail:
nimarphy@gmail.com (N. Kaur); rupinderkaur.rk568@gmail.com
(R. Kaur)

electromechanical systems [1, 2], laser interactions with
atomic systems [3], and in dense astrophysical systems
[4], such as neutron stars, white dwarfs, and so on. Due
to the high number density and low particle tempera-
ture of particles, quantum plasmas are distinguished sig-
nificantly from the classical plasmas, where the density
of particles is relatively low and possesses high plasma
temperature. To investigate the various astrophysical phe-
nomena in interstellar compact objects, dense quantum
plasmaswould be helpful in establishing a suitable frame.
The density of the interiors of the interstellar objects is sig-
nificantly high such that the nonthermal pressure is pro-
videdby thedegenerate fermion/electronpressure, aswell
as interaction of particles.

Mathematically, Chandrashekhar [5–7] deduced the
equation of state in such compact interstellar objects for
the degenerate electrons with Pe ∼ n

5
3
e for the nonrela-

tivistic case and Pe ∼ n
4
3
e for the ultrarelativistic case,

where Pe and ne are the pressure and number density
of degenerate electrons. In highly compressed plasma
species, the uncertainty in momenta is infinitely large,
which implies that the degenerate plasma species must
move very fast (despite that they are extremely cold),
giving rise to a very high pressure, called as “degener-
ate pressure.” The degenerate pressure depends only on
the number density of electrons and not on their temper-
ature. In the quantum hydrodynamic (QHD) model, which
is considered as the quantum counterpart of the classical
fluid model [8], the inclusion of the Fermi pressure and
the Bohm potential term modifies the momentum equa-
tion of the charged particles [9]. The quantum ion acoustic
(IA) waves and the role of quantumdiffraction effects have
been studied by Haas et al. [10] using the QHD model. It
has also been found that the system supports the travel-
ling waves with periodic patterns in the fully nonlinear
regime. Haas [11] devised an ideal quantum magnetohy-
drodynamic (QMHD) model with the incorporation of the
quantum diffraction effects with relevance to the dense
astrophysical objects such as interiors of white dwarfs.
Using the QHD andQMHDmodels, various nonlinear elec-
trostatic and electromagnetic waves have been studied in
quantum plasmas.
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The spin effects are considered as one of the most
important properties of quantum plasmas due to great
significance of highly magnetised quantum plasmas in
the atmospheres of neutron stars [12, 13]. Marklund and
Brodin [14, 15] extended the QMHD model and proposed
the spin-12 QMHD model for hydrodynamic waves. They
found that the spin effects can significantly alter the
characteristics of low-frequency electromagnetic modes.
The dynamics of fast and slow magnetosonic waves
has been studied by Mushtaq and Vladimirov [16] in
two-dimensional spin-12 quantum plasmas using QMHD
model. The linear dispersion relation for both slow and
fast quantum magnetosonic waves has been discussed in
detail. Andreev [17] considered the propagation of waves
with degenerate electrons in the magnetised plasmas and
derived theQHDequations for spin-12 particles. The author
examined the evolution of electrons and contribution of
magnetic field in the Langmuir wave dispersion via the
different occupation of spin-up and spin-down states. The
existence of spin-electron-positron acoustic spin-electron
acoustic, and positron acoustic solitons in degenerate
electron-positron-ion (e − p − i) plasmas were demon-
strated by Iqbal andAndreev [18]. The influence of the spin
polarisation on the properties of three kinds of solitons
was also analysed. It has been reported that there exist dif-
ferent types of spin-up and spin-down electrons in metal
in the absence of an external magnetic field, which yields
magnetic moment of metal as a whole equal to zero [19].
But in the presence of an external uniformmagnetic field,
there are more electrons with spin-up aligned along the
direction of magnetic field than that of spin-down elec-
trons. Owing to the presence of spin-up and spin-down
electrons in a degenerate quantum plasma, some investi-
gations focusing on the study of solitary and shock waves
have been reported. Ahmad et al. [20] investigated the low-
frequency electrostatic waves in plasmas having inertia-
less degenerate electrons by employing the separated spin
evolution QHD model. The pulse stability analysis was
carried out, and it was also found that spin polarisation
significantly affects the amplitude and width of the soli-
tary waves. Hussain and Mahmood [21] investigated the
propagation characteristics of IA shock waves in a dense
magnetised plasma with relative density effects of spin-
up and spin-down degenerate electrons. The Korteweg–de
Vries Burgers equation was solved numerically to analyse
the influence of the spin density polarisation ratio on the
propagation characteristics of shock waves.

The study of cnoidal waves has become one of
the important areas of research because of their wide
range of applications in nonlinear transport processes in

plasmas [22], ionosphere plasmas [23], single-mode drift
wave spectra [24], and so on. A variety of investigations
have been reported by numerous researchers [25–28] to
study the characteristics of cnoidal waves in different
plasma regimes. Kaladze et al. [29] deduced Korteweg–de
Vries (KdV) equation by employing the reductive perturba-
tion method and investigated electrostatic acoustic non-
linear periodic waves in unmagnetised pair-ion plasmas
that constitute the same mass ion species with different
temperatures. El-Shamy [25] investigated the propagation
characteristics of IA cnoidal waves in a dense relativis-
tic degenerate magnetoplasma consisting of relativistic
degenerate electrons and nondegenerate cold ions. The
various solutions of nonlinear cnoidal and solitary waves
were presented numerically. Ur-Rehman et al. [26] derived
the KdV equation in a magnetised e − i plasma with cold
ions and warm electrons. The impact of various plasma
parameters on the characteristics of compressive magne-
toacoustic cnoidal waves was studied. The propagation
properties of dust acoustic cnoidal waves in an unmag-
netised ion beam dusty plasma were investigated by Kaur
et al. [27]. Using reductive perturbation technique, the
KdV equation was derived, and the solution of nonlin-
ear cnoidal waves was determined by applying the appro-
priate boundary conditions. The characteristic features
of magnetosonic cnoidal and solitary waves were investi-
gated in amagnetised electron-ion-dust (e− i−d) plasma
by Kaur et al. [28]. It was found that there exist only posi-
tive potential magnetosonic cnoidal and solitary waves in
the limit of high β plasma.

Earlier investigations were focussed on the study of
solitary and shockwaves in a degenerate quantumplasma
with the effects of the spin-up and spin-down of the
electrons. To the best of our knowledge, the study of IA
cnoidal waves with the effects of both spin-up and spin-
down of degenerate electrons in a magnetised quantum
plasma has not been reported yet. Our aim in the present
investigation is to numerically analyse the effect of spin
polarisation density and other physical parameters on
the propagation characteristics of IA cnoidal waves in
dense astrophysical plasma with implication to the region
of white dwarfs. The layout of the manuscript is as fol-
lows: In Section 2, the basic fluid equations are intro-
duced. In Section 3, the derivation of the nonlinear KdV
equation by using reductive perturbation method is pre-
sented. The cnoidal wave solution of KdV equation is
given in Section 4. In Section 5, the numerical analy-
sis for IA cnoidal waves and in the limiting case solitary
waves has been presented. Conclusions are highlighted in
Section 6.
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2 Basic Fluid Equations
We consider a magnetised quantum plasma in which a
uniform magnetic field is applied along the positive z-
direction, B = B0 ẑ. The separated spin evolution QHD
model has been utilised by considering both the spin-up
(ne↑) and spin-down (ne↓) states for degenerate electrons
and inertial nondegenerate ions. Here, we assume that
wave propagates in three dimensions, i.e. ∇ = ∂x , ∂y , ∂z.
Nondegenerate ions are taken due to their heavy mass as
compared to the mass of electrons. The separate evolu-
tion of spin-up and spin-down electrons helps to discover
the new longitudinalwaves,whichdependonparallel and
perpendicular propagation to an external magnetic field.
Their existence is related to the different population of
spin-up and spin-down electrons in equilibrium plasmas
[17]. The continuity andmomentum equations for ions are
given as

∂ni
∂t + ∇ · (niui) = 0, (1)(︂

∂
∂t + ui · ∇

)︂
ui =

e
mi

E +
eB0
mic

ui × ẑ. (2)

Electrons are inertialess, and the momentum equa-
tions of electrons with spin-up (ne↑) and spin-down (ne↓)
states are given as

0 = −ene↑(↓)

(︂
E +

B0
c ue↑(↓)

)︂
− ∇Pe↑(↓)

+
~2

2me
ne↑(↓)∇

(︃
∇2√ne↑(↓)√ne↑(↓)

)︃
. (3)

The Poisson’s equation is given as

∇ · E = 4πe
(︀
ni − ne↓ + ne↑

)︀
. (4)

The Fermi pressure of degenerate electrons with spin-

up
(︀
ne↑

)︀
and spin-down

(︀
ne↓

)︀
is Pe↑ =

KBTFe↑ n
5
3
e↑

5n0↑
2
3

and

Pe↓ =
KBTFe↑ n

5
3
e↑

5n0↓
2
3

. TFe↑ =
6π2n

2
3
0↑~2

2KBme
and TFe↓ =

6π2n
2
3
0↓~2

2KBme
are

the Fermi temperatures for spin-up (ne↑) and spin-down
(ne↓) electrons, respectively; KB is the Boltzmann con-
stant. In this model, ion temperature is ignored as com-
pared to electron temperature.

In component form, the normalised continuity and
momentum equations for ions are written as

∂ni
∂t +

∂
∂x (niuix) +

∂
∂y (niuiy) +

∂
∂z (niuiz) = 0, (5)

∂
∂t uix + Duix = −∂ϕ

∂x + Ωuiy , (6)

∂
∂t uiy + Duiy = −∂ϕ

∂y − Ωuix , (7)

∂
∂t uiz + Duiz = −∂ϕ

∂z . (8)

The component forms of the normalised momentum
equations for spin-up and spin-down electrons are written
as

0 =
∂ϕ
∂x − Ωuey↑(↓) −

(2µ↑(↓))
2
3

3 n− 1
3

e↑(↓)
∂ne↑(↓)
∂x

+
H2

2
∂
∂x

(︃
∇2√ne↑(↓)√ne↑(↓)

)︃
, (9)

0 =
∂ϕ
∂y − Ωuex↑(↓) −

(2µ↑(↓))
2
3

3 n− 1
3

e↑(↓)
∂ne↑(↓)
∂y

+
H2

2
∂
∂y

(︃
∇2√ne↑(↓)√ne↑(↓)

)︃
, (10)

0 =
∂ϕ
∂z −

(2µ↑(↓))
2
3

3 n− 1
3

e↑(↓)
∂ne↑(↓)
∂z

+
H2

2
∂
∂z

(︃
∇2√ne↑(↓)√ne↑(↓)

)︃
. (11)

The normalised Poisson’s equation is

∂2ϕ
∂x2 +

∂2ϕ
∂y2 +

∂2ϕ
∂z2 = µ↑ne↑ + µ↓ne↓ − ni (12)

where µ↑ = n0↑
ni0 and µ↓ = n0↓

ni0 . The charge neutrality con-
dition yields ne0↑ + ne0↓ = ni0. The density polarisation
ratio is given as

µ =
ne0↑ − ne0↓
ne0↑ + ne0↓

, (13)

It is seen that µ can be positive, zero, or negative.
0 < µ (µ < 0) corresponds to plasmas where the number
density of spin-up electrons is higher (lower) than that of
the spin-down electrons. When two electron species have
equal number densities, then µ = 0. From (13), the neg-
ative value of µ has no physical significance because in
the presence of an external uniform magnetic field there
are more electrons with spin-up aligned along the direc-
tion of the magnetic field than that of spin-down elec-
trons [19]. For the case µ = 1 (i.e. electrons have only
one state of spin), one can simply recover the case of
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e − i plasmas. Therefore, µ↑ = 1+µ
2 and µ↓ = 1−µ

2 . D =
u · ∇ is the convective derivative, Ω = ωci

ωpi
, where Ω is

the ion-cyclotron frequency, ωci = eB0
mic is normalised by

ionplasma frequencyωpi =
√︁

4πni0e2
mi

, andH = ~ωpi√mimec2s
is

the quantum parameter. The fluid velocities
(︀
uix , uiy , uiz

)︀
are normalised by the quantum IA speed cs =

√︁
2kBTF
mi

;
the number densities ni , ne↑, ne↓ are normalised by their
respective equilibrium number densities and electrostatic
potential ϕ by 2kBTF

e . The space coordinates are nor-
malised by λi = cs

ωpi
and time by the inverse of the ion-

plasma frequency (ω−1
pi ).

3 Derivation of the KdV Equation
We have employed the reductive perturbation method to
derive the KdV equation for the study of cnoidal waves in
a magnetised dense astrophysical quantum plasma. The
stretching coordinates are given as

ξ = ε
1
2
(︀
kxx + kyy + kzz − vph t

)︀
, τ = ε

3
2 t. (14)

where kx , ky, and kz are the direction cosines such that
k2x + k2y + k2z = 1, and vph is the phase velocity of the
waves. Here, ε is a small expansion parameter. The per-
turbed quantities ni , uix , uiy , uiz, and ϕ are expanded in
terms of smallness parameter ε in the following form:

ni,e = 1 + εn(1)i,e + ε2n(2)i,e + . . .

u(i,e)x = ε
3
2 u(1)(i,e)x + ε2u(2)(i,e)x + . . .

u(i,e)y = ε
3
2 u(1)(i,e)y + ε2u(2)(i,e)y + . . .

u(i,e)z = εu(1)(i,e)z + ε2u(2)(i,e)z + . . .

ϕ = εϕ(1) + ε2ϕ(2) + . . . (15)

Using (14) and (15) in (5)–(12) and collecting the terms
in the lowest order of ε, we get the following first-order
evolution equations.

From ion continuity equation:

−vph
∂n(1)i
∂ξ + kz

∂u(1)iz
∂ξ = 0, (16)

From the z-component of the ion momentum equa-
tion:

kz
∂ϕ(1)

∂ξ = vph
∂u(1)iz
∂ξ , (17)

From the z-component of electron momentum equa-
tion having the spin-up state:

∂ϕ(1)

∂ξ =
(2µ↑)

2
3

3 n
1
3
e↑
∂n(1)e↑
∂ξ , (18)

From the z-component of the electron momentum
equation having the spin-down state:

∂ϕ(1)

∂ξ =
(2µ↓)

2
3

3 n
1
3
e↓
∂n(1)e↓
∂ξ . (19)

From Poisson’s equation:

µ↑n(1)e↑ + µ↓n(1)e↓ = n(1)i , (20)

On solving (16)–(19), the phase velocity for IA cnoidal
waves having both spin-up and spin-down states of degen-
erate electrons is obtained as

vph = kz

⎯⎸⎸⎷ 2 2
3

3(µ↑
1
3 + µ↓

1
3 )

(21)

On integrating (16)–(19) and applying some algebraic
manipulations, we get the following relations:

n(1)i =
k2z
v2ph

ϕ(1) + C1(τ), (22)

u(1)iz =
kz
vph

ϕ(1) + C2(τ), (23)

n(1)e↑ =
3

(2µ↑)
2
3
ϕ(1) + C3(τ), (24)

n(1)e↓ =
3

(2µ↓)
2
3
ϕ(1) + C4(τ). (25)

where C1(τ), C2(τ), C3(τ), and C4(τ) are the integration
constants, which may depend on τ but independent of ξ .

Collecting the next higher-order terms of ε in the ion
continuity equation, we have

−vph
∂n(2)i
∂ξ +

∂n(1)i
∂τ + kx

∂u(2)ix
∂ξ + ky

∂u(2)iy
∂ξ

+ kz
∂u(2)iz
∂ξ + kz

∂
∂ξ (n

(1)
i u(1)iz ) = 0. (26)

Collecting the next higher-order terms of the z-
component of the momentum equation of ions, we have

−vph
∂u(2)iz
∂ξ +

∂u(1)iz
∂τ + kzu(1)iz

∂u(1)iz
∂ξ = −kz

∂ϕ(2)

∂ξ . (27)
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The next higher-order terms of the z-component of
the momentum equations of electrons having spin-up and
spin-down states give the following equations:

kz
∂ϕ(2)

∂ξ −
(2µ↑(↓))

2
3

3 kz
∂n(2)e↑(↓)
∂ξ +

H2

4 k3z
∂3n(1)e↑(↓)
∂ξ3

+
(2µ↑(↓))

2
3

9 kzn(1)e↑(↓)

∂n(1)e↑(↓)
∂ξ = 0. (28)

The next higher-order terms of the Poisson’s equation

∂2ϕ(1)

∂ξ2 = µ↑n(2)i↑ + µ↓n(2)i↓ − n(2)i . (29)

On simplifying (26)–(29) by eliminating the second-
order quantities and making use of the boundary condi-
tions ∂C1(τ)

∂τ = ∂C2(τ)
∂τ = ∂C3(τ)

∂τ = ∂C4(τ)
∂τ = 0, we obtain the

following form of the KdV equation:

∂ϕ(1)

∂τ + Aϕ(1) ∂ϕ(1)

∂ξ + B ∂
3ϕ(1)

∂ξ3 + C ∂ϕ
(1)

∂ξ = 0 (30)

where thenonlinear coefficientA, dispersion coefficientB,
and the coefficient C are given as

A =
3kz
2

(︃
1 − 1

2 4
3 (µ↑

1
3 + µ↓

1
3 )

)︃
,

B =
v3ph
2k2z

(︃
1 +

(1 − k2z )
Ω2 − 9H2

2 4
3 (µ↑

1
3 + µ↓

1
3 )

)︃
,

C =
v3ph
2k2z

⎛⎝ k4z
v4ph

C2 −
µ

1
3
↑

2 2
3
C3 −

µ
1
3
↓

2 2
3
C4

⎞⎠. (31)

In the limiting case, when coefficient C vanishes in
(38) of [20] and in (29) of [21], one can get the KdV equa-
tion, which agrees with (30) (for C = 0) in the present
investigation.

4 Cnoidal Wave Solution of the KdV
Equation

The stationary solution of (30) is obtained by using the
transformation η = ξ − U1τ; here, U1 is velocity of non-
linear cnoidal waves. By changing (30) into η coordinate
and applying some algebraic simplifications, the energy
balance equation is obtained as

1
2

(︂
∂ϕ
∂η

)︂2
+ V(ϕ) = 0, (32)

where V(ϕ) is the Sagdeev potential, which is given as

V(ϕ) =
A
6Bϕ

3 − U
2Bϕ

2 + ρ0ϕ − 1
2E

2
0 (33)

ρ0 and E0 are the integration constants represent-
ing the charge density and the electric field, respectively.
U = U1 − C and E20/2 are the total energy of oscillations.
By using the initial boundary conditions ϕ(0) = ϕ0 and
∂ϕ(0)
∂η = 0, the expression for electric field E0 is obtained

as

E20 =
A
3Bϕ

3
0 − U

B ϕ2
0 + 2ρ0ϕ0 (34)

Substituting (33) and (34) in (32) and after somemath-
ematical calculations, we obtain(︂

∂ϕ
∂η

)︂2
=

A
3B (ϕ0 − ϕ)(ϕ − ϕ1)(ϕ − ϕ2) (35)

where ϕ1 and ϕ2 are the real roots of Sagdeev potential,
which are given as

ϕ1,2 =
3
2

[︃
U
A − ϕ0

3 ±
√︂

1
2(β1 − ϕ0)(ϕ0 − β2)

]︃
, (36)

and

β1,2 =
U
A ± 2

√︂
U2

A2 − 2ρ0
B
A , (37)

To find the periodic wave solution of IA waves, the
inequalities β2 ≤ ϕ0 ≤ β1 or β1 ≤ ϕ0 ≤ β2 must be sat-
isfied. The periodic wave solution (31) of [30] is given
as

ϕ(η) = ϕ1 + ϕcncn2(Gη,m) (38)

where cn is the Jacobian elliptic function, and the param-
eters m and G are defined as m2 = (ϕ0−ϕ1)

(ϕ0−ϕ2) and G =√︁
A

12B (ϕ0 − ϕ2), where m2 is varied as 0 ≤ m ≤ 1. The
amplitude and the wavelength of the cnoidal wave are
defined as ϕcn = (ϕ0 − ϕ1) and λ = 4

√︁
3B

A(ϕ0−ϕ1)K(m),
where K(m) is the complete elliptic integral of the first
kind.

For the case, m → 1 (E0 = ρ0 = 0) at ϕ1 = ϕ2 =

0, ϕcn = ϕ0 = 3U
A = ϕm, G =

(︁
Aϕ0
12B

)︁1/2
=

(︁
U
4B

)︁1/2
= 1

w ,
and cn δ = sech δ, the cnoidal wave solution reduces
to the following solitary wave solution [31]

ϕ(η) = ϕmsech2
(︁ η
w

)︁
, (39)

where ϕm = 3U
A and w =

√︁
4B
U are the peak amplitude

and the width of the IA solitary waves, respectively.
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It is evident from (21), (31), and (39) that the propa-
gation characteristics of IA cnoidal and solitary waves
show the dependence on various plasma parameters such
as density polarisation ratio (via µ), direction cosine
(via kz), quantum parameter (via H), and ion-cyclotron
frequency Ω.

5 Numerical Analysis
In the previous section, we have described the dynamics
of IA cnoidal waves analytically in a magnetised quantum
plasma in the presence of degenerate electrons with sep-
arated spin-up and spin-down population. In the present
investigation, numerically it is confirmed that the nonlin-
ear coefficient (A) and dispersion coefficient (B) of (31) are
always positive. Hence, there is the formation of only com-
pressive (positive potential) IA cnoidal and solitary waves.
However, in the previous study, Ahmad et al. [20] derived
the Zarkharov-Kuznetsov equation and obtained only neg-
ative potential solitary structures. In other study, Hussain
and Mahmood [21] studied the oscillatory and monotonic
shock structures by varying the spin-polarisation density.
We have focused our analysis to study numerically the
effects of various plasmaparameters and spin polarisation
density on the propagation characteristics of IA cnoidal
waves and also discussed the existence of solitary waves
in the limiting case in the given magnetised quantum
degenerate plasma. In our present work, we have mainly
analysed the effects of density of spin-up and spin-down
electrons through the density polarisation ratio (i.e. µ) on
the maximum amplitude of cnoidal waves. For numeri-
cal analysis, the plasma parameters are chosen as n0 =
1026 −1029cm−3, B0 = 103 −104G, and the temperature
of the system is 105K in the dense astrophysical plasma
regions of white dwarfs [32, 33]. We have chosen H = 0.2
for various plots with magnetic field intensity B0 = 104G,
Fermi temperature TF = 105K, and plasma density n0 =
1027cm−3.

Figure 1 presents the variation of phase velocity vph
with µ for different values of direction cosine (via kz).
It has been found that with increase in the value of µ,
the phase velocity (vph) decreases, whereas as the value
of kz rises, there is enhancement in the value of phase
velocity. It can be well explained from the expression of
phase velocity given by (21). The phase velocity is directly
proportional to the direction cosine kz and inversely pro-
portional to the density polarisation ratio, which lead
to the aforementioned variation in the characteristics of
phase velocity. The variation in the maximum amplitude
of cnoidal waves and the depth of corresponding Sagdeev

0.2 0.3 0.4 0.5 0.6
µ

1.5

2.0

2.5

3.0

vph

Figure 1: (Colour online) Variation of the phase velocity vph vs. µ
for the different values of kz. Solid (black) curve: kz = 0.75; dotted
(red) curve: kz = 0.85; dashed (blue) curve: kz = 0.95.

potential is analysed using (33) for different values of ion-
cyclotron frequency (Ω) with µ = 0 and is depicted in
Figure 2a. Clearly, the solid (black) curve represents the
Sagdeev potential corresponding to IA solitary waves with
ρ0 = 0 and E0 = 0, whereas for finite value of ρ0(=0.3)
and E0(=0.2), the other curves represent the Sagdeev
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Figure 2: (Colour online) Variation of (a) Sagdeev potential of IA
cnoidal waves V(ϕ) vs. ϕ, (b) phase plot for ion IA cnoidal waves
for different values of Ω with µ = 0, kz = 0.30, H = 0.2, U = 0.3,
E0 = 0.2, and ρ = 0.3. Dashed (red) curve: Ω = 0.35; dotted (blue)
curve: Ω = 0.37; dot-dashed (green) curve: Ω = 0.39; solid (black)
curve: soliton with Ω = 0.35, ρ0 = 0 and E0 = 0.
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potential corresponding to the IA cnoidal waves in a
quantum degenerate plasma. The roots ϕ0, ϕ1, and ϕ2
given in (38) depict the motion of the pseudoparticle.
The domain between the roots ϕ1 < ϕ < ϕ2 confines the
back-and-forth periodic oscillations of the pseudoparti-
cle, and it cannot reach point ϕ0 because of the potential
barrier. In Figure 2a, the rise in the value of Ω enhances
the maximum amplitude and depth of the Sagdeev poten-
tial V(ϕ). This occurs due to the fact that V(ϕ) is depen-
dent on the dispersion coefficient (B), which contains
the quantity ion-cyclotron frequency (Ω). The maximum
amplitude of IA cnoidalwave increases as Ω (ion-cyclotron
frequency) increases, and the depth of the Sagdeev poten-
tial increases along the negative axis of V(ϕ). As V(ϕ)
is dependent on coefficient B (which is sensitive to any
variation in Ω), any change in Ω leads to change in B,
which subsequently changes V(ϕ). In this case, when Ω
increases, B decreases [see (33)]. With the small value of
B in the denominator of (33) makes V(ϕ) larger. Also, the
Sagdeev potential V(ϕ) corresponding to the IA cnoidal
wavesdoesnot vanishatϕ = 0,whereas for the IA solitary
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Figure 3: (Colour online) Variation of (a) Sagdeev potential of IA
cnoidal waves V(ϕ) vs. ϕ, (b) phase plot for ion IA cnoidal waves
for different values of Ω with µ = 1, kz = 0.30, H = 0.2, U = 0.3,
and ρ = 0.2. Dashed (red) curve: Ω = 0.35; dotted (blue) curve:
Ω = 0.37; dot-dashed (green) curve: Ω = 0.39; solid (black) curve:
soliton with Ω = 0.35, ρ0 = 0, and E0 = 0.

wave V(ϕ)|ϕ=0 = 0 (for ρ0 = 0 and E0 = 0). The phase
plot, which shows the similar variation in the charac-
teristics of IA cnoidal waves with the varying value of
ion-cyclotron frequency (via Ω), is shown in Figure 2b.
The black solid curve, called the separatrix, represents
the characteristics of IA solitary waves, whereas all other
curves lying inside the separatrix are characterised as
the IA cnoidal waves. The pseudoparticle for IA cnoidal
wave oscillates between the two real zeros of the Sagdeev
potential, ϕ1 and ϕ2, as clearly depicted in Figure 2a.
This means that potential structure is reappearing, and
the distance between recurrences of wave shapes corre-
sponds to one wavelength. Also, in Figure 3a, Sagdeev
potential V(ϕ) is plotted against ϕ for µ = 1 for different
values of ion-cyclotron frequency Ω. From Figure 3, we
have depicted that with the increase in value of Ω, there is
also enhancement in bothmaximum amplitude of cnoidal
waves and depth of the Sagdeev potential. On compar-
ing both Figures 2 and 3, it is observed that the maximum
amplitude of cnoidal waves for zero spin polarisation case
µ = 0 is smaller than the maximum amplitude of cnoidal
waves for strongly spin-polarised case µ = 1.
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Figure 4: (Colour online) Variation of (a) Sagdeev potential of IA
cnoidal waves V(ϕ) vs. ϕ, (b) phase plot for ion IA cnoidal waves
for different values of direction cosine kz with µ = 0, Ω = 0.35,
U = 0.3, H = 0.2, E0 = 0.2, and ρ = 0.3. Dashed (red) curve:
kz = 0.30; dotted (blue) curve: kz = 0.32; dot-dashed (green)
curve: kz = 0.34; solid (black) curve: soliton with kz = 0.3, ρ0 = 0,
and E0 = 0.
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The influence of the varying value of the parameter
kz (i.e. direction cosine) on the characteristics of Sagdeev
potential andphaseplaneplot is depicted in Figure 4.With
the increase in the value of kz, both the maximum ampli-
tude and depth of the Sagdeev potential are reduced as
shown in Figure 4a. The phase plane plot for the differ-
ent values of kz is shown in Figure 4b. It is clearly visible
from both figures that for ρ0 ̸= 0 and E0 ̸= 0, the phase
curves show the repetitive behaviour on the same path.
The pseudoparticle gets reflected back due to the potential
force and starts oscillating between the two points when-
ever dV(ϕ)/dη = 0 (i.e. when the pseudoparticle veloc-
ity becomes zero) as dV(ϕ)/dϕ does not get vanished.
In physical space, one wavelength is equivalent to one
cycle of the phase plot completed by the pseudoparticle.
Hence, as the value of direction cosine kz rises, there is
fall in the wavelength of IA cnoidal waves as depicted
in Figure 4b. Figure 5a depicts the variation of Sagdeev
potential for the different values of kz for µ = 1. Here,
with the increase in value of kz, the maximum amplitude
and depth of the Sagdeev potential of IA cnoidal wave are
decreased. But again, on comparing both Figures 4 and 5,
there is significant variation in the maximum amplitude
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Figure 5: (Colour online) Variation of (a) Sagdeev potential of IA
cnoidal wave V(ϕ) vs. ϕ (b), phase plot for ion IA cnoidal waves
for different values of direction cosine kz with µ = 1, Ω = 0.35,
U = 0.3, H = 0.2, E0 = 0.2, and ρ = 0.2. Dashed (red) curve:
kz = 0.30; dotted (blue) curve: kz = 0.32; dot-dashed (green)
curve: kz = 0.34; solid (black) curve: soliton with kz = 0.3, ρ0 = 0,
and E0 = 0.

of Sagdeev potential of IA cnoidal wave. The maximum
amplitude of Sagdeev potential of IA cnoidal wave for zero
spin polarisation ratio µ = 0 is smaller than the case for
spin polarisation ratio µ = 1.

Figure 6a and b illustrate the variation of pulse profile
of positive potential IA cnoidal waves for different values
of ion-cyclotron frequency (via Ω) for µ = 0 and µ = 1,
respectively. Themaximum amplitude of IA cnoidal waves
increases with the increasing value of Ω. It can be seen
that the amplitude for µ = 1 is larger as compared to the
amplitude of pulse profile for µ = 0. In the limiting case
(for ρ0 = 0 and E0 = 0), we have also depicted the pulse
profile of IA solitary waves in both figures. This can be
verified from the fact that (33) is dependent on dispersion
coefficient B, which is sensitive to ion-cyclotron frequency
Ω, and any change in Ω causes a variation in dispersion
coefficient B, which leads to the change in the maximum
amplitude of IA cnoidal wave profile. The solid (black)
curve represents the wave profile of IA solitary waves,
which does not repeat itself like IA cnoidal waves and
hence represents the characteristics of IA solitarywaves. It
is remarked that density spin polarisation has a significant
influence on the propagation characteristics of cnoidal as
well as solitary waves.
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Figure 6: (Colour online) Variation of pulse profile of IA cnoidal wave
(a) µ = 0, (b) µ = 1 for different values of Ω with U = 0.3, H = 0.2,
E0 = 0.2, and ρ0 = 0.3. Dashed (red) curve: Ω = 0.35; dotted
(blue) curve: Ω = 0.37; dot-dashed (green) curve: Ω = 0.39; solid
(black) curve: soliton with Ω = 0.35, ρ0 = 0, and E0 = 0.



N. Kaur et al.: Ion-Acoustic Cnoidal Waves with the Density Effect of Spin-up and Spin-down Degenerate Electrons | 111

6 Conclusions
The propagation characteristics of IA cnoidal waves are
studied in the presence of magnetic field considering
degenerate electrons with spin-up and spin-down states
in quantum plasmas. We have considered that the Fermi
step of the spin-up electrons is shorter than the Fermi step
of the spin-down electrons, and due to this fact, there is
no contribution of the outer-species collisions. Also, we
are considering spin-up and spin-down electrons as dif-
ferent species, and their direction is related to a prefer-
able direction in space for uniformexternalmagnetic field,
which lies along the z-direction in the present case. The
equations of state for the spin-up and spin-down elec-
trons are different due to the presence of external mag-
netic field, which changes an equilibrium concentration
of each species. For nonlinear analysis, we have derived
KdV equation by using the reductive perturbationmethod.
Only positive potential (compressive) IA cnoidal waves
and in the limiting case solitary waves are observed in
the given plasma system. The influence of density spin
polarisation via µ [for strongly spin-polarised (µ = 1),
zero spin-polarisation density (µ = 0)] and other plasma
parameters such as ion-cyclotron frequency (via Ω), quan-
tum parameter (via H), and direction cosine (via kz) has
been analysed numerically on the dynamics of compres-
sive cnoidalwaves. Thephase velocity for IA cnoidalwaves
rises with the increment in the value of kz. The maximum
amplitude of IA cnoidal waves and depth of the Sagdeev
potential are enhanced (reduced)with the rising value of Ω
(kz). On comparing the variation of Sagdeev potential with
the different values of Ω and kz for both cases of spin polar-
isation (i.e. for µ = 0 and µ = 1), we have concluded that
there is growth in the maximum amplitude of IA cnoidal
waves as the value of µ changes from µ = 0 to µ = 1. It is
emphasised that spinpolarisationplays a very vital role for
the variation in the characteristics of IA cnoidalwaves. The
findings of the present investigation may have paramount
importance in different environments of dense astrophys-
ical plasma regions, specifically like neutron stars, white
dwarfs, and so on.
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