DE GRUYTER

Z. Naturforsch. 2020; 75(4)a: 301-315

Sanjay Kumar Pandey* and Jagdish Prasad Maurya
A General Viscous Model for Some Aspects of

Tropical Cyclonic Winds

https://doi.org/10.1515/zna-2019-0118
Received April 11, 2019; accepted January 14, 2020; previously
published online March 6, 2020

Abstract: A previous investigation found that the existence
of double exponential terms is a reason for rapid intensi-
fication of cyclonic winds with the assumption of a lin-
earised form of viscosity. Here, we consider viscosity of
general type and still get similar terms. A perturbation
technique is applied to the solution. The domain of anal-
ysis is split into two regions: an inner one that experi-
ences updraft, and an outer one that possesses no verti-
cal component of velocity but does have azimuthal and
radial components. It is observed that the radial pressure
difference between an arbitrary radial distance and the
point of the maximum wind diminishes with height, time,
and Reynolds number. The azimuthal velocity, close to the
ground, in region 1 increases fast with time, but its depen-
dence diminishes at a height a little above the ground. At
a considerable height, time ceases to be a factor, and fur-
ther, above that, trends reverse. Perturbation terms behave
almost identically with the terms without perturbation.
The significance of their contribution depends on the mag-
nitude of the Reynolds number and, hence, the viscosity.
Trends for region 2 are qualitatively similar to those in
region 1 but differ quantitatively. It is also observed that
the central pressure drop decreases with time.

Keywords: Exact Solution; Hurricane; Intensification;
Tropical Cyclone; Viscous Model.

1 Introduction

Cyclone is a weather-related phenomenon. It develops on
the surface of tropical oceans due to atmospheric pressure
disturbances. It is of huge size and is known by various
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names in different geographical zones. In the Atlantic and
the Eastern North Pacific, it is known as hurricane with
wind speeds exceeding 33 ms !, whereas it is referred
to as typhoon in the Western North Pacific and tropical
cyclone in the Central and Eastern Pacific basins. It has
enormous impacts on the society. Further details are given
in subsection 2.1 under the subheading “The Physical
Model.”

The scientific community is looking for answers to
many fundamental questions related to cyclones. Unex-
pected variations in the wind direction from the bottom to
the top of the hurricane, radial growth in the wind angu-
lar momentum in the boundary layer, unpredicted effect
of ocean spray, enormous rise in the upper boundary layer
temperature, etc., are a few of them. Outflow is a more
recent aspect that is under study and worth mentioning
[1-3]. Genesis and maturing are still underinvestigated.

Analytical solutions of the equations governing vari-
ous atmospheric vortices such as dust devils, tornadoes,
cyclones, etc., are always a challenging task due to the
complex formulations of the atmospheric vortices. How-
ever, in this paper, we intend to focus only on cyclonic vor-
tex. Here, we seek to answer some of the questions related
to cyclones by providing an exact analytical solution of
the equations governing the vortex motion of cyclones, of
course idealized in some or the other way.

One of the most important idealized considerations
for seeking a solution of a cyclone model is related to
Coriolis force. The radial pressure gradient per unit mass
balances approximately the sum of the centrifugal force
and the Coriolis force [4, 5]. This balance refers to gra-
dient wind balance. Aircraft measurements also endorse
the validity of gradient wind balance in the lower to mid-
dle troposphere in tropical cyclones [6, 7]. Observations
and modelling, however, revealed that at the upper level,
such storms can deviate from balances but are valid every-
where else in the hurricane vortex [1, 5, 8]. Cohen et al.
[1, 9] also refer to recent analyses of weather research and
forecasting simulations to proclaim that the flow around
high-pressure regions above the top of hurricanes at 15-
km altitude violates the gradient wind balance. Bryan and
Rotunno [10] also, while analyzing and discussing the
maximum intensity of a tropical cyclone, insisted on more
complete models to account for gradient wind imbalance.
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Analytical solutions for a full time-dependent cyclonic
vortex have not yet been achieved. The current analyti-
cal solutions extend the Rankine combined vortex model,
which is the first and foremost popular model for the
azimuthal velocity [11]. In this model, the azimuthal veloc-
ity depends only on the radial coordinate, while the radial
and vertical velocity components are considered zero. This
was used to explain observed tangential wind and to
deduce pressure distribution in whirlwinds [12-20]. The
experimental observations match this formulation to a
large extent. The main problem with the Rankine vortex
model is that it has a sharp peak at the wall of the core.
Later, Burgers [21] and Rott [22] independently obtained
a solution for the viscous vortex motion of the steady
incompressible flow embedded in a radially inward stag-
nation point flow over a plane boundary with all non-
zero velocity components, which was an improvement
over the Rankine model. Both the models are applicable
for single-celled vortex flow. Some unrealistic aspects of
the Burgers—Rott vortex, however, are that the radial and
vertical velocity components increase linearly to infinity.

Kieu and Zhang [23] presented an analytical model of
tropical cyclones to investigate rapid intensification from
the perspective of rotational growth and central pressure
falls. They considered a simplified version of the primi-
tive equations with a linear first-order frictional term and
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separated the entire domain into two regions, viz., region 1,
is of a fixed radius, which is referred to as the radius of
maximum wind, and contains the maximum exponential
wind growth, and region 2, which lies outside region 1,
has no vertical component of velocity. The velocities for
the two regions were derived separately before stepping
into further discussion. If we compare their division of
regions with the existing nomenclature used for hurri-
cane, we find that region 1 comprises the eye and the
eye wall, while region 2 lies outside the eye wall (Fig. 1).
The governing equations were solved for the axisymmet-
ric flow by prescribing a time-dependent vertical velocity
with exponential growth in region 1 but without growth in
region 2.

For rapid intensification of tropical cyclones, they
eventually held the double exponential term responsible,
which exists in the azimuthal velocity of region 1 but not
in the azimuthal velocity of region 2. They also added that
most of the existing theoretical idealized models are based
on the balanced vortex model in association with the
Sawyer—Eliassen transverse circulation equation [24-32].
Models, based on balanced vortex, combine the hydro-
static and gradient wind balances with radial momentum
and thermodynamic equations. The authors concluded in
their study that the relative difference between the exact
solution and gradient wind approximation at the initial
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Figure 1: Schematic diagram of the physical model of hurricane. The narrow columnar geometry is the relatively motionless warm region
called eye placed symmetrically with respect to the vertical axis. The eye is surrounded by the pure updraft zone, within the vertical layer
called the eye wall, which witnesses a heavy downpour. The outermost zone contains violently rotating wind with extremely moist air at the
lower altitudes, and its radial inflow downdraft supplies moisture for updraft through the boundary layer.
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time approaches zero irrespective of the magnitude of the
difference. They further added that the gradient balance
relation is more easily satisfied in region 2.

Our curiosity about whether a double exponential
term is responsible for intensification of tropical cyclones
even when the viscosity is of the general type led us, unlike
them, to consider a much more general viscous term. How-
ever, in order to get reliable inferences, we are required
to compromise with several realities of cyclones such as
gradient wind imbalance at high altitudes [1, 9], nor we
claim to achieve an analytical solution for a full time-
dependent cyclonic vortex. Hence, this makes it an ide-
alized cyclone but helps to investigate particular aspects.
Further, a perturbation technique is required to solve
because of the additional consideration of general viscous
effects.

2 Mathematical Formulation of the
Problem

2.1 The Physical Model

A cyclone is a three-dimensional atmospheric phe-
nomenon that combines a primary (i.e. horizontal) cir-
culation with a secondary (i.e. in, up and out) circulation
(see Fig. 1). In the inner cyclone, there is a region referred
to as the eye, which is a vertical column of radius 20 km
and is wrapped within another region known as the eye
wall with an external radius 3050 km. Above the bound-
ary layer of thickness 2-3 km, the radius of the external
eye wall changes with height [32]. The eye wall is made up
of strongly revolving winds together with radial inflows,
which are maximum at the bottom. The vertical velocity,
which is ideally contained within the eye wall, is weaker
than the radial and azimuthal winds and further weak-
ens outside the eye wall. In the outermost part of radius
400-600 km, surrounding the eye wall, the relative rota-
tion of the cyclone declines to zero. The wind along the
radial direction points inward at the bottom and outward
at the top of the hurricane. The entire vortex is vertically
layered into the bottom hurricane boundary layer and
the upper adiabatic layer with the total cyclonic height
20-30 kms [32].

The radial inflow in the hurricane boundary layer
is the essential wind for the genesis of hurricane vor-
tices, and when a hurricane matures, the azimuthal com-
ponent of the wind velocity is much stronger than the
radial and vertical components. These cyclones have been
extensively investigated during the last seven decades.
However, an exact analytical model is not available for
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the circulation of the real cyclonic vortex and nor even
for pressure distribution within and outside the vortex.
Most studies considered either the linear form of the inflow
radial component of velocity or neglected it in comparison
with the azimuthal component.

As an attempt to investigate some aspects of the
dynamics of an ideal atmospheric vortex, we try to present
new analytical solutions of general viscous incompress-
ible equations governing cyclones. As discussed in the
Introduction section that gradient wind imbalance at high
altitudes is an established fact, this needs to be taken care
of while trying to model a fully developed cyclone. This
will be unfair to hide that despite this fact, due to several
complications, we shall consider it a balance for the entire
height of cyclone in the model.

2.2 Mathematical Model of Cyclonic Vortex

A mathematical formulation of the dynamics of cyclone,
whose structure was described above, is given below.

We opt for the cylindrical polar coordinates (r, 6, z) for
the analysis, r, 0, z, respectively, being the radial, angu-
lar, and vertical coordinates. The vertical coordinate is a
log-pressure coordinate defined as z = HIn(p/ps) with
respect to the reference pressure ps with p being the pres-
sure and H the scale height of the cyclone. It is observed
that a rotating fluid mass in the form of a mature vortex
does not seem to differ much practically at different angles
during its rotation about the vertical axis. Thus, it is rea-
sonable to consider the flow as symmetric about the axis
of rotation. This removes all terms where the angular coor-
dinate 0 is involved. Consequently, the three-dimensional
model of atmospheric flows under the elastic and axisym-
metric approximation [2, 33] of an incompressible Newto-
nian viscous fluid may be given by

%*“%W% ? fv= %%"‘Fu, M
%+u%+w%+“?"+fu:ﬂ, @)
‘ZTVtV u‘?TVrV W%;V %%+b+FW, 3)
%+u%+N2W=Q, )

where u, v, and w are the three wind components,
respectively, in the r, 8, z directions, p is the pressure,
b =g(T Tyer)/ Trer is the buoyancy with Tpe¢(z) being the
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reference temperature of the undisturbed atmosphere, F,,
F,, F,, are frictional forces, f is the Coriolis parameter, and
N? is the Brunt-Vaisala frequency.

Characteristic quantities are required to make various
parameters dimensionless. The radius, symbolized as a, of
region 1 consists of the eye and the eye wall, and could be
considered an appropriate characteristic length. The other
candidate is the radius of the core region, at the periphery
of which the azimuthal wind velocity is maximum. How-
ever, it is relatively more flexible. Moreover, the azimuthal
wind velocity v, at the core is very likely a characteris-
tic velocity for non-dimensionalisation. Therefore, the sys-
tem of equations (1)-(4), along with the boundary condi-
tions are non-dimensionalised in terms of the following
dimensionless parameters superscripted with *:

* t * r * z * u

t =, r =—,zZ =—,u = —,
T a a Ve

* 1% * w * p

vV = —,w = — = = (6)
ve' v'? TP

where T and P will be defined below. Further, we consider
b constant for analytical solutions.

The dimensionless form of equations (1)-(4), by drop-
ping asterisks, are transformed to

ou ou ou v? _op
§+u§ weo & Sv= §+Fu, @
ov ov ov . uv _
5?+u5;+w52+7;+5u—Fm (8)
ow ow ow _  0p
5?+u§?+w5;— 5}+b+FW ©)]
10(0ru) , ow w _
ror ez (10)
Here,
s=% m=H p—p2 71=2
Ve a Ve

The classical Rankine combined vortex is the solution
of the steady two-dimensional Euler equation governing
an ideal inviscid fluid. The velocity field in this solution
is purely azimuthal and is given, in cylindrical polar coor-
dinates, by g = [0, v(r), 0] where v(r) ={r/2,r a,and
v(r) = {a*/2r, r > a. This flow consists of the circular
inner region (r  a) of radius a moving with constant vor-
ticity { surrounded by irrotational flow everywhere out-
side the inner region.

We seek to apply, here, the method of separation
of variables and, hence, assume the azimuthal velocity
as the product of g(r), a function exclusive of r, and
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F(z, t), a function only of z and t, but not of r, i.e.
v(r, z, t) = g(r) . F(z, t). Following the Rankine combined
vortex model, we further assume the radial variation g(r)
of the gzimuthal velocity in the non-dimensional form

r/2for0 r a
80 = ((az/eror r>a,
maximum wind. Further, in order to obtain a more general
z - dependent solution, we consider a piecewise solution
in r with the azimuthal velocity taken as

, Where a is the radius of the

rFlgz,t)forO r 1 and 0 z H.
r Fy(z,t)forr>1
(1)
Kieu and Zhang [23] followed the theoretical frame-
work established by Charney and Elliasen [25], Yanai [34],
and Ooyama [26] for the secondary circulation growth in
terms of an instability mode.
We consider a similar diabatically induced ascending

velocity

v(r,z, t) =

w(r, z, t) = Wy sin(/lz)eﬁt,

forr 1landw(r,z,t)=0for r>1, (12)
where Wy, B, A, are constants non-dimensionalised,
respectively, by vc, a/vc, a. This is to be noted that there
cannot be any sort of discontinuityatr = 1,as w(r, z, t) =
Oatr 1,zbeinganintegral multipleofr/Aatr = 1.Kieu
and Zhang [23] argue that 8, the growth rate of the vertical
flow, is affected by friction and surface heat fluxes. Hence,
it is a function of the axial coordinate z and the buoy-
ancy frequency. However, it may be approximated to a con-
stant as it is dimensionally of the order of 10 ¢-10 °s !
(Ooyama [26]).

The dimensionless governing equations (7)-(9) are
now constrained by the following boundary conditions:

u(r, z, t)j,—o = 0, w(r,z, t)j,—, =0, v(r,zt)j,—,=0.
(13)

Our purpose is to examine how the primary circula-
tions evolve with time if the secondary circulations grow
exponentially as often assumed in previous investigations.
Of course, such an exponential growth will no longer be
valid as tropical cyclones reach their maximum intensity,
so the vertical profile given in equation (12) should be
limited to the rapid intensifying period only [23].

2.3 Analytical Solutions

In this section, we present an analytical solution for time-
dependent viscous incompressible flows in the cyclonic
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vortex governed by the azimuthal momentum equation
(8). In equation (8), F, represents the nondimensional
viscous term in the azimuthal direction. Most of the ear-
lier researchers considered Fy either negligibly small or of
linear form [23]. However, we assume the general form

o
0z2

o

or?

10v v

ror r?

= 1
FV_R76

Now, we solve the following equation for azimuthal
velocity separately for the two regions (1) 0 r 1 and
(2) r > 1 by supplying radial and vertical velocities

ov ov oV uv
+ —+

— — 4+
ot TUor tWoer o o
2 2
_ 1 ov_ 1ov v 0% (14)
Re or2 ror r2 0z2
2.3.1 Solution for Region 1
Assuming  wi(r,z, ) = W(z)ef!, where W(z) =

Wy sin(Az) as in equation (12), the radial wind in region 1
with vanishing radial velocity at r = 0 may be obtained,
from the continuity equation (10), as

Wo 1
ui(r,z, ) = 2% sin(Az)

Bt
> Acos(Az) e

(15)

Using equations (12) and (15) into equation (14), we
obtain the following equation for the tangential wind in
region 1:

ov1 . ovy gt
5t + Wy sm(/lz)¥e
W 1 . ovi Vi Bt
+ = H sin(Az) Acos(Az) > + - +S e
_ 1 62v1 1 aV1 Vi 62V1
“Re o2 Tror 2oz a6)

The only solution separable in the radial and axial-
temporal coordinates of equation (16) can be of the form
v1(r, z, t) = rF1(z, t). Hence, using this form in equation
(16), we get

oF; . oF;
>t + Wy sm(/lz)¥

+Wo

1 sin(Az) Acos(Az) (2F1 +S) P

2 Hy

17)
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In terms of G(z, t)(=F1(z, t) + S/2), equation (17) is
transformed to

oG . oG
5t + Wy s1n(/\z)$
1 . Bt _ 0°G
+ H—lsm(/lz) Acos(Az) G e =€3 5 (18)

We suppose that the vortex Reynolds number Re is
very large or equivalently that e = Re ! 1. In view of
this, we seek an asymptotic solution of equation (18) of the
form

G(z, t) = Go(z, ) + Gi(z, ) + €2Ga(z, ) + -+ . (19)

Assuming that this series expansion converges for
higher orders, we can obtain a solution for G(z, t) for vari-
ous orders of € by substituting equation (19) into equation
(18). However, in order to avoid unnecessary derivations in
viewof € 1, we present the solution only up to the first
order of €. Thus, equations of the zeroth and the first order
of € are

€ : 5t + Wy sin(Az) 32
+ Hisin(/lz) Acos(Az) Go ePt =0, (20)
1
€ : 5t + Wy sin(Az) Y
2
+ isin(/lz) Acos(Az) Gi Pt = 9" Go (21)

H1 0z2 ’

A possible solution of equation (20) is of the form
Go(z, t) = GE)(Z) exp yeﬁ £ (22)

where y is an arbitrary positive dimensionless number.
Substituting equation (22) into equation (20), followed by
integration, the explicit form of Go(z, t) may be given by

dGy 1 Bu '
- Y = - + -
e o, Acot(Az) Wo cosec(Az) Go, (23)
GO(Zy t)
2(Bu/AWo)
= Ke “Hfsin(Az)g AHAWD) 3 cos
exp pelt | (24)

where K is an integration constant that determines the
initial strength of the vortex.
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The zeroth-order tangential wind velocity is given by

vio(r, 2, t)

=r Ke (Z/Hl)fsin(/lz)g(l BulAWo)

2(Bu/AWo) #

exp uef! (25)

S
2cos — =,
cos 3

2

which has an infinite number of possible solutions
depending on the values of u. However, the requirements
for the regularity of (25) at z = 0 impose a strong restric-
tion in the range of u. Thus, for a regular solution of equa-
tion (25), we have Su/AWy 1. Following Keiu and Zhang

[23], we take Bu/AWo =1 6, where 0 & 1. This
substitution transforms equation (25) to
s 26
Go(z, t) = 2 Ke @) sin Az cos A72
exp %(1 6)eﬁt , (26)

and the corresponding zeroth-order azimuthal wind veloc-
ity, in terms of §, may be given by

5 1z 29
vio(r,z,t) =r 2 Ke @) gin 22 cos =
AW,
exp To(l 6)exp(Bt) 5 - 27

Now, we seek to solve equation (21) by presenting it in
the form

pt9G1 in(Az) 21
e 5t + Wy sin(Az) 52

1 . _ Bt 0%Go
+ Wy H—lsm(/lz) Acos(Az) G1=e 52

(28)

Assuming Gq(z, t) = I'(z, t)Go(z, t) in equation (28)
and using equation (20), we obtain

peor in(z) oL =
e "5 + Wy sin(Az) 32 N(z,t), (29)
where
Bt 2
_e"fzt) _ pe A6 1) o Az
N(z,t) = Goz, D =e 4 cot >
P2 o1 8, , Az b1 Az
+ ftan 7 ECOt 7
Lt
L@ o Az 1 26 82+1A2
H 2T 2 :
(30)
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The solution of equation (29) is given by (the detailed
analysis is given in Appendix B),
1

1 A% 1) et 5 Az
F(Z,t)—B fexp ZAW()? COt 7 Ill
Ll
P2 &1 s et
+¥exp ZAW()? tal’l2 7 122
L
81 et Az
Eexp AW()F COt 7 133
Ll
2 & e Az
+ H, exp AWy ﬁ tan 2 Iy
L T4
26 82+1 A7 pt
+ iz 2270 m & +;(4),
Hj 2 B
€y
wheren;(A) is oan arbitrary function of A = %ﬁt

1 Az
T, In tan =

, which is, itself, a constant and is given
by equation (B4) in Appendix B. This may be noted that
A has a singularity at z = 0, and hence, ;(A) also has a
singularity at z = 0, which may be eliminated by consid-
ering ;(A) = y a constant. Thus, the first-order solution of

G1(z, t) may be given by

Az ° Az 28
Gi(z,t) =2 Ke @M gin = cos =
1 266 1) Az
E Texp ZAWO? cot > I11
1
22 & 8 et Az
+%exp ZAWO? tan? > I,
1
81 et z
H—lexp AWO? cot > I3
Bt~
+(2 H15)A exp /IWO% tan 72 Iyy
1 '# #
1 26 82+1A° ePt
w2 "
exp %(1 8)ePt (32

With the first-order viscous correction, the tangential
wind velocity, in region 1, is now given by

vi(r,z, t) = r[Go(z, )F1 + I'(z, t)g

S/2] = r¥(z, t), (33)
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where
5 26
Y(z,t) =2 Ke @M gin 22 cos =
" 1
1 1 A%66 1) eft 5 Az
4 - - - 7 i -
1 Re B 4 exp ZAWOﬁ cot 5 I
1
2 Bt
+Wexp ZAWO% tan2 72 Izz
1
A et Az
H—lexp /\Wo? cot 5 I33
1
2 & eft Az
+ - _
T, exp AWy B tan 5 Iy
! I DL
B S
H% 2 n ﬁ 1( ) M
(34)

The radial pressure gradient is obtained using equa-
tions (12), (15), and (33) into equation (7), as

op1 _ , Woe

S 4 Acos(Az)

1 .
o sin(Az)

2w

28+ Wo Hilsin(Az) heos(Az) e+ 2

2
+ WTOA sin(Az) Hi cos(Az) + Asin(Az) 2Pt
1

i
w2 oSy, (35)
Integration of equation (35), from r to 1, gives

pi1(1,z,t) pa(r,zt)

1 weeft 1
= 3 7 H—lsm(/lz) Acos(Az)

1. gt 2A°
2B+ Wy H—lsm()lz) Acos(Az) e +ﬁ

2
Wod sin(Az) = cos(Az) + Asin(Az) et
2 H,
i

+¥2 + Sy (36)
Using equations (12) and (15) into equation (9), the
axial pressure gradient is obtained, as

WoAW,

91 _ 5 sin(z/lz)ezﬁt

0z

2

+b W, ﬁ+% sin(Az)eP". (37)
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Integrating equation (37) from the initial level z, to z,
we get

2
pi(r,z, t) = p1(r, zo, t) + %fcos(zilz) cos(ZAzo)gezﬁt

2
Wo A fcos(Az) cos(/lzo)geﬁt+f5dz.
2o

(38)

Evaluating p1(1, z, t) by substituting r = 1 into equa-
tion (38) and then substituting it further in equation (36),
we get

pi(r,z,t)  pi1(1, zo, t)

1 weeft 1
=—3 4 H—lsm(/\z) Acos(Az)

1 . g, 2A°
28+ Wy H—lsm(/lz) Acos(Az) e +R—e

2
+ Wol sin(Az) 1 cos(Az) + Asin(Az) 2Pt
2 H;
#
2 w3 2Bt
ve SY + chos(z)lz) cos(2Azp)ge

7z

2
Wo A cos(/\zo)geﬁt +

+ e B+ Re fcos(Az) bdz.

2o

(39)

2.3.2 Solution for Region 2

From the continuity equation (10) and assuming
wa(r, z, t) = 0, the radial wind velocity in region 2 may
be given by

Ci(z, t)

ux(r,z, t) = S

(40)

where Ci(z, t), an integral function, is obtained by equat-
ing the radial velocities of the two regions at the outer
boundary of the core, i.e. at r = 1. Thus, the radial veloc-
ity may be given by

ux(r,z, t) = % Slr;glz) Acos(Az) €Pt. (41)

Substitution of u, into equation (15), followed by some
manipulations, yields

wy  Wo 1 proov v

S5t + 2w H sin(Az) Acos(Az) e S5 + - +S
_ aZVZ 10vy Vo aZVZ
¢ e e 2t 42
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A possible separable solution of equation (42) is of the
form v, (r, z, t) = F»(z, t)/r so that we have

oF
ot

O°F, _ Wo sin(Az)

Bt
€52 3 H, Acos(Az) e™'S, (43)

which, itself, is separable in the form F,(z, t) = M(z)eﬂt,
where M(z) satisfies the following equation:

d’M B W, 1 .
9 e M= 2 H sin(Az) Acos(Az) S,
whose solution is
__ o J
M(Z) = cie (ﬁ/e)z + ce (B/€)Z
% Hil sin(Az) Acos(Az) . (44)

The variables F;(z, t) and, hence, M(z) must be finite
for a finite solution of v,(r, z, t), which is possible only
when ¢, = 0, which increases M(z) infinitely. This con-
straint reduces equation (44) to

[ M
M(z) = cie o7
% Hil sin(Az) Acos(Az) .  (45)

Thus, the azimuthal velocity for this region may be
given by

eft
va(r,z, t) = TM(z).

(46)

We obtain ¢; using the second condition, i.e. the
azimuthal velocities v; and v, of the two regions are the
same whent = 0,z = 0, and r = 1. Thus, we have

"C D

S AW, P
nnz)= o 1+ﬁ e Bloz
#
_Wo 1 pt
+ 2+p H sin(Az) Acos(Az) e". 47)

Corresponding radial pressure gradient is obtained
by the application of equations (9), (38), and (47) into
equation (7) and is given by

L}iz = 7”0 i i Bt 1 + &
or 2 . Slll(/\Z) ACOS(/\Z) e ’ B Re
Wo 1 . Bt
72”3 le SIII(AZ) ACOS(AZ) e

2
M g, SM g 48)
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Integrating equation (48) from 1 to r, we get

pZ(r’Z’ t) pZ(]-,Z, t)
Wo 1 . Bt A2
= _— 4+ —
> H sin(Az) Acos(Az) e P Re log,.r
W() 1 1 . ﬁ[
+7 i —
L 72 1 i, sin(Az) Acos(Az) e
2
MT lz 1 e?Pt+ smeft log,r. (49)

3 Results and Discussion

Presented here is an analytical model of an intense ide-
alized hurricane vortex by considering a diabatically
induced ascending motion proposed by Kieu and Zhang
[23]. We further assumed that the vertical velocity is inde-
pendent of the radial coordinate r.

In most of the investigations, the vortex motion was
considered inviscid. However, Kieu and Zhang [23] con-
sidered viscous flow by taking a linear form of viscosity.
Unlike them, we considered the general form and used
a perturbation technique to analyze the contribution of
viscosity to hurricane dynamics despite the fact that the
Reynolds number is very large in such a rotational motion.
Because of the large Reynolds number and highly com-
plicated expressions, we confined the entire solution to
the first order of e = Re !( 1). Besides the azimuthal
velocity, pressure also is worth discussing.

3.1 Analysis of the Solution in Region 1
(r<1)

As per our assumptions made in Section 2, we have only
the azimuthal velocity derived for the two regions viz., the
inner region and the outer region. In the eye wall, updraft
and rotational wind motion about the vertical axis are wit-
nessed. As the vertical velocity is the same as that assumed
by Kieu and Zhang [23], we shall confine the discussion
around the azimuthal velocity.

3.1.1 Azimuthal Velocity

Therole of §, which is a parameter in the formulation of the
azimuthal velocity, the contribution due to the perturba-
tion term and the edge of general viscosity consideration
over the linear form assumed by Kieu and Zhang [23] is
worth discussing.

In order to examine the impact of §, where Bu/AW, =
1 6, 0 6 1 on the unperturbed azimuthal
velocity vig, we plot vyg versus z, displayed in Figure 2,
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against a wide range of § at t = 0 and for A =2, =
0.5, Wo = 0.12, and r = 1, which is the interface of the
two regions. It is observed that the azimuthal velocity
increases while ascending along the vertical axis up to
a certain height and then begins to fall in magnitude.
An interesting observation is that up to that height vy,
the zeroth-order azimuthal velocity increases with § but
coincides at non-dimensional z = 1 86. Trends are exactly
reverse above that. This is almost similar as that Kieu and
Zhang [23] discovered. However, it is not clear how they
non-dimensionalised.

The contribution of the first perturbation term is
another important aspect of this investigation. Accord-
ingly, we plot vip and vyjversus z by varying t in the

121

N 0.8

0.6

0.4

0.2

3.5

Figure 2: The diagram, based on (27), represents the vertical
profile of v, the zeroth-order azimuthal velocity, for t = 0.
A =2, B=0.5 W, =0.12 are the parameters used for the plot.
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range of 03 in Figure 3. The two have similar patterns
with v; exceeding a little bit in magnitude, but both of
them increase with time t. However, the real contribution
of the perturbation term will be much less as it is multi-
plied by € = 1/Re, which is of the order of 10 * for a real
hurricane. The combined effect is displayed in Figure 4a,b,
respectively, for Re = 10, 000 and 100. For comparatively
small Reynolds number, the contribution of the pertur-
bation term, in terms of magnitude, is quite significant
Figure 5. Moreover, the pattern we get here is quite similar
to what Kieu and Zhang [23] observed. Scales are distinct
for the reason that they used dimensional parameters;
however, they claim the figures to use non-dimensional
units. If so, then probably they used different character-
istic parameters, which are nowhere mentioned in the
article.

3.1.2 Vertical Pressure Distribution

The difference of pressures between the core and the inner
part of region 1 is given by (39). Apart from the radial
and axial coordinates, it depends also on time, viscosity,
and the radial distance from the point of maximum wind.
Therefore, in this subsection, we would study the tempo-
ral, viscous, and radius of maximum wind impacts on the
vertical pressure distribution.

The vertical distribution of the pressure difference
between the point of maximum wind and an arbitrary
inner radial distance from the centre is displayed in
Figure 6, in which the parameters viz., time, the Reynolds
number and the radial distance are varied, respectively,

a s e — b R
—t=0 —t=0
14+ ——tz{|d 14 —te
—tz) —_—tz2
------ t=3 meeenitz ]
12} - 12
1t 1
NOBF N 08
06F 06
04F 04
02t . 02
0 L H ! L L L el 0 1 1 1 -
2 0 2 4 6 8 10 12 1 1 18 02 08 1 12 14 16

Figure 3: The diagrams display (a) the zeroth-order and (b) the first-order perturbed azimuthal velocity along the vertical axis, based on (27)

and (33), for & = 0 at different instants mentioned in the legend.
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Figure 4: The diagrams display the azimuthal velocity, based on (33), (a) for Reynolds number Re = 10, 000; (b) Reynolds number Re =

100, for 0 = 0 along the vertical axis at different instants.
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Figure 5: Diagram for azimuthal velocity v vs.z, based on (33), for
different Reynolds number attimet = 1and 6 = 0.

in Figure 6a—c in order to examine their roles when other
parameters are kept constant. Keeping the reference pres-
sure p1(1, 0, t), i.e. the pressure at the radius of maximum
wind on the ground, we observe that pressure difference
diminishes when we move from the ground to higher alti-
tudes irrespective of the variations of the three parameters.
This diminishing character of the pressure difference with
altitude contributes to the possible funnel shape of the
cyclone as shown in Figure 1.

Temporal variation reveals in Figure 6a for Re = 5000
that pressure difference grows with time. This growth in
pressure difference enhances the centripetal force and,
hence, leads to intensification of cyclone with time.

Radial dependence of the pressure difference is dis-
played in Figure 6b. Re = 5000 and t = 1are fixed; ris var-
ied in the range of 0.2-0.8. The difference diminishes obvi-
ously as we move towards the point of maximum wind,
but this difference further decreases as we move along the
axial distance from the ground.

Setting r = 0.2, t = 1, we observe in Figure 6c that
the pressure difference between the point of maximum
wind and r = 0.2 increases slightly when Re is varied from
100 to 3000. Further increase in Re brings about insignifi-
cant change.

3.2 Analysis of the Solution in Region 2
r>1

Region 2 that contains fast rotating wind with nearly sat-
urated air at the lower altitudes and has a radial inflow
that supplies moisture for updraft through the boundary
layer plays an important role for the updraft in the eye
wall.

The vertical profile of the azimuthal velocity is plot-
ted in Figure 7 in a temporal range of 0-3. Unlike within
region 1 for which perturbation technique had to be used,
an exact solution was obtained for region 2. Close to the
ground, the azimuthal velocity is found to rise rapidly with
time, but reverse is the trend at a little height and becomes
independent of time at high altitudes. It drops further with
time at even higher altitudes. The trends are qualitatively
similar to that in region 1, but the quantitative difference
is considerable. In fact, the two regions conform to the
Rankine’s model as assumed in the beginning.
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Figure 6: The diagrams display pressure difference vs. z, given by (39), for 6 = 0 and the impact of (a) time t(Re = 5000), (b) the radial
distance (Re = 5000, t = 1), and (c) the Reynolds number Re (r = 0.2, t =1).
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Figure 7: The diagram represents azimuthal velocity along the verti-
cal axis for 6 = 0 at different instants mentioned in the legend for
the second region.

The presence of sine and cosine terms seems to period-
ically change the trends with height. However, this region
has no vertical velocity.

3.3 Pressure Deficit

The relationship between the central pressure deficit and
the peak wind speed near the ground surface in a tropi-
cal cyclone has important consequences in meteorology
from a physical point of view. It is also related to risk of
damage and loss of life [35]. The central pressure deficit in
a tropical cyclone is defined as the difference in pressure
between the centre of the storm and outside it. We denote it
byAp =1 pm/po,where py, is the minimum central pres-
sure near the surface, and py is the environmental pressure
at the outer edge of the storm.
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Figure 8: The diagram represents the variation of surface central
pressure drop with time based on (50).

The minimum central pressure near the surface may
be obtained by means of equations (39) and (49), which is

_ AWgeft A2
pn()= 57— B+ o logRm
2
+AW0 1 i eﬁt + i 1 _ ezﬁt
4 R 8 R
SZ ﬂt 1 ﬂt AZ
+ — +
5 e” log Rm 3 AWpe™ 2 B Re

o i

AWoeft %, (50)
It is observed that the central pressure drop decreases

with time (Fig. 8). The observation is similar to that of Kieu

and Zhang [23] who found it to conform to the experimen-

tal data.

4 Conclusions

Unlike the linear approximated form of viscosity, we
assumed a general type of viscosity for investigating the
reason behind the rapid intensification of the cyclonic
wind. The existence of the double exponential terms was
discovered by Kieu and Zhang [23] as the reason for linear
viscosity. Similar terms are observed even for the general
form of viscosity. Hence, it is concluded that double expo-
nential terms accelerate the rotational motion irrespective
of the form of the viscosity of a tropical cyclone. This is to
be noted that this inference is based on the fact that gra-
dient wind imbalance for higher altitudes of cyclone was
ignored.
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The domain is split into two regions: one which con-
tains all the updraft and lies entirely within the radius of
maximum velocity and the other, which lies beyond it,
contains no updraft but possesses azimuthal and radial
velocities.

The radial pressure difference depends on time, vis-
cosity, and height from the ground. The difference in pres-
sures at the radius of maximum wind and an arbitrary
radial point that falls with height increases with time and
the Reynolds number. This gives the cyclone a funnel
shape.

The azimuthal velocity rises fast with time close to the
ground, but the dependence diminishes at a height a little
above the ground. At a considerable height, time sieges to
be a factor, and further, above that, trends reverse.

Using a perturbation analysis, we found that the per-
turbation terms behave almost identically with the terms
without perturbation. The significance of their contribu-
tion definitely depends on the magnitude of the Reynolds
number. Unlike that for region 1 where perturbation tech-
nique had to be used, exact solution is obtained for
region 2. The trends are qualitatively similar to that in
region 1, but quantitative difference is significant. It is also
observed that the central pressure drop decreases with
time.
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Appendix A

Analytical solution for the eye wall
Using equation (22) into equation (20), we obtain

G _ 1

Bu '
e 0 Acot(Az) + Wo cosec(Az) Gg. (Al)

On integration, we have

’

(O -

K H;

PR log(cot(Az)
0

log W

log(sin(Az))

+cosec(Az))],
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or Gb(z)

= Ke (Z/Hl)fsin(/lz)g(l Bu/AWo) 5 g % Z(BP/AWO)’
(A2)
where K is an integration constant (with unit per second)

that determines the initial strength of the vortex.
Equation (A2) contains an infinite number of possi-
ble solutions depending on the values of u. However, the
requirements for the regularity of (A2) at z = 0 impose a
strong restriction in the range of u. Using the L’ Hospital
rule for a regular solution, we have 1 Bu/AW,. Taking
Bu/AWo =1 §6,where0 6§ 1, thus, (A2) reduces to

[ 26

Go(z) = Ke @H) gin 22 (A3)

Appendix B

To solve equation (28), we let Gi(z,t) = I'(z, t)Go(z, t)
and use equation (20) to obtain

Btﬁ i ﬁ =

e Mor Wo sin(Az) > N(z, t), (B1)
where
2
N(Z’ t) —=e Bt Mcotz E
4 2
2
2H; 2 H? 4
6 Mgy Ao o e

S, tan = 4 cosec (B2)

Now, we solve equation (B2) by applying the Lagrange
subsidiary equation

dt dz dar

e Bt Wosin(z)  F(z,0) (B3)
The solution of the first equality is
Bt
e 1 Az
B AW, Intan 5 = A, (B4)

where A is an integration constant.
The second integral is obtained by means of last two
equalities

ar _ Fiz,t) _  eP A5 .2 M
dz  Wysin(Az) Wy sin(Az) 4 2
A2 &1 6. o, Az sA Az
+ ftan 7 ECOt 7 ”
L@ o Az 1 26 82+1A°
H; 2 H? 2 '
(B5)

Applying equation (B4), we have
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g = 1 N O
dz  wyBsin(iz) A+ xw; In tan 4
2 2
A“6(6 1)cot2 Az +A(2 6)(1 6)tan2 Az
4 2 4
A Az 2 oA Az
_ = 4 -
H cot > H, tan 3
V#
1 26 62+1 A2
].T% 2 (B6)
Integrating equation (B6), with respect toz, we obtain
Z
Iz, = — L o
WoB  sin(lz) A + ow; In tan 4
2 2
/15(2 D ot %Z L@ i)(l 6) an?
L POVD E N N 1P
2 H, 2 I-!I% 2
1 26 82+1A°
+ 5 — X dz+ ;A B
I 5 z+;(4) (B7)
or
1 A%8(66 1) A22 & b
I(z,t)= = I, + I
(2, 1) B 4 1 4 2
6L (2 HA
—L—I
H° H \
1 26 &*+1A° I +:(4). (B8)
F% f 5 ’ ’
where
A cot? A{
I, = A o dZ,
Wosin(Az) A+ y-In tan %
Z tan? %
L= A 1 o—dz,
Wosin(Az) A+ yy-In tan 5
z cot A
I = A o—dz,
Wosin(Az) A+ y-In tan 4
Z tan %z
Iy = n o-dz,
Wosin(Az) A+ y-In tan %
Z
d
Is = Z _n - o (B9)
Wosin(Az) A+ yy-In tan %
n b °
. . 1 —
Substituting A + mln tan & =P, we
get dz/Wysin(Az) =dP, tan % =P A)AWO, and
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cot ’% =e ® A)AWO.Thus, the integrals reduce

VA e 2(P MAWo

Z Q2P MAW,

I = dpP, I, = dp,
! P 2 P
z e P A)/IWod z oP A)AWod
Lrh= ~—«—dP,I,= ———dP,
3 P 4 P
Z
dpP
5 P (B10)
or
z 2AW,P Z  oawep
=Mt f o —dpp=e MM S —ap,
z AW,oP Z  awop
I3 = M4 € dP, I, = e W04 eP dx,
]
Z -
dp ePt
L= - =W 5 (B11)
Further, we denote
z e 2/1W0Pd z eZAWOPd
11 P s 122 P )
Y AWoP
133 = dP, 144 = dP,
p
|
ePt
155 :AWOh'l ? (B12)
Thus, we have
1 %86 1) 2awpa
Iz, t)=> ———= o4
(z, ) B 4 e 11
2
L@ i)(l 5)e 2AWoA
@eAWOAIB_,_ 2 84, MWodp
Hy X Hy St
26 6°+1 A
1200 m e s,
H? 2 B
(B13)
or
1] !
2 Bt
I'(z, t)=% Wexp ZAWO% cot’ % I
]
2 Bt
+Wexp ZAWO% tan® % I,
1
62 ePt z
e Wo— =g
Hlexp A OB cot 5 B3
!
2 & eft Az
=+ 7[‘[1 exp AW() B tan 5 144
1 4
26 82+1 A% Bt
120 0TI & L), B

H? 2 B
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Thus, we get the first-order solution as
6 rz 29
Gi(z, ) =2 Ke @™ sin cos =
" 1
1 A%6(6 1) eft 5 Az
= ——————exp 2AWp— cot® — I11
B B . 2
2 Bt~
+Wexp ZAWO% tan? % I»
]
51 et Az
H—lexp AWof cot > I33
1
2 & eft Az
+ = AWo—- — I
H exp 0 B tan 3 44
| LE:2
1 26 82+1 A% eht
- — In —
Hj 2 B
+ :(A)] exp LZ’% 8)ePt (B15)
For § = 0, we have
Az 2
Gi(z,t) = 2 Ke @M cos =
L1} ( !
1 A2 Pt 5 Az
= — 2AWy — — I
Bzexp AOB tan 5 12
1
21 ePt z
+ = - -
H1 exp AW() B tan 3 144
LY
+ - E In ﬂ +;(A)]exp 0 ht
H% 2 9’ b
(B16)
Z ZAW()X AW()X Z eZAWOX
122 = dX, 144 = X dX, 122 = dx.
(B17)
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