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Abstract: In this article, a parametric deformation of the 
Cornu spiral is introduced. The parameter is an integra-
tion constant which appears in the general solution of the 
Riccati equation and is related to the Fresnel integrals. The 
Argand plots of the deformed spirals are presented and a 
supersymmetric (Darboux) structure of the deformation is 
revealed through the factorization approach.
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1  �Introduction
One of the most famous spirals with important scientific 
and technological consequences is Euler’s spiral, also 
known as Cornu’s spiral in optics, and also as the clothoid, 
which means looking like Clotho, as proposed by the 
noted geometer Cesàro in 1890. Schwartzman, in his book 
“The Words of Mathematics” [1], mentions that Clotho 
was the youngest of the three fates “moirai” in ancient 
Greek mythology. The little sister Clotho was responsible 
for spinning the thread of human life. Presumably, Cesàro 
was inspired by the resemblance of the spiral to a spinning 
wheel. However, here we will call this spiral as Cornu’s 
spiral as it was Cornu who first drew the entire spiral with 
its two foci, while Euler drew only the positive arm.

Perhaps, the simplest mathematical definition of 
the Cornu spiral ℱ is the Argand plane representation, 
ℱ = X + iY, with X and Y as the two Fresnel integrals
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which are parametrised by the arclength of the spiral s. In 
optics, the square modulus |ℱ |2 is related to the intensity 
of light at a given point in diffraction patterns.

On the other hand, geometrically, the Cornu spiral is 
defined as the curve whose curvature increases linearly 
with the arclength, which means the radius of curvature 
ρ(t) times the arc length s(t) is constant at each point of 
the curve. This is represented by the Cesàro equation 
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property is related to the Fresnel integrals for which 
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=  both slowly approach the point 1 1, 
2 2
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   as s → ∞ 

in the first quadrant, and because both the functions 

are odd, the curve spirals towards 1 1, 
2 2

 
− −   in the third 

quadrant [2].
Its most immediate technological use is in the layout of 

civil engineering works (roads, railways, pipelines among 
others) as road transitions to join straight sections with 
curved sections or to connect two circular sections [3, 4]. 
This is one of its most important engineering applications, 
as the radius of curvature decreases inversely proportional 
to the distance travelled on it, and this feature allows the 
driver a smooth change of trajectory. Other applications in 
which clothoids are considered useful are for the controlled 
trajectories of robots [5], for the design of roller coasters 
[6], and aesthetic shapes of industrial products [7].

Various generalisations of the Cornu spiral from 
the viewpoint of its different applications are found in 
literature [8–11]. In this communication, we introduce a 
parametric generalisation which can be also considered 
as a deformation of the Cornu spiral. This is achieved 
by means of a complex parameter which appears in 
the general solution of the Riccati equation that corre-
sponds to the Fresnel integrals. In Section 2, we show 
the reduction of the third-order ordinary differential 
equation (ODE) satisfied by the Fresnel integrals as 
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particular solutions to the corresponding Riccati equa-
tion, whose general solution is obtained explicitly. We 
then write the solution of the third-order ODE based on 
the general Riccati solution and present the Argand plots 
of this solution. In Section 3, the similarity with super-
symmetric quantum mechanics is emphasized by means 
of the factorization approach [12–16] which is applied to 
the second-order linear ODE that comes into play in the 
reduction process of Section 2.

2  �From the Third-Order ODE to the 
Riccati Equation and Back

We start with the known linear third-order ODE satisfied 
by the Fresnel integrals [17]
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which can be reduced by using w′(z) = v(z), with 
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Letting z2 = ζ we obtain the simple harmonic oscillator
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Thus, the solution to (4) is
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and by one integration the solution to (3) is
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where C(z) and S(z) are the Fresnel integrals given by (1) 
and (2).

On the other hand, by using the logarithmic derivative 
( )( ) ,
( )

v zy z
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′=  (4) becomes the Riccati equation
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which can be also obtained from (6) by setting c2 = ic1. 
Thus, the particular solution of (3) for w(0) = 0 is
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To construct the general solution of Riccati equation 
(8) using any particular solution yp we let
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where u satisfies the linear equation
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where μ(z) is the integrating factor
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which gives the general solution
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with γ arbitrary constant.
We now use the particular solution given by (9) to 

construct the linear equation in u which becomes
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By using the integrating factor
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the general solution of Riccati equation (8) is
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By redefining the constant 
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simpler form
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Notice that for the limiting cases of θ → 0, and 
θ → ∞, yg(z) → −iπz, and yg(z) → iπz, respectively. When 

θ → 1, and θ → −1, then 
2
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→   , respectively.

To find the general solution to (4), we use 
( )d( ) gy z z

gv z Re∫=  to obtain
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By one integration, assuming w(0) = 0 and  
using Euler’s formula, the deformed solution of (3) is 
given by

	
w ( ) [(1 ) ( ) ( 1 ) ( )].g z R C z i S zθ θ= + + − + � (22)

By writing the solution as

	
w ( ) w ( ) w ( )g z z i z= +

R I � (23)

and letting θ = a + ib, we obtain

Figure 1: Argand plots for the Riccati-deformed Cornu spirals for different values of a and b. The a = 0, b = 0 case at the center corresponds 
to the supersymmetric partner equation (26), while all the other cases correspond to (30).
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Comparing (7) with (23) and (24), one can see that we 
managed to replace the superposition constants c1 and c2 
by the real and imaginary components of the parameters 
entering the general Riccati solution. This is not a trivial 
replacement because, as we will see next, one can dis-
entangle an underlying supersymmetric structure of the 
solution expressed in this way. We present the Argand 
plots Y = w

I
(z), X = w

R
(z) in Figure 1 for various parameters 

a and b. All figures except a = 0, b = 0 are scaled by the 

factor 
2 2

1 .R
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3  �Factorization of (4) and 
Supersymmetric Approach

We will now demonstrate the supersymmetric features of 
the solution in which the complex Riccati parameter is 
used.

Equation (4) can be written in the factorized form 
A−A+v = 0 using the differential operators given by
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Proceeding as in supersymmetric quantum mechan-
ics, the supersymmetric partner equation of (4) is
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The extra term in (26) with respect to (4) is given by
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which is the Darboux distortion of (4), and is presented in 
the first plot of Figure 2.

To find out if the second-order linear ODE corresponds 
to the deformed Cornu spirals, we first write the general 
Riccati solution (20) in the trigonometric form
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Figure 2: Darboux distortion of (4) for various phases φ. The Darboux distortion of the supersymmetric partner of the Cornu spiral cor-
responds to φ = 0. The other cases correspond to members of the parametric deformed family of spirals having the same supersymmetric 
partner.
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and simply substitute it instead of the particular Riccati 
solution in the factorization (26)
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One obtains the equation
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with the Darboux distortion depending parametrically on 
the phase shift φ
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To find the general solution to (30), we let ,A Ψ Φ− =� �  
thus the homogenous equation 0A Φ+ =�  has the solution
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By solving the non-homogeneous equation ,A Ψ Φ− =� �  
we obtain the general solution of (30)
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Denoting
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and choosing the arbitrary constants to be b1 = 2, b2 = 0, 
(33) takes the compact form
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Figure 3: The Cornu supersymmetric partner spiral, a = 0, b = 0, from the center of Figure 1 and the parametric Cornu spiral for a = 10, 
b = 0 which is already very close to the standard Cornu spiral. Notice also that in the limit a → ∞ the supersymmetric partner spiral is the 
image of the standard spiral under real axis reflection.
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In Figure 2, we display various cases of parametric 
Darboux distortions ΔDarb(z; φ) of the deformed Cornu 
spirals presented in Figure 1. We notice the negative para-
bolic envelope as given by the first term in (31) together 
with the singularities due to the terms containing the 
tangents for nonzero z. The singularities at the origin are 
due to the 1/z2 term except for the cases φ =  ± π/2 when the 
dominant contribution comes from the cotangent terms. 
For these values of the phase, the Darboux distortion sim-
plifies to
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The factorization patterns discussed here unravel 
the Darboux origin of this deformation, which is a coun-
terpart of the same construction in supersymmetric 
quantum mechanics, where the parametric families of 
supersymmetric isospectral potentials are obtained with 
the property that all the members of those families have 
the same supersymmetric partner potential [12, 13, 15]. 
The initial potential and its supersymmetric partners are 
reproduced for extremal values of the parameters. In the 
case of the Cornu spiral, our parametrization chosen is 
such that when a and b are nought, the supersymmetric 
partner spiral is obtained, whereas the standard Cornu 
spiral is obtained when a → ∞ and b = 0. This is graphi-
cally demonstrated in Figure 3 where even for the rather 
small values of a = 10 and b = 0, the spiral is very close to 
the standard one as known from textbooks [2].

4  �Conclusion
A parametric deformation of the Cornu spiral is intro-
duced based on the usage of the corresponding general 
Riccati solution instead of the particular solution. Geo-
metrically, the origin of this kind of deformation lies in the 

two independent scales, a and b, along the two orthogo-
nal axes of the plane in which the spiral is plotted. These 
scales can generate not only the deformation of the rolls of 
the spiral, but also its global rotation as seen in the plots. 
Foreseen applications are in the same range as those of 
the standard Cornu spiral.
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