Abstract
In this paper, we construct a full-discrete integrable difference equation which is a full-discretisation of the generalised q-Toda equation. Meanwhile its soliton solutions are constructed to show its integrable property. Further the Lax pairs of an extended generalised full-discrete q-Toda hierarchy are also constructed. To show the integrability, the bi-Hamiltonian structure and tau symmetry of the extended full-discrete generalised q-Toda hierarchy are given.
Acknowledgements
Chuanzhong Li is supported by the National Natural Science Foundation of China under Grant No. 11571192 and K. C. Wong Magna Fund in Ningbo University.
References
[1] M. Toda, J. Phys. Soc. Jpn. 22, 431 (1967).10.1143/JPSJ.22.431Search in Google Scholar
[2] M. Toda, Nonlinear Waves and Solitons. Kluwer Academic Publishers, Dordrecht, Holland 1989.Search in Google Scholar
[3] B. A. Dubrovin, Geometry of 2D topological field theories, In Integrable systems and quantum groups (Montecatini Terme, 1993) 120–348, Lecture Notes in Math. 1620, Springer, Berlin 1996.10.1007/BFb0094793Search in Google Scholar
[4] K. Ueno, K. Takasaki, Toda lattice hierarchy, In Group representations and systems of differential equations (Tokyo, 1982) 1–95, Adv. Stud. Pure Math. 4, North-Holland, Amsterdam 1984.Search in Google Scholar
[5] E. Witten, Surv. Diff. Geomet. 1, 243 (1991).10.4310/SDG.1990.v1.n1.a5Search in Google Scholar
[6] G. Carlet, B. Dubrovin, Y. Zhang, Moscow Math. J. 4, 313 (2004).10.17323/1609-4514-2004-4-2-313-332Search in Google Scholar
[7] G. Carlet, J. Phys. A 39, 9411 (2006).10.1088/0305-4470/39/30/003Search in Google Scholar
[8] C. Z. Li, J. S. He, K. Wu, and Y. Cheng, J. Math. Phys. 51, 043514 (2010).10.1063/1.3316125Search in Google Scholar
[9] C. Z. Li, J. Phys. A 44, 255201 (2011).10.1088/1751-8113/44/25/255201Search in Google Scholar
[10] C. Z. Li and J. S. He, Rev. Math. Phys. 24, 1230003 (2012).10.1142/S0129055X12300038Search in Google Scholar
[11] C. Z. Li, J. S. He, and Y. C. Su, J. Math. Phys. 53, 013517 (2012).10.1063/1.3681205Search in Google Scholar
[12] C. Z. Li and T. Song, Zeitschrift für Naturforschung A 71, 357 (2016).10.1515/zna-2016-0011Search in Google Scholar
[13] C. Z. Li and J. S. He, Theor. Math. Phys. 185, 1614 (2015).10.1007/s11232-015-0368-xSearch in Google Scholar
[14] C. Z. Li and T. Song, J. Nonlinear Math. Phys. 23, 368 (2016).10.1080/14029251.2016.1199498Search in Google Scholar
[15] A. Meng, C. Z. Li, and S. Huang, J. Nonlinear Math. Phys. 21, 429 (2014).10.1080/14029251.2014.936761Search in Google Scholar
[16] C. Z. Li, Chaos Solitons Fract. 76, 10 (2015).10.1016/j.chaos.2015.03.008Search in Google Scholar
[17] R. Hirota, J. Phys. Soc. Japan 50, 3785 (1981).10.1143/JPSJ.50.3785Search in Google Scholar
[18] R. Hirota, J. Phys. Soc. Japan 43, 2074 (1977).10.1143/JPSJ.43.2074Search in Google Scholar
[19] K. Kajiwara, J. Satsuma, J. Phys. Soc. Japan 60, 3986 (1991).10.1143/JPSJ.60.3986Search in Google Scholar
[20] V. G. Kac and J. W. van de Leur, J. Math. Phys. 44, 3245 (2003).10.1063/1.1590055Search in Google Scholar
[21] J. Mas and M. Seco, J. Math. Phys. 37, 6510 (1996).10.1063/1.531745Search in Google Scholar
[22] M. H. Tu, Lett. Math. Phys. 49, 95 (1999).10.1023/A:1007647722911Search in Google Scholar
[23] R. Lin, X. Liu, and Y. Zeng, J. Nonlinear Math. Phys. 15, 333 (2008).10.2991/jnmp.2008.15.3.6Search in Google Scholar
[24] P. Iliev, Lett. Math. Phys. 44, 187 (1998).10.1023/A:1007446005535Search in Google Scholar
[25] J. S. He, Y. H. Li, and Y. Cheng, SIGMA 2, 60 (2006).Search in Google Scholar
[26] K. L. Tian, J. S. He, Y. C. Su, and Y. Cheng, Chin. Ann. Math. Series B 32, 895 (2011).10.1007/s11401-011-0678-8Search in Google Scholar
[27] Z. Tsuboi and A. Kuniba, J. Phys. A 29, 7785 (1996).10.1088/0305-4470/29/23/034Search in Google Scholar
[28] B. Silindir, Adv. Diff. Equ. 2012, 121 (2012).10.1186/1687-1847-2012-121Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Electric Spark Discharges in Water. Low-energy Nuclear Transmutations and Light Leptonic Magnetic Monopoles in an Extended Standard Model
- On the Full-Discrete Extended Generalised q-Difference Toda System
- On Certain Topological Indices of Boron Triangular Nanotubes
- Lorentz Atom Revisited by Solving the Abraham–Lorentz Equation of Motion
- A New Homotopy Perturbation Scheme for Solving Singular Boundary Value Problems Arising in Various Physical Models
- Bright-Dark Mixed N-Soliton Solution of Two-Dimensional Multicomponent Maccari System
- Modelling of Electrodynamic Phenomena in Slowly Moving Media
- Exploration of Characteristics Governing Dynamics of Whirlwinds: Application to Dust Devils
- Vector Dark Solitons for a Coupled Nonlinear Schrödinger System with Variable Coefficients in an Inhomogeneous Optical Fibre
Articles in the same Issue
- Frontmatter
- Electric Spark Discharges in Water. Low-energy Nuclear Transmutations and Light Leptonic Magnetic Monopoles in an Extended Standard Model
- On the Full-Discrete Extended Generalised q-Difference Toda System
- On Certain Topological Indices of Boron Triangular Nanotubes
- Lorentz Atom Revisited by Solving the Abraham–Lorentz Equation of Motion
- A New Homotopy Perturbation Scheme for Solving Singular Boundary Value Problems Arising in Various Physical Models
- Bright-Dark Mixed N-Soliton Solution of Two-Dimensional Multicomponent Maccari System
- Modelling of Electrodynamic Phenomena in Slowly Moving Media
- Exploration of Characteristics Governing Dynamics of Whirlwinds: Application to Dust Devils
- Vector Dark Solitons for a Coupled Nonlinear Schrödinger System with Variable Coefficients in an Inhomogeneous Optical Fibre