Home On the Full-Discrete Extended Generalised q-Difference Toda System
Article
Licensed
Unlicensed Requires Authentication

On the Full-Discrete Extended Generalised q-Difference Toda System

  • Chuanzhong Li EMAIL logo and Anni Meng
Published/Copyright: July 14, 2017

Abstract

In this paper, we construct a full-discrete integrable difference equation which is a full-discretisation of the generalised q-Toda equation. Meanwhile its soliton solutions are constructed to show its integrable property. Further the Lax pairs of an extended generalised full-discrete q-Toda hierarchy are also constructed. To show the integrability, the bi-Hamiltonian structure and tau symmetry of the extended full-discrete generalised q-Toda hierarchy are given.

Mathematics Subject Classifications (2000): 37K05; 37K10; 37K20

Acknowledgements

Chuanzhong Li is supported by the National Natural Science Foundation of China under Grant No. 11571192 and K. C. Wong Magna Fund in Ningbo University.

References

[1] M. Toda, J. Phys. Soc. Jpn. 22, 431 (1967).10.1143/JPSJ.22.431Search in Google Scholar

[2] M. Toda, Nonlinear Waves and Solitons. Kluwer Academic Publishers, Dordrecht, Holland 1989.Search in Google Scholar

[3] B. A. Dubrovin, Geometry of 2D topological field theories, In Integrable systems and quantum groups (Montecatini Terme, 1993) 120–348, Lecture Notes in Math. 1620, Springer, Berlin 1996.10.1007/BFb0094793Search in Google Scholar

[4] K. Ueno, K. Takasaki, Toda lattice hierarchy, In Group representations and systems of differential equations (Tokyo, 1982) 1–95, Adv. Stud. Pure Math. 4, North-Holland, Amsterdam 1984.Search in Google Scholar

[5] E. Witten, Surv. Diff. Geomet. 1, 243 (1991).10.4310/SDG.1990.v1.n1.a5Search in Google Scholar

[6] G. Carlet, B. Dubrovin, Y. Zhang, Moscow Math. J. 4, 313 (2004).10.17323/1609-4514-2004-4-2-313-332Search in Google Scholar

[7] G. Carlet, J. Phys. A 39, 9411 (2006).10.1088/0305-4470/39/30/003Search in Google Scholar

[8] C. Z. Li, J. S. He, K. Wu, and Y. Cheng, J. Math. Phys. 51, 043514 (2010).10.1063/1.3316125Search in Google Scholar

[9] C. Z. Li, J. Phys. A 44, 255201 (2011).10.1088/1751-8113/44/25/255201Search in Google Scholar

[10] C. Z. Li and J. S. He, Rev. Math. Phys. 24, 1230003 (2012).10.1142/S0129055X12300038Search in Google Scholar

[11] C. Z. Li, J. S. He, and Y. C. Su, J. Math. Phys. 53, 013517 (2012).10.1063/1.3681205Search in Google Scholar

[12] C. Z. Li and T. Song, Zeitschrift für Naturforschung A 71, 357 (2016).10.1515/zna-2016-0011Search in Google Scholar

[13] C. Z. Li and J. S. He, Theor. Math. Phys. 185, 1614 (2015).10.1007/s11232-015-0368-xSearch in Google Scholar

[14] C. Z. Li and T. Song, J. Nonlinear Math. Phys. 23, 368 (2016).10.1080/14029251.2016.1199498Search in Google Scholar

[15] A. Meng, C. Z. Li, and S. Huang, J. Nonlinear Math. Phys. 21, 429 (2014).10.1080/14029251.2014.936761Search in Google Scholar

[16] C. Z. Li, Chaos Solitons Fract. 76, 10 (2015).10.1016/j.chaos.2015.03.008Search in Google Scholar

[17] R. Hirota, J. Phys. Soc. Japan 50, 3785 (1981).10.1143/JPSJ.50.3785Search in Google Scholar

[18] R. Hirota, J. Phys. Soc. Japan 43, 2074 (1977).10.1143/JPSJ.43.2074Search in Google Scholar

[19] K. Kajiwara, J. Satsuma, J. Phys. Soc. Japan 60, 3986 (1991).10.1143/JPSJ.60.3986Search in Google Scholar

[20] V. G. Kac and J. W. van de Leur, J. Math. Phys. 44, 3245 (2003).10.1063/1.1590055Search in Google Scholar

[21] J. Mas and M. Seco, J. Math. Phys. 37, 6510 (1996).10.1063/1.531745Search in Google Scholar

[22] M. H. Tu, Lett. Math. Phys. 49, 95 (1999).10.1023/A:1007647722911Search in Google Scholar

[23] R. Lin, X. Liu, and Y. Zeng, J. Nonlinear Math. Phys. 15, 333 (2008).10.2991/jnmp.2008.15.3.6Search in Google Scholar

[24] P. Iliev, Lett. Math. Phys. 44, 187 (1998).10.1023/A:1007446005535Search in Google Scholar

[25] J. S. He, Y. H. Li, and Y. Cheng, SIGMA 2, 60 (2006).Search in Google Scholar

[26] K. L. Tian, J. S. He, Y. C. Su, and Y. Cheng, Chin. Ann. Math. Series B 32, 895 (2011).10.1007/s11401-011-0678-8Search in Google Scholar

[27] Z. Tsuboi and A. Kuniba, J. Phys. A 29, 7785 (1996).10.1088/0305-4470/29/23/034Search in Google Scholar

[28] B. Silindir, Adv. Diff. Equ. 2012, 121 (2012).10.1186/1687-1847-2012-121Search in Google Scholar

Received: 2017-3-28
Accepted: 2017-6-13
Published Online: 2017-7-14
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2017-0113/html
Scroll to top button