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Abstract: The charged particle confined by a harmonic 
potential in a noncommutative planar phase space inter-
acting with a homogeneous dynamical magnetic field and 
Aharonov-Bohm potentials is studied. We find that the 
canonical orbital angular momenta of the reduced mod-
els, which are obtained by setting the mass and a dimen-
sionless parameter to zero, take fractional values. These 
fractional angular momenta are not only determined by 
the flux inside the thin long solenoid but also affected by 
the noncommutativities of phase space.
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The Aharonov–Bohm (AB) effect exhibits the shift of the 
interference pattern in the double-slit experiment with a 
thin long solenoid located between these two slits [1]. It 
indicates that quantum mechanically, charged particles are 
influenced by magnetic vectors in the region where the field 
strengths are zero. It is quite different from the classical 
mechanics since the classical motion of the charged parti-
cle is not affected by the AB potentials. Therefore, AB effect 
reveals the fundamental roles the magnetic potentials play 
in quantum theories. It is well known that contrary to three-
dimensional space in which angular momenta can only 
take half-integer values (we set ћ = 1), angular momenta 
in a plane can take fractional values. It leads to an impor-
tant concept in theoretical physics, namely, aynons [2–4]. 

There are many methods to realise the fractional angular 
momentum. One of the most classical methods of realising 
fractional angular momentum is to couple a charged planar 
particle to the Abelian Chern-Simons gauge field [2–4].

Recently, the author of [5] proposed an interesting 
method to realise the fractional angular momentum. He 
considered a planar charged particle (take, for example, 
an ion) confined by a harmonic potential in the back-
ground of a dynamical magnetic field1 and AB magnetic 
vector potentials. The author found that the angular 
momentum of the reduced model, which is obtained by 
setting the kinetic energy to one of its eigenvalues, i.e. 
the lowest energy level, takes the fractional values. This 
fractional angular momentum is induced by the AB vector 
potentials and is proportional to the magnetic flux inside 
the thin long solenoid. The dynamical magnetic field plays 
an interesting role: although it does not contribute to the 
fractional angular momentum, the fractional zero-point 
angular momentum will not appear in the absence of it.

On the other hand, spatial non-commutativity attracts 
much attention nowadays because of the string theory 
[6–8]. In fact, it had a long history in physics [9, 10]. It is 
known that the spatial noncommutativity arises naturally 
from string theory [11–14]. There are numerous papers 
about quantum field theories on the non-commutative 
space, including both perturbative and non-perturbative 
aspects [15–17].

Quantum mechanics on the noncommutative space 
has also been studied for both non-relativistic and rela-
tivistic models. The most popular method of studying 
quantum mechanics in noncommutative space is to map 
the noncommutative space to a commutative one by the 
Bopp shift (or the generalised Bopp shift) and then study 
them in the commutative space [18–23]. Most exactly solv-
able models were studied by using this method. Path inte-
gral formulation in noncommutative mechanics has also 
been investigated [24]. Based on the path integral formu-
lation in noncommutative space, the authors of Refs. [25, 
26] deduced an effective Lagrangian and gave the non-
commutative corrections to the AB effect in noncommuta-
tive space. The application of path integral formulation to 

1 We name it dynamical magnetic field since it influences the 
classical motions of the charged particles.
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solve the spectra of noncommutative quantum mechani-
cal models has also been investigated [27–29].

In this paper, we shall generalise the work of Ref. [5] 
to the noncommutative planar phase space; i.e. both the 
coordinates and momenta are noncommutative simul-
taneously. We shall show that the fractional angular 
momenta can also be obtained in the noncommutative 
planar phase space if certain limits are taken.2 The non-
commutative plane is described by the commutators (the 
lowercase Latin indexes run from 1 to 2)

	 θ δ= = =[ , ] , [ , ] , [ , ] 0,i j ij i j ij i jx x i x p i p pε � (1)

where θ is the noncommutative parameter between coordi-
nates which is taken as a constant throughout this paper, 
and ∈ij is the two-dimensional anti-symmetrical tensor.

The noncommutative planar phase space is defined 
by the commutation relations

	 θ δ η= = =[ , ] , [ , ] , [ , ] ,i j ij i j ij i j ijx x i x p i p p iε ε � (2)

where η is the noncommutative parameter between 
momenta (it is also taken as a constant in this paper). 
Compared with the noncommutative plane (1), we can see 
that the momenta are also noncommutative in the non-
commutative phase space. Quantum mechanical models 
on the noncommutative phase spaces which are charac-
terised by the algebraic relations similar with (2) were 
widely studied in the past years [30–47].

We can construct the Lagrangian which gives the clas-
sical version (i.e. → 1{   ,   } [   ,   ]

i
) of the noncommutative 

phase space (2). It is (the summation convention is used 
throughout this paper)

	
η θ

κ

 
= + + −  �� �1 1 1

2 2i i ij i j ij i jL p x x x p p Hε ε
�

(3)

in which κ = 1 − θη, and H is a specific Hamiltonian. In this 
paper we shall focus on the harmonic potential. Thus, the 
Hamiltonian is

	
= +

2
2

2 2
i

i

p KH x
m �

(4)

with K being a constant. Note that θ and η have the dimen-
sions of L2 and L−2, respectively, so κ is dimensionless. We 
should note that the noncommutativities, if they do exist, 

2 We noticed that the fractional angular momentum can also be pro-
duced by the spatial noncommutativity [30]. However, the mecha-
nisms of getting angular momentum in Ref. [30] are different from 
those in the present paper.

will be extremely small [31, 32], i.e. |θ|, |η| = 1. Therefore, 
there is no singularity in the Lagrangian (3).

There are two different kinds of magnetic vector 
potentials we shall introduce. One kind is the dynamical 
magnetic vector potentials. The other is the AB ones which 
are realised by putting a thin long solenoid vertical to the 
plane. We introduce these magnetic vector potentials into 
the model (3) by the minimal substitution [48–50]

	 → + + AB
i i i ip p A A � (5)

where Ai and AB
iA  are magnetic vector potentials of the 

dynamical field and AB ones, respectively. Choosing the 
symmetrical gauge, we get

	
=−

2i ij j
BA xε

�
(6)

for the dynamical magnetic field with B being the field 
strength and

	

Φ

π
=− 0

2
ij jAB

i
k k

x
A

x x
ε

�
(7)

for the AB potentials outside the solenoid with Φ0 being 
the flux inside the thin long solenoid.

Thus, the model we are interested in the present study 
is described by the Lagrangian (outside the solenoid)

	
η θ

κ

 
= + + + + −  

�� �1 1 1( ) .
2 2

AB
i i i i ij i j ij i jL p A A x x x p p Hε ε

�
(8)

Substituting the expressions of magnetic vector 
potentials (6, 7) into the above Lagrangian and writing the 

term �
i ip x  in the symmetrical form − ��1 ( ),

2 i i i ip x x p  we get

	

Φ
θ

κ π

 
= − + + + − 

  

�
� �� � 01 ,

2
ij i j

i i i i T ij i j ij i j
k k

x x
L p x x p B x x p p H

x x
ε

ε ε

�
(9)

where H has been given in (4) and

	 η= +TB B � (10)

is the combination of the dynamical magnetic field and the 
noncommutative parameter between momenta. Clearly, 
the noncommutative parameter between momenta con-
tributes to the dynamical magnetic field.

We will show that the model (9) has two different 
reduced models which are obtained by setting the mass 
and a dimensionless parameter to zero. The angular 
momentum of each reduced model takes fractional values. 
Therefore, there are two different mechanisms to get the 
fractional angular momentum from the model (9).
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We shall quantise the model (9) canonically before 
studying its quantum properties. In doing so, we intro-
duce the canonical momenta with respects to the vari-
ables (xi, pi). They are

	

Φ
π

κ π

π θ
κ

 ∂= = − − ∂  

∂= = − −
∂

�

�

01 ,
2

1 ( ).
2

ij jx
i i T ij j

i k k

p
i i ij j

i

xL p B x
x x x

L x p
p

ε
ε

ε

�

(11)

The basic non-vanishing Poisson brackets among 
canonical variables π π( , , , )x p

i i i ix p  are

	 π π δ= ={ , } { , } .x p
i j i j ijx p � (12)

The canonical orbital angular momentum, by 
definition, is

	 π π= +( ).x p
ij i j i jJ x pε � (13)

The introduction of canonical momenta (11) does not 
contain ‘velocity’ terms. It results in algebraic relations 
among canonical variables π π( , , , ).x p

i i i ix p  Therefore, 
they are primary constraints in the terminology of Dirac 
[51]. In fact, the Lagrangian (9) is in the first-order form; it 
is not surprising to get this result.

The primary constraints are

	

Φ
φ π

κ π

ψ π θ
κ

 
= − − − ≈ 

 

= + + ≈

(0) 0

(0)

1 0,
2

1 ( ) 0,
2

ij jx
i i i T ij j

k k

p
i i i ij j

x
p B x

x x

x p

ε
ε

ε
�

(14)

in which ‘≈’ means equivalent on the constraint hypersur-
face. For future convenience, we label the primary con-
straints φ ψ≈ ≈(0) (0)0, 0i i  in a unified way as

	 Φ φ ψ= ≈ =( , ) 0,   1, 2, 3, 4.I i i I � (15)

The Poisson brackets among the primary constraints 
ΦI are

	

κ κ

κ κΦ Φ
θ

κ κ
θ

κ κ

 
− 

 
 − − = 
 
 
 −  

10 0

10 0
{ , } .

1 0 0

10 0

T

T

I J

B

B

�

(16)

The determinant of this matrix is

	

γ
Φ Φ

κ
=

2

4Det{ , } ,I J
�

(17)

in which

	 γ θ= −1 TB � (18)

is also a dimensionless parameter.
Clearly, the determinant of the matrix {ΦI, ΦJ} can be 

modulated by adjusting the magnitude of the dynami-
cal magnetic field. It will vanish when the dimensionless 
parameter γ takes zero value (or when the magnitude of the 

dynamical magnetic field takes critical value η
θ

= = −1
CB B ).  

One can anticipate intuitively that whether the determi-
nant of this matrix takes zero value or not will lead to dif-
ferent results.

Thus, we shall investigate the cases of Det{ΦI, ΦJ} ≠ 0 
and Det{ΦI, ΦJ} = 0 (or, equivalently, cases of γ ≠ 0 and 
γ = 0), respectively, in the following. We shall show that 
there are different mechanisms in both cases to get the 
fractional angular momenta. Let us study the case of γ ≠ 0 
firstly. In this case, the determinant of the matrix {ΦI, ΦJ} 
does not vanish. The inverse matrix of {ΦI, ΦJ} is

	

θ

θκ
Φ Φ

γ
−

 
 − =
 −
 − − 

1

0 1 0
0 0 1

{ , } .
1 0 0

0 1 0

I J B
B

�

(19)

The consistency conditions of primary constraints are 
given by

	 Φ Φ λ Φ= + ≈� { , } 0,I I J JH � (20)

in which λI are Lagrange multipliers. Substituting the Ham-
iltonian (4) and the explicit expressions of constraints ΦI 
into the above equation, we find that the consistency 
conditions only determine the Lagrangian multipliers λI. 
Therefore, in the case of γ ≠ 0, ΦI ≈ 0 (I = 1, 2, 3, 4) exhausts 
all the constraints of the model (9), and they belong to the 
second class [51].

We must get the Dirac brackets among variables 
π π( , , , )x p

i i i ix p  in order to quantise the model (9) canoni-
cally. Dirac bracket is defined by

	 Ψ Ψ Ψ Ψ−= − 1{ , } { , } { , }{ , } { , }D M M N NF G F G F G � (21)

where F, G are two arbitrary functions of the canonical 
variables π π( , , , )x i

i i i px p  and ΨM, ΨN (M, N = 1, 2, L, 2k) 
stand for all the second-class constraints. After some 
direct calculations, we arrive at

	

κθ

γ
κδ

γ
κ

γ

=

=

=

{ , } ,

{ , } ,

{ , } .

ij
i j D

ij
i j D

T ij
i j D

x x

x p

B
p p

ε

ε

�
(22)
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The quantum commutators are obtained by the 
replacement [ , ] → i{ , }D [51].

The constraints ΦI ≈ 0 (I = 1, 2, 3, 4) are second class; 
they are ‘strong’ equations and can be used to eliminate 
the redundant degrees of freedom in the angular momen-
tum (13). Thus, we write the angular momentum (13) in 
terms of (xi, pi)

	

Φ
θ

κ π

 
= + + +  

2 2 01 2 .
2 ij i j i T iJ x p p B xε

�
(23)

It can be checked directly by using the commutators 
[the quantum version of the Dirac brackets (22)] that

	 =[ , ] 0J H � (24)

and

	 = =[ , ] ,   [ , ] .i ij j i ij jJ x i x J p i pε ε � (25)

It shows that the angular momentum (23) is conserved 
and is the generator of rotation.

In Ref. [5], the author proposed an interesting method 
to obtain the fractional angular momentum from the com-
mutative counterpart (θ = η = 0) of (9). He found that the 
angular momentum of the reduced model, which was 
attained by setting the eigenvalues of the kinetic energy to 
the lowest energy level, took fractional values. This frac-
tional value is proportional to the flux inside the thin long 
solenoid. The dynamical magnetic field plays an interesting 
role: although the dynamical magnetic field does not con-
tribute to the fractional angular momentum, the fractional 
angular momentum does not appear in the absence of it.

We shall show that the fractional angular momenta 
can also be obtained from the noncommutative model (9) 
if certain limits are chosen. In fact, there are two different 
mechanisms to get the fractional angular momenta in the 
model (9).

Let us consider the first mechanism of getting the 
fractional angular momentum. It is to set the mass to zero, 
i.e. m → 0 in the model (9). The zero-mass limit was first 
considered in Ref. [52] during the studies of Chern-Simons 
quantum mechanics. Then, it was generalised to noncom-
mutative cases in Refs. [27, 29, 53].

In view of the Hamiltonian (4), we have to set

	 =0ip � (26)

so as to avoid the divergency of the Hamiltonian. It 
means that the kinetic energy is neglected.

The Lagrangian (9) reduces to the form

	

Φ

κ π

 
= + − 

 

�
� 201

2 2
ij i j

T ij i j i
k k

x x KL B x x x
x x
ε

ε

�
(27)

when the limit m → 0 is taken.
Therefore, besides the primary constraints ΦI ≈ 0 

(I = 1, 2, 3, 4), there are two extra constraints, namely,

	 χ = ≈0.i ip � (28)

We label all the constraints as Ψ
α
 = (ΦI, χi) ≈ 0 (α = 1, 

2, …, 6). It can be verified that the constraints Ψ
α
 ≈ 0 are 

second class and there are no further constraints.
Since the constraints χi = pi ≈ 0 are second class, they 

can be used to eliminate the redundant degrees of freedom. 
As a result, the angular momentum (23) is further simpli-
fied to the form

	

Φ

κ π

 
= +  

2 01 .
2 T iJ B x

�
(29)

We must know the commutation relations between 
variables xi before calculating the eigenvalues of the 
angular momentum (29). To this end, we shall calculate 
the Dirac brackets between xi.

The explicit expression of the matrix {Ψ
α
, Ψ

β
} is

	

α β

κ κ

κ κ
θ

Ψ Ψ
κ κ

θ
κ κ

 
− 

 
 − − 
 

− =
 
 − − 
 
 
  

10 0 0 0

10 0 0 0

1 0 0 1 0{ , } .

10 0 0 1

0 0 1 0 0 0
0 0 0 1 0 0

T

T

B

B

�

(30)

The inverse of this matrix is given by

	

α β

κ

κ

Ψ Ψ

γ
κ

γ
κ

−

 
− − 

 
 
 
 
 = 
 
 

− − − 
 
 −  

1

10 0 0 0

10 0 0 0

0 0 0 0 1 0
{ , } .

0 0 0 0 0 1
10 1 0 0

1 0 0 1 0

T T

T T

T T

T T

B B

B B

B B

B B
�

(31)

After some direct calculations, we get

	

κ=−{ , } .i j D ij
T

x x
B
ε

�
(32)

Therefore, the commutation relations among the 
variables xi are
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κ=−[ , ] .i j ij
T

x x i
B
ε

�
(33)

In order to express the angular momentum (29) 
lucidly, we introduce a new pair of variables (X, P) which 
satisfy [X, P] = i. They are

	 κ κ
= =2 1,   .T TB B

X x P x
�

(34)

In terms of variables (X, P), we rewrite the angular 
momentum (29) in the form

	

Φ

κπ
= + +2 2 01 ( ) .

2 2
J X P

�
(35)

By considering the commutation relation between X 
and P, we find that the first part in angular (35) is nothing 
but the Hamiltonian of a one-dimensional harmonic oscil-
lator with unit mass and frequency. Thus, its eigenvalues 
can be written down directly. They are

	

Φ

κπ
= + + 01 .

2 2nJ n
�

(36)

Obviously, there is an extra term in the eigenvalues of 
the angular momentum which is proportional to the flux 
inside the solenoid. It can take fractional values.

We have to emphasise that there is an exception in 
the case of γ ≠ 0. To illustrate it clearly, let us consider the 
situation BT = 0. It implies that the dynamical magnetic 
field cancels the effect of noncommutativity between the 
momenta.

The Lagrangian (27) is further simplified to the form

	

Φ

κπ
= −

�
20

2 2
ij i j

i
k k

x x KL x
x x
ε

�
(37)

when BT = 0.
We introduce the canonical momenta with respective 

to xi

	

Φ
π

κπ
∂= =−
∂ �

0 .
2

ij jx
i

i k k

xL
x x x

ε

�
(38)

Again, the introduction of the canonical momenta 
leads to primary constraints. We label them as

	

Φ
φ π

κπ
= + ≈(0) 0 0.

2
ij jx

i i
k k

x
x x
ε

�
(39)

Different from the situation BT ≠ 0 in which there are 
no secondary constraints, the consistency conditions of 

the primary constraints φi  will result in the secondary 
constraints. They are

	 φ φ= = ≈�(1) (0) 0.i i ix � (40)

The constraints pi ≈ 0 and xi ≈ 0 means that there are 
no dynamics. Therefore, we cannot get the fractional 
angular momentum.

In the following, we shall analyse the other mecha-
nism to get the fractional angular momentum from the 
model (9). We shall show that the fractional angular 
momenta will arise naturally when the dimensionless 
parameter γ = 0 (or, equivalently, when the magnetic field 

takes the value η
θ

= = −1
CB B ).

In the case of γ = 0, the matrix (16) is singular. We 
should verify whether there are secondary constraints. 
The consistency conditions of the primary constraints are

	 φ φ µ φ ν ψ= + +� (0) (0) (0){ , },i i i i i iH � (41)

	 ψ ψ µ φ ν ψ= + +� (0) (0) (0){ , },i i i i i iH � (42)

where μi, νi are Lagrange multipliers. These consistency 
conditions lead to

	
γµ κ θ

 
= +   ,i

i ij j

p
K x

m
ε

�
(43)

	
γν κ

 
= − +   .T

i i ij j

B
Kx p

m
ε

�
(44)

The above equations determine the Lagrange mul-
tipliers μi and νi uniquely if γ ≠ 0. Therefore, there are no 
secondary constraints in the case of γ ≠ 0. However, when 
the parameter γ takes zero value, the above equations 
will lead to secondary constraints. It is straightforward to 
check that (43) and (44) are not independent when γ = 0. 
They are equivalent up to an overall constant. Thus, we 
choose

	
χ =− + ≈0T
i i ij j

B
Kx p

m
ε

�
(45)

as the secondary constraints.
The consistency conditions of the secondary con-

straints (45) do not lead to further constraints. And the 
constraints (45) are also second class. They are the ‘strong’ 
equation and can be used to eliminate the redundant vari-
ables in the expression of angular momentum. Thus, the 
angular momentum (23) becomes

	

Φ
θ

θκ κπ
= + +2 2 2 01 (1 ) .

2 2iJ m K x
�

(46)
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We must determine the commutation relation among 
the variables xi in order to get the eigenvalues of the 
angular momentum (46). The calculation of the Dirac 
brackets among xi is unavoidable.

There are six constraints in total. They are 
φ ψ≈ ≈(0) (0)0, 0i i  and χi ≈ 0 which we label as 

α
Φ α≈ = �0( 1, 2, , 6).  The matrix of the Poisson brackets 
among the constraints 

α
Φ ≈0  is

	

α β

κ κ

κ κ
θ

κ κΦ Φ
θ

κ κ

 
− 

 
 − − 
 
 
 =
 

− − 
 
 − 
 
 − − 

10 0 0

10 0 0

1 0 0 0
{ , } .

10 0 0

0 0 0 0

0 0 0 0

T

T

T

T

T

T

B
K

B
K

B
m

B
m

B
K

m
B

K
m �

(47)

The inverse matrix is given by

α β
Φ Φ

κ κ

κ

κ κ

κ κ

− =
+

 − − +
 − − + 
 − − +
 × − + 
 + − + 
 

+ −  

1
2 2

3 2 2

3 2 2

2 2 2 2

2 2 2

2 2

2

1{ , }
( )

0 0 ( ) 0
0 0 0 ( )
0 0 0 ( )

.0 0 ( ) 0
( ) 0 0 ( ) 0 0

0 ( ) 0 0 0

T

T T

T T T

T T T

T T T T

T T T

T
T

B Km
B B Km m B Km

B B Km m B Km
B Km B K m mB B Km

B Km B Km B m B Km
m B Km B m B Km

B
m B Km

m � (48)

The Dirac brackets among xi can be derived by using 
the matrix (48) directly. They are

	

θκ

θ
=−

+ 2 2{ , } .
(1 )

ij
i j Dx x

m K
ε

�
(49)

So the commutation relations among the variables xi 
become

	

θκ

θ
=−

+ 2 2[ , ] .
(1 )

ij
i jx x i

m K
ε

�
(50)

We introduce a pair of variables � �( , )X P  which satisfy 
=� �[ , ]X P i  to substitute xi. They are

	

θ θ

θ θ

+ +
= =� �

2 2

2 1

1 1
, .

m K m K
X x P x

K K �
(51)

The angular momentum (46) becomes

	

Φ

κπ
= + +� �2 2 01 ( )

2 2
J X P

�
(52)

in terms of variables � �( , ).X P  Thus, the eigenvalues of 
the angular momentum (52) are identical to the ones (36).

It shows that when the dimensionless parameter γ 
takes zero value (or when the magnetic field takes the 

value η
θ

= −1
CB ), the angular momentum of the model (9) 

will take fractional values.
Compared with the result of the commutative coun-

terpart (θ, η → 0) in Ref. [5], we find that the fractional 
angular momenta in the noncommutative model (9) 
are modified by the noncommutative parameter η. As a 
consistency check, it is easy to see that our result (36) is 
identical to the one in Ref. [5] when the noncommutative 
parameters θ, η take zero values.

To summarise, we generalise the studies in Ref. [5] 
to the planar noncommutative phase space. we find 

that there are two different reduced models of (9). They 
are obtained by setting the mass and the dimension-
less parameter γ = 1 − θBT to zero from (9), respectively. 
We pay our attention to the angular momenta of the 
reduced models. We find that the angular momentum 
of each reduced model takes fractional value. Com-
pared with its commutative counterpart [5], we find that 
the fractional angular momentum is not only propor-
tional to the flux inside the thin long solenoid but also 
affected by the noncommutativities of coordinates and 
momenta.
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