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Abstract: The charged particle confined by a harmonic
potential in a noncommutative planar phase space inter-
acting with a homogeneous dynamical magnetic field and
Aharonov-Bohm potentials is studied. We find that the
canonical orbital angular momenta of the reduced mod-
els, which are obtained by setting the mass and a dimen-
sionless parameter to zero, take fractional values. These
fractional angular momenta are not only determined by
the flux inside the thin long solenoid but also affected by
the noncommutativities of phase space.

Keywords: Aharonov-Bohm Potential; Fractional Angular
Momenta; Noncommutativities.

PACS Numbers: 11.10.Nx; 03.65.Ge; 03.65.Pm.

The Aharonov-Bohm (AB) effect exhibits the shift of the
interference pattern in the double-slit experiment with a
thin long solenoid located between these two slits [1]. It
indicates that quantum mechanically, charged particles are
influenced by magnetic vectors in the region where the field
strengths are zero. It is quite different from the classical
mechanics since the classical motion of the charged parti-
cle is not affected by the AB potentials. Therefore, AB effect
reveals the fundamental roles the magnetic potentials play
in quantum theories. It is well known that contrary to three-
dimensional space in which angular momenta can only
take half-integer values (we set h=1), angular momenta
in a plane can take fractional values. It leads to an impor-
tant concept in theoretical physics, namely, aynons [2-4].
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There are many methods to realise the fractional angular
momentum. One of the most classical methods of realising
fractional angular momentum is to couple a charged planar
particle to the Abelian Chern-Simons gauge field [2-4].

Recently, the author of [5] proposed an interesting
method to realise the fractional angular momentum. He
considered a planar charged particle (take, for example,
an ion) confined by a harmonic potential in the back-
ground of a dynamical magnetic field' and AB magnetic
vector potentials. The author found that the angular
momentum of the reduced model, which is obtained by
setting the kinetic energy to one of its eigenvalues, i.e.
the lowest energy level, takes the fractional values. This
fractional angular momentum is induced by the AB vector
potentials and is proportional to the magnetic flux inside
the thin long solenoid. The dynamical magnetic field plays
an interesting role: although it does not contribute to the
fractional angular momentum, the fractional zero-point
angular momentum will not appear in the absence of it.

On the other hand, spatial non-commutativity attracts
much attention nowadays because of the string theory
[6-8]. In fact, it had a long history in physics [9, 10]. It is
known that the spatial noncommutativity arises naturally
from string theory [11-14]. There are numerous papers
about quantum field theories on the non-commutative
space, including both perturbative and non-perturbative
aspects [15-17].

Quantum mechanics on the noncommutative space
has also been studied for both non-relativistic and rela-
tivistic models. The most popular method of studying
quantum mechanics in noncommutative space is to map
the noncommutative space to a commutative one by the
Bopp shift (or the generalised Bopp shift) and then study
them in the commutative space [18-23]. Most exactly solv-
able models were studied by using this method. Path inte-
gral formulation in noncommutative mechanics has also
been investigated [24]. Based on the path integral formu-
lation in noncommutative space, the authors of Refs. [25,
26] deduced an effective Lagrangian and gave the non-
commutative corrections to the AB effect in noncommuta-
tive space. The application of path integral formulation to

1 We name it dynamical magnetic field since it influences the
classical motions of the charged particles.
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solve the spectra of noncommutative quantum mechani-
cal models has also been investigated [27-29].

In this paper, we shall generalise the work of Ref. [5]
to the noncommutative planar phase space; i.e. both the
coordinates and momenta are noncommutative simul-
taneously. We shall show that the fractional angular
momenta can also be obtained in the noncommutative
planar phase space if certain limits are taken.? The non-
commutative plane is described by the commutators (the
lowercase Latin indexes run from 1 to 2)

[x,, x;1=i6¢;, [x,, p;1=id,, [p,, p;]=0, @

where 0 is the noncommutative parameter between coordi-
nates which is taken as a constant throughout this paper,
and € ; is the two-dimensional anti-symmetrical tensor.

The noncommutative planar phase space is defined
by the commutation relations

[x;, x;1=i0¢, [x,, p,]=10,, [p,, p,]=ine,, 2

where 7 is the noncommutative parameter between
momenta (it is also taken as a constant in this paper).
Compared with the noncommutative plane (1), we can see
that the momenta are also noncommutative in the non-
commutative phase space. Quantum mechanical models
on the noncommutative phase spaces which are charac-
terised by the algebraic relations similar with (2) were
widely studied in the past years [30-47].

We can construct the Lagrangian which gives the clas-

1
}_>;[ ’
phase space (2). It is (the summation convention is used
throughout this paper)

sical version (i.e. { , 1) of the noncommutative

L= (px+ nexXX +— Oeppj H 3)

gt

in which k=1- 6y, and H is a specific Hamiltonian. In this
paper we shall focus on the harmonic potential. Thus, the
Hamiltonian is

2

=P Ky ()
2m 2

with K being a constant. Note that 6 and # have the dimen-
sions of L? and L2, respectively, so « is dimensionless. We
should note that the noncommutativities, if they do exist,

2 We noticed that the fractional angular momentum can also be pro-
duced by the spatial noncommutativity [30]. However, the mecha-
nisms of getting angular momentum in Ref. [30] are different from
those in the present paper.
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will be extremely small [31, 32], i.e. |6], |#| < 1. Therefore,
there is no singularity in the Lagrangian (3).

There are two different kinds of magnetic vector
potentials we shall introduce. One kind is the dynamical
magnetic vector potentials. The other is the AB ones which
are realised by putting a thin long solenoid vertical to the
plane. We introduce these magnetic vector potentials into
the model (3) by the minimal substitution [48-50]

p—p+A+AY (5)

where A, and AiAB are magnetic vector potentials of the
dynamical field and AB ones, respectively. Choosing the
symmetrical gauge, we get

B
Ai Z—Eei].X}. (6)

for the dynamical magnetic field with B being the field
strength and

AB b ex.

—__0_j
2 X, X, @

i

for the AB potentials outside the solenoid with & being
the flux inside the thin long solenoid.

Thus, the model we are interested in the present study
is described by the Lagrangian (outside the solenoid)

y ot

[(p+A+AAB)x+ nexXx +- Oepp} H. (8)

Substituting the expressions of magnetic vector
potentials (6, 7) into the above Lagrangian and writing the

term p.x, in the symmetrical form 1( pX,—Xx,p,), we get

T

€.X
;)(1 ]+0€Upp:| (9)

ka

1{ o D,
L=—| px.—x.p.+B exx +—2
2K 11 1

where H has been given in (4) and

B,=B+7 (10)

is the combination of the dynamical magnetic field and the
noncommutative parameter between momenta. Clearly,
the noncommutative parameter between momenta con-
tributes to the dynamical magnetic field.

We will show that the model (9) has two different
reduced models which are obtained by setting the mass
and a dimensionless parameter to zero. The angular
momentum of each reduced model takes fractional values.
Therefore, there are two different mechanisms to get the
fractional angular momentum from the model (9).
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We shall quantise the model (9) canonically before
studying its quantum properties. In doing so, we intro-
duce the canonical momenta with respects to the vari-
ables (x, p). They are

d €X.
n?za—,in p—Bex ——C-21 1
ook, 27T TV oxx,
(11)
oL 1
aP=—"=—(-x.—0¢.p)).
' op, ZK( ! 6”p’)

The basic non-vanishing Poisson brackets among
canonical variables (xi, p,mw,wl ) are

{x,, n;}z{pi, nf}zéij. (12)

The canonical orbital angular momentum, by
definition, is

J=¢,(x7} +pat). (13)

The introduction of canonical momenta (11) does not
contain ‘velocity’ terms. It results in algebraic relations
among canonical variables (x,, p,, 7}, n7). Therefore,
they are primary constraints in the terminology of Dirac
[51]. In fact, the Lagrangian (9) is in the first-order form; it
is not surprising to get this result.

The primary constraints are

€.X,

@__x 1| D, 6% |

¢i =7, b, BTEinj =0,
2K T XX,

. (14)
YO=n? +2—(xl. +0¢,p))=0,
K

in which ‘=’ means equivalent on the constraint hypersur-
face. For future convenience, we label the primary con-

straints ¢” =0, y”=0 in a unified way as
O, =(¢,, )=0, 1=1,2,3, 4, (15)

The Poisson brackets among the primary constraints
@ are

B
o =L 1 0
K K
B
T 0 0 _1
(@, @} * o (16)
K K
1
0o = 9 0
K K
The determinant of this matrix is
VZ
Det{®,, dDI}:F, 17)

in which
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y=1-0B, (18)

is also a dimensionless parameter.

Clearly, the determinant of the matrix {®, CD]} can be
modulated by adjusting the magnitude of the dynami-
cal magnetic field. It will vanish when the dimensionless
parametery takes zero value (or when the magnitude of the

dynamical magnetic field takes critical value B=B, =% -n).

One can anticipate intuitively that whether the determi-
nant of this matrix takes zero value or not will lead to dif-
ferent results.

Thus, we shall investigate the cases of Det{®, <I>]}¢O
and Det{®, ®}=0 (or, equivalently, cases of y=0 and
y=0), respectively, in the following. We shall show that
there are different mechanisms in both cases to get the
fractional angular momenta. Let us study the case of y =0
firstly. In this case, the determinant of the matrix {®, (D[}
does not vanish. The inverse matrix of {®, <I>l} is

0 6 1 0
9 0 0 1
o, 1=K . 19
R I (19)
0 -1 -B 0

The consistency conditions of primary constraints are
given by

® ={®, H+1,® }~0, (20)

inwhich/ are Lagrange multipliers. Substituting the Ham-
iltonian (4) and the explicit expressions of constraints ®,
into the above equation, we find that the consistency
conditions only determine the Lagrangian multipliers 4.
Therefore, in the case of y 20, ®,~ 0 (I=1, 2, 3, 4) exhausts
all the constraints of the model (9), and they belong to the
second class [51].

We must get the Dirac brackets among variables
(x,, p,, ;, «7) in order to quantise the model (9) canoni-
cally. Dirac bracket is defined by

{Fa G}D={F, G}_{F’ lpM}{lpMy le}_l{ler G} (21)
where F, G are two arbitrary functions of the canonical
variables (x,, p,, 7}, n;) and ¥, ¥, (M, N=1, 2, L, 2k)
stand for all the second-class constraints. After some
direct calculations, we arrive at

KOeI.].
{x, x},= _

/céi].
{x,p},= e

kB

T Eij

{p.p),= 22)
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The quantum commutators are obtained by the
replacement [, ] —i{, }, [51].

The constraints ®,~0 (I=1, 2, 3, 4) are second class;
they are ‘strong’ equations and can be used to eliminate
the redundant degrees of freedom in the angular momen-
tum (13). Thus, we write the angular momentum (13) in
terms of (x, p)

()
] =21(2€1.}.Xi D +0p+B.x] +°j. (23)
K T

It can be checked directly by using the commutators
[the quantum version of the Dirac brackets (22)] that

and

U, xJ=iex;, 1], p,l=ie;p;. (25)

It shows that the angular momentum (23) is conserved
and is the generator of rotation.

In Ref. [5], the author proposed an interesting method
to obtain the fractional angular momentum from the com-
mutative counterpart (9=7=0) of (9). He found that the
angular momentum of the reduced model, which was
attained by setting the eigenvalues of the kinetic energy to
the lowest energy level, took fractional values. This frac-
tional value is proportional to the flux inside the thin long
solenoid. The dynamical magnetic field plays an interesting
role: although the dynamical magnetic field does not con-
tribute to the fractional angular momentum, the fractional
angular momentum does not appear in the absence of it.

We shall show that the fractional angular momenta
can also be obtained from the noncommutative model (9)
if certain limits are chosen. In fact, there are two different
mechanisms to get the fractional angular momenta in the
model (9).

Let us consider the first mechanism of getting the
fractional angular momentum. It is to set the mass to zero,
i.e. m— 0 in the model (9). The zero-mass limit was first
considered in Ref. [52] during the studies of Chern-Simons
quantum mechanics. Then, it was generalised to noncom-
mutative cases in Refs. [27, 29, 53].

In view of the Hamiltonian (4), we have to set

p,=0 (26)

so as to avoid the divergency of the Hamiltonian. It
means that the kinetic energy is neglected.
The Lagrangian (9) reduces to the form

d eXxXX.
L=1(B €X.X +°""]—Kx2
2K

. 27
TV o xx, ) 200 @7)
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when the limit m — 0 is taken.
Therefore, besides the primary constraints @ ~0
(I=1, 2, 3, 4), there are two extra constraints, namely,

Xi:pizo' (28)

We label all the constraints as ¥ _=(®, y)~0 (z=1,
2, ..., 6). It can be verified that the constraints ¥ =0 are
second class and there are no further constraints.

Since the constraints y,=p,~0 are second class, they
can be used to eliminate the redundant degrees of freedom.
As a result, the angular momentum (23) is further simpli-
fied to the form

]=1(Brxf+q)°). 29)

2K 4

We must know the commutation relations between
variables x, before calculating the eigenvalues of the
angular momentum (29). To this end, we shall calculate
the Dirac brackets between x..

The explicit expression of the matrix {'¥ , ‘Pﬁ} is

B
o L —1 0O 0 O
K K
B
Zro o0 Lo o
K K
1 0
{Wa,llfﬁ}= -~ 0 0 = 10 (30)
K K
0 1 _Q 0 0 -1
K K
0 O 1 0 0 O
0 0O O 1 0 O
The inverse of this matrix is given by
o -X 00 o -L
BT BT
R R
BT BT
IR A 0 0O 0 0 1 0 31
@710 0 0 0 0 1
o -L 40 o -2
BT /cBT
1 o .17 o
B, kB,
After some direct calculations, we get
K
{x,, Xi}Dz_Eeif' (32)

T

Therefore, the commutation relations among the
variables x, are
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LK
[x,, x}.]:—zB—eij.

T

(33)

In order to express the angular momentum (29)
lucidly, we introduce a new pair of variables (X, P) which
satisfy [X, P]=i. They are

B B
X:A/—sz, P=,|—Lx,.
K K

In terms of variables (X, P), we rewrite the angular
momentum (29) in the form

(34)

)
o, 35
2K (35)

J _L (X*+P)+
2
By considering the commutation relation between X
and P, we find that the first part in angular (35) is nothing
but the Hamiltonian of a one-dimensional harmonic oscil-
lator with unit mass and frequency. Thus, its eigenvalues
can be written down directly. They are

()
] =n+1+ e,
" 2 2km

(36)

Obviously, there is an extra term in the eigenvalues of
the angular momentum which is proportional to the flux
inside the solenoid. It can take fractional values.

We have to emphasise that there is an exception in
the case of y 0. To illustrate it clearly, let us consider the
situation B =0. It implies that the dynamical magnetic
field cancels the effect of noncommutativity between the
momenta.

The Lagrangian (27) is further simplified to the form

1B K

= (37
2k X, X, 2

i

when B, =0.
We introduce the canonical momenta with respective
to x.

€X.
0o U J

. OL D
== .
bOox, 2Kkm XX,

(38)

Again, the introduction of the canonical momenta
leads to primary constraints. We label them as

- b eX.
PO =a) +—-"L~0.

i = (39)
2K X, X,

Different from the situation B,# 0 in which there are
no secondary constraints, the consistency conditions of
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the primary constraints ¢, will result in the secondary
constraints. They are
PV =¢=x ~0. (40)

The constraints p,~ 0 and x,~0 means that there are
no dynamics. Therefore, we cannot get the fractional
angular momentum.

In the following, we shall analyse the other mecha-
nism to get the fractional angular momentum from the
model (9). We shall show that the fractional angular
momenta will arise naturally when the dimensionless
parameter y =0 (or, equivalently, when the magnetic field

takes the value B=B, =%—77).

In the case of y=0, the matrix (16) is singular. We
should verify whether there are secondary constraints.
The consistency conditions of the primary constraints are

o =1g, Hr g +v "}, (41)

PO =y, H+u g +v ), (42)
where u, v, are Lagrange multipliers. These consistency
conditions lead to

", =K(§;+¢9Keﬁxj), (43)

B
w, =/c(—Kxi +ET€’7 p}). (44)

The above equations determine the Lagrange mul-
tipliers , and v, uniquely if y # 0. Therefore, there are no
secondary constraints in the case of y # 0. However, when
the parameter y takes zero value, the above equations
will lead to secondary constraints. It is straightforward to
check that (43) and (44) are not independent when y=0.
They are equivalent up to an overall constant. Thus, we
choose

B
sz_Kxf“LETEfjpizO (45)

as the secondary constraints.

The consistency conditions of the secondary con-
straints (45) do not lead to further constraints. And the
constraints (45) are also second class. They are the ‘strong’
equation and can be used to eliminate the redundant vari-
ables in the expression of angular momentum. Thus, the
angular momentum (23) becomes

1 D
= (1+mO*K)* x> +—2. 46
J 29/c( ) ' 2km (46)



828 —— S.-.Liuetal.: Fractional Angular Momenta in Noncommutative Quantum Mechanics

We must determine the commutation relation among
the variables x; in order to get the eigenvalues of the
angular momentum (46). The calculation of the Dirac
brackets among x, is unavoidable.

There are six constraints in total. They are
$”=0,9"~0 and x~0 which we label as
@azo(azl, 2, ---, 6). The matrix of the Poisson brackets

among the constraints ®_=0 is

DE GRUYTER

. 1+m&’K . 1+mO&’K
X: XZ’ P: Xl' (51)

0K 0K
The angular momentum (46) becomes
-~ ()
J=L x4 pye 2o (52)
2 2K

in terms of variables (X, P). Thus, the eigenvalues of
the angular momentum (52) are identical to the ones (36).

0 5 1 0O K O It shows that when the dimensionless parameter y
B K K 1 takes zero value (or when the magnetic field takes the
_TT o 0 Tk 0 K value B, :1—17 ), the angular momentum of the model (9)

1 69 o 2 o B, will take fractional values.
{@,@,}= * Lo K B m (47) Compared with the result of the commutative coun-
o -~ Y o Zr o terpart (0, 7 —0) in Ref. [5], we find that the fractional
K ke B m angular momenta in the noncommutative model (9)
-K 0 o L o0 O are modified by the noncommutative parameter 7. As a
B m consistency check, it is easy to see that our result (36) is
0 -K —ET 0O o0 O identical to the one in Ref. [5] when the noncommutative

parameters 0,  take zero values.
To summarise, we generalise the studies in Ref. [5]
The inverse matrix is given by to the planar noncommutative phase space. we find
@, )= L
< P (B2+Km)y
0 -Blk B;Kmxk 0 —-m(B*+Km) 0
-B] 0 0 B’Kmxk 0 —m(B; +Km)
-B;Km«k 0 0 B.K*'m’k 0 -mB, (B’ +Km)

X 0 ~-BXKmx  B2Kmx 0 B,m(B?+Km) 0

m(B; +Km) 0 0  —-Bm(B;+Km) 0 0

0 m(B; +Km) —% 0 0 0

(48)

The Dirac brackets among x, can be derived by using
the matrix (48) directly. They are

OKEU
b

T a+moK)y (49)

{x, X;

So the commutation relations among the variables x,
become

Oke,
. (50)

X, X |=——1—2—.
ke ’] (1+mb*K)?

We introduce a pair of variables (X, P) which satisfy
[X, P]=i to substitute x.. They are

that there are two different reduced models of (9). They
are obtained by setting the mass and the dimension-
less parameter y=1-6B, to zero from (9), respectively.
We pay our attention to the angular momenta of the
reduced models. We find that the angular momentum
of each reduced model takes fractional value. Com-
pared with its commutative counterpart [5], we find that
the fractional angular momentum is not only propor-
tional to the flux inside the thin long solenoid but also
affected by the noncommutativities of coordinates and
momenta.
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