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Abstract: We first introduced a linear stationary equation 
with a quadratic operator in ∂x and ∂y, then a linear evo-
lution equation is given by N-order polynomials of eigen-
functions. As applications, by taking N = 2, we derived a 
(2+1)-dimensional generalized linear heat equation with 
two constant parameters associative with a symmetric 
space. When taking N = 3, a pair of generalized Kadomtsev-
Petviashvili equations with the same eigenvalues with the 
case of N = 2 are generated. Similarly, a second-order flow 
associative with a homogeneous space is derived from the 
integrability condition of the two linear equations, which 
is a (2+1)-dimensional hyperbolic equation. When N = 3, 
the third second flow associative with the homogeneous 
space is generated, which is a pair of new generalized 
Kadomtsev-Petviashvili equations. Finally, as an applica-
tion of a Hermitian symmetric space, we established a pair 
of spectral problems to obtain a new (2+1)-dimensional 
generalized Schrödinger equation, which is expressed by 
the Riemann curvature tensors.

Keywords: (2+1)-Dimensional Equation; Homogeneous 
Space; Symmetric Space.
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1  Introduction
It has been an important task to generate integrable  
systems in soliton theory. A great number of 

(1+1)-dimensional integrable systems had been found in 
the past decades by applying zero-curvature equations, 
Lax pairs, and other techniques (see, e.g. [1–12]). However, 
it is more difficult to search for (2+1)-dimensional inte-
grable systems than the (1+1)-dimensional case [13–18]. 
Athorne and Dorfman [15] and Dorfman and Fokas [16] con-
structed Hamiltonian operators to generate (2+1)-dimen-
sional integrable systems over noncommutation rings. 
Moreover, Fokas and Tu [17] and Tu et al. [18] introduced 
a residue operator over an associative algebra to generate 
the Kadomtsev-Petviashvili (KP) equation and the Davey-
Stewartson (DS) equation. This method was proposed by 
Tu et al. [18], which was called the Tu-Andrushkiw-Huang 
scheme, briefly called the TAH scheme. By applying the 
TAH scheme, some (2+1)-dimensional hierarchies and 
their corresponding Hamiltonian structures were obtained 
by Zhang et  al. [19–21]. However, there exists an open 
problem that the integrability of the (2+1)-dimensional 
hierarchies obtained by the TAH scheme cannot be deter-
mined. Another approach is that Ablowitz et al. [22] applied 
some reduced equations of the self-dual Yang-Mills equa-
tions to generate some (1+1)- and (2+1)-dimensional inte-
grable equations, such as the Kortweg-de Vries equation 
and the KP equation. On the basis of this procedure, Zhang 
et  al. [23, 24] generated some (2+1)-dimensional integra-
ble systems, including a (2+1)-dimensional integrable 
coupling, which was the first result on (2+1)-dimensional 
integrable coupling, to our best knowledge. In addition, 
Athorne and Fordy [25] applied the symmetric and homo-
geneous spaces to generate the N-wave, the KP equation, 
and the DS equation. Actually, we once adopted such sym-
metric space to generate nonlinear integrable couplings 
and some (2+1)-dimensional integrable equations [26, 27]. 
In this paper, we first recalled some basic notions on the 
symmetric and homogeneous spaces, then we introduced 
a stationary linear equation with a quadratic operator in 
∂x and ∂y. An evolution equation is also introduced whose 
compatibility with the stationary linear equation can gen-
erate higher dimensional integrable equations. In par-
ticular, a second-order flow, which is a (2+1)-dimensional 
matrix heat equation, is obtained, which is associative 
with the symmetric space. A third flow in (2+1) dimensions 
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is obtained, which is a generalized KP equation associ-
ated with the symmetric space. Under the framework of 
the homogeneous space, a second-order flow, which is a 
(2+1)-dimensional hyperbolic equation, is expressed by 
an element P of the Lie subalgebra m. For the third flow 
associated with the homogeneous space, we generated the 
m± components of the Lie subalgebra m, which is a gen-
eralized KP equation. It is an extended form of the result 
presented by Athorne and Fordy [25]. Finally, we extended 
a pair of spectral problems by Fordy and Kulish [28] with 
the quadratic operators with respect to the operators ∂x 
and ∂y to further derive a new (2+1)-dimensional nonlin-
ear Schrödinger equation associative with the symmet-
ric space, which generalizes a main result by Fordy and 
Kulish [28]. It is remarkable that the method for generat-
ing (2+1)-dimensional nonlinear equations presented here 
is different from the Adler-Gelfand-Dikii (AGD) scheme, 
the TAH scheme, and the binomial residue representation 
scheme by Zhang et al. [29, 30].

2  �The Symmetric and Homogeneous 
Spaces

We first recall some basic notions on the Hermitian sym-
metric and reductive homogeneous spaces [25, 31]. A 
homogeneous space of a Lie group G is a differentiable 
manifold M on which G acts transitively. The subgroup of 
G that leaves a given point p0 ∈ M fixed is called the iso
tropy group at p0 and is defined by

0 0 0{ : }.pK K g G g p p•≡ = ∈ =

Such manifold M can be identified with a coset space 
G/K. In this paper, we only consider the decompositions of 
the corresponding Lie algebras of the Lie group G and the 
isotropy group K.

Let g and k be the Lie algebras of G and K, respectively, 
and let m be the vector space complement of k in g. Then 
we have

, [ , ] ,g k m k k k= ⊕ ⊂

where m is identified with the tangent space 
0p

T M  
of M = G/K at point p0. When g satisfies the following 
conditions:

, [ , ] , [ , ] ,g k m k k k k m m= ⊕ ⊂ ⊂

then G/K is called a reductive homogeneous space [25]. 
Such space possesses the defined connections with 
curvature and torsion. At fixed point p0, the curvature and 
torsion tensors are given by the Lie bracket operation on 
m:

0 0
( ( , ) ) [[ , ] , ], ( , )

[ , ] , , , .
p k p

m

R X Y Z X Y Z T X Y
X Y X Y Z m

=−

=− ∀ ∈

When g satisfies the following conditions:

, [ , ] , [ , ] , [ , ] ,g k m k k k k m m m m k= ⊕ ⊂ ⊂ ⊂

then g is called a symmetric algebra and G/K is a symmet-
ric space. At fixed point p0, the curvature is given by

0
( ( , ) ) [[ , ], ], , , ,pR X Y Z X Y Z X Y Z m=− ∀ ∈

and the torsion is free. Assuming h is a Cartan subalgebra 
of g, there exists an element A ∈ h such that

( ) { :[ , ] 0}.gk C A B g B A= = ∈ =

If A is regular, Cg(A) = h. Otherwise, Cg(A) ⊃ h. The 
operator representation a(A) has three distinct eigen
values: 0, ±a. In particular, we have

, [ , ] 0, [ , ] .m m m A k A X aX+ − ± ±= + = =±

For any X ∈ g, X = X0 + X+ + X−, and , ,X X e X X e
α α α α

α α

+ −
− −= =∑ ∑ 

, ,X X e X X e
α α α α

α α

+ −
− −= =∑ ∑ where α is summed over a special subset 

θ+ of the positive root system Φ+. In Hermitian symmetric 
spaces, we have the convenient property that [X+, Y+] = 0, 
∀X+, Y+ ∈ m+, and similarly for m−. Besides, X+Y+ = 0 for 
all pairs of elements of m+, similarly for m−. However, for 
the homogeneous space, we still have m = m+ ⊕ m−, but 
each of m± is further split into blocks, each of which is an 
eigenspace of a(A). θ+ splits into several jθ+  subsets, each 
of which ( ) , .j jA aα α θ+= ∈  Assuming Q ∈ m, we can write

, [ , ] .j j j j
j

Q Q A Q a Q± ± ± ±= =±∑

3  �Applications of the Symmetric 
Space

Athorne and Fordy [25] once introduced the following 
operator:

,x yL D A Q= + ∂ +

where Q is a matrix function, and Dx is a derivative with 
respect to x. Now we consider a stationary linear equation 
with a quadratic operator

	 2 2, ,x y x yL Q L A Bψ ψ= =∂ − ∂ − ∂ ∂ � (1)

where A and B are diagonal matrices that have the same 
sizes with the matrix Q; here Q ∈ m.

A time evolution linear equation is given by
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( )

0
.

N

N
N i i

T y
i
Sψ ψ−

=

= ∂∑
�

(2)

Equating coefficients of ( , , ; 0, 1, , 1)
i j

i j
x x i jx x x y i j N∂ ∂ = + = … + 

( , , ; 0, 1, , 1)
i j

i j
x x i jx x x y i j N∂ ∂ = + = … + in the commutator

	

( )2 2

0
[ , ] 0

N i j

N
N i i j

x y x y T x x
i

A B Q S −

=

∂ − ∂ − ∂ ∂ − ∂ − ∂ ∂ =∑
�

(3)

can cause some evolution equations concerning S(i)(i = 0, 
1, …, N + 1), A, B, Q, where A, B, and Q are the same-order 
matrices with the matrices S(i). In what follows, we con-
sider the cases where N = 2 and N = 3 associated with the 
symmetric spaces.

By taking N = 2 and by comparing the coefficients 
of , 0, 1, 2, 3, 4,i j

x y i j∂ ∂ + =  (3) leads to the following 
equations:

	 (0)[ , ] 0,A S = � (4)

	 (0)[ , ] 0,B S = � (5)

	 (1) (0) (0)[ , ] 2 0,y xA S AS BS+ + = � (6)

	 (1) (0) (0) (0)[ , ] 2 2 ,y x yB S Bs S S B=− + + � (7)

	 (2) (1) (0) (1) (0) (0) (0)[ , ] 2 [ , ] 0,y yy x xy xxA S AS AS BS BS Q S S+ + + + + − = � (8)

	 (2) (1) (1) (1) (0)[ , ] 2 0,y x y yyB S BS S S B S B+ − − − = � (9)

	 (1) (2) (1) (2) (1) (1) (0)[ , ] 2 2 0,y yy x yy xx yQ S AS AS BS BS S S Q+ + + + − − = � (10)

	 (2) (2)2 ,y xBS S= � (11)

	 (2) (2) (2) (2) (1) (0)[ , ] .t yy xy xx y yyQ AS BS S Q S S Q S Q=− − + + + + � (12)

Assuming A, B ∈ k, B = I, we can take

	 (0) ,S A Iα β= + � (13)

where α and β are constants independent of x, y, and t. 
Equation (6) admits

	 (1) ,S A Iα β= + � (14)

and (8) gives

	 (2) .S Qα= � (15)

Equations (9–11) can be written as

	

[ , ] 2 ,
2 ,

x y

y x

Q Q A Q
Q Q
α α β + =

 = �
(16)

which indicates that there exist traveling-wave solutions 
for the function Q. Equation (12) can be written together 
with (16) as follows:

(2 ) ( ) ,t xx xy yQ Q Q A I Qα β α α β= + − + +

which is a (2+1)-dimensional generalized heat equation 
with parameters α and β. To our best knowledge, it is a 
new (2+1)-dimensional linear matrix equation.

Taking N = 3, similar to the case of N = 2, (3) admits 
some differential equations (see Appendix) and

	

(3) (3) (3) (3) (2) (1)

(0)

[ , ]
.

t yy xy xx y yy

yyy

Q AS BS S Q S S Q S Q
S Q

=− − + + + +
+ � (17)

Taking B = I, S(0) = A, A ∈ k, the equations in the Appen-
dix have the following special solutions:

	

(1) (2)

(3)

(3) (3)

(3) (3)

, ,
[ , ] 2 [ , ] 3 ,

2 ,
2 2 2 0,

2 ,

y y

y x

y yy x xy xx y

x

S A S Q
A S AQ Q A Q AQ
Q Q
AS AQ S Q Q AQ
S S

 = =


=− − + +
 =
 − + + − − =
 = �

(18)

which implies that the solutions for Q, S(3) are traveling 
waves. Equation (17) becomes

	 (3) (3) (3) (3)[ , ] 0.t yy xy xx yy yyy yQ AS S Q S S AQ AQ QQ+ + + − − − − = � (19)

Because S(3) ∈ g, it can be decomposed into
(3) (3) (3) (3) (3)

0 0, [ , ] 0.S S S S A S+ −= + + =

Equation (18) can be presented as

(3) (3)[ ,  ] [ ,  ] 2 2 [ , ]

[ , ] 3 3 .
y y y yA S A S AQ AQ Q Q A Q

A Q AQ AQ

+ − + − +
+ −

− + −

+ =− − − − +

+ + +

Therefore, we obtain the m± components of S(3) as 
follows:

	
(3) 1 ( 2 [ , ] 3 ),y yS AQ Q A Q AQ

a
+ + + +

+ = − − + +
�

(20)

	
(3) 1 (2 [ , ] 3 ).y yS AQ Q A Q AQ

a
− − − −

− = + − −
�

(21)

Hence, with the help of (20) and (21), S(3) can be 
written as

	
(3) (3)

0
1 [( 2 4 )( ) ( ) ].y yS S A A Q Q Q Q A
a

+ − + −= + − ∂ −∂ + − − −
�

(22)

The k component of (19) reads

	 (3) (3) (3) (3) (3)
0, 0, 0,[ , ] [ , ] 0.yy xy xxAS S Q S Q S S+ −

− ++ + + − = � (23)
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Substituting (20) and (21) into (23) yields

	
2 2 (3)

0
1( ) {(2 4 )[ , ]

[ , ] }.

y x y x y yA S A A Q Q
a

Q Q A Q AQ Q AQ

+ −

+ − + − − +

∂ +∂ ∂ −∂ =− ∂ +∂ −

+ + −
�

(24)

The m+ component of (19) presents
(3) (3) (3) (3)

, , 0 ,[ , ] 0;t yy xy xx yy yyyQ AS S Q S S AQ AQ+ + + +
+ + ++ + + − − − =

that is,

	

2 2

(3)
0

1 [ 2 [ , ] 3 2

[ , ] 3 2 [ , ] 3 ]

[ , ].

t yyy yy yy yy xyy

xyy xy xy xxy xxy xx xx

yy yyy

Q A Q AQ A A Q A Q AQ
a

Q A Q AQ AQ Q A Q AQ

AQ AQ Q S

+ + + + + +

+ + + + + + +

+ + +

=− − − + + −

− + + + + − −

+ + −

� (25)

Similarly, the m− component of (19) reads

	

2 2

(3)
0

1 ( 2 [ , ] 3 )

1 ( 2 [ , ] 3 )

1 (2 [ , ] 3 )

[ , ] ,

t yyy yyy yy yy

xyy xyy xy xy

xxy xxy xx xx

yy yyy

Q A Q AQ A A Q A Q
a

AQ Q A Q AQ
a

AQ Q A Q AQ
a
Q S AQ AQ

− − − − −

− − − −

− − − −

− − −

= − − + +

+ − − + +

+ + − −

− + +
�

(26)

where (3)
0S  is determined by (24). Obviously, (25) and (26) 

are all nonlocal, which are generalized KP equations with 
the same eigenvalues.

4  �Applications of the Homogeneous 
Space

As applications of (4–12), we first consider a second-order 
flow by taking S(0) = C ∈ k, and introducing an element 
P ∈ m so that Q = [A, P]. Set B = I, then (4–12) can be solv-
able. In terms of (6) and (8), we get the solutions

(1) (2), [ , ].S C S P C= =

Equation (11) gives

2 .y xP P=

Therefore, (12) can be written as

	 [ , ] [ , ] [[ , ], [ , ]] .t yy xy m y yyQ A P C P C P C A P CQ CQ=− − + + + � (27)

Equation (27) is a (2+1)-dimensional hyperbolic equa-
tion, which is different from the N-wave equation pre-
sented by Athorne and Fordy [25].

In what follows, we shall discuss the third-order flow 
by taking B = I, S(0) = S(1) = A, A ∈ k, and S(2) = Q and intro-
ducing P ∈ m such that Q = [A, P]. According to the equa-
tions in Appendix, we have

	 (3) (3) (3) (2) (1) (0)[ , ] .t yy xy y yy yyyQ AS S S Q S Q S Q S Q=− − + + + + � (28)

In the following, we want to discover the k component 
and the m± component of the matrix equation (28).

It is easy to see that

	 (3) (3)
0 ( 2 3 ) ,y yS S A A P Q= + − ∂ −∂ + + � (29)

Because

, [ , ] .j j j j
j

Q Q A Q a Q± ± ± ±= =±∑

Thus, the k component of (31) is that

	

2 (3)
0

, ,

( ) {[( 2 3 ) , ]

[( 2 3 ) , ] } 0.

y x y y y j j j
j

y y j j j j j y j j y

A S A A P Q Q

A A P Q Q Q Q Q Q

+ + −

− − + + − − +

− ∂ + ∂ ∂ + − ∂ −∂ + +

+ − ∂ −∂ + + + + =

∑
� (30)

It is easy to see that

, ,[ , ] ( ) .j i y j i j i yA Q Q a a Q Q+ − + −= −

Similar to the previously mentioned analysis, we can 
obtain the m± components of (28) as follows:

	

(3)
, , 0,

, ,

, ,

( 2 3 ) [ , ]

( 2 3 )

[( 2 3 ) , ] ,

i i t y y i yy i i i

y y i xy i i xy

y y i i i i i y i i yyym

aQ A A A Q a S Q

A A Q aQ

A A Q Q aQ Q a AQ+

+ + +

+ +

+ + + + +

=− − ∂ −∂ + +

− − ∂ −∂ + −

+ − ∂ −∂ + + + � (31)

	

, , ,

(3)
, , 0,

, , ,

( 2 3 )

( 2 3 ) [ , ]

[ , ] [ , ] [ , ],

i i t y y i yy i yy

y y i xy i xy i i i

i i y i yy i yyy

aQ A A A Q AQ

A A Q P a S Q

Q A Q A A P A A P

− − −

− − −

− − − −

= − ∂ −∂ + +

+ − ∂ −∂ + + +

− − − � (32)

where (3)
0S  satisfies

2 (3)
0( ) ( 3 ) [ , ].y x y j j

j
A S I A P Q− +∂ +∂ ∂ = + ∑

Equations (31) and (32) constitute a pair of new 
generalized KP equations, which they have various 
eigenvalues.

5  �Applications of the Hermitian 
Symmetric Space

In this section, we shall introduce an isospectral Lax pair 
based on linear equations (1) and (2), whose integrability 



Y. Wang et al.: New 2+1-Dimensional Nonlinear Dynamics      781

condition leads to a generalized nonlinear Schrödinger 
equation under the framework of the symmetric spaces, 
which can be expressed by the Reimann curvature tensors.

Consider the following isospectral problems:

	
2 2 21 ( ) ,

4x y x yB B D Qψ λ ψ
 

∂ + ∂ − ∂ ∂ = +  
�

(33)

	 ( , , , ) ,t P x y t Pψ λ ψ ψ= ≡ � (34)
where B, D ∈ k, and P ∈ g. The integrability condition of 
(33) and (34) reads

	

21 [ , ] [ , ] [ , ]
4

[ , ],

t yy xy xxQ B P BP P Q P D P TP Q P

D P

λ

λ

= − + − − ≡ −

−
�

(35)

where 2 2 21 .
4 y x y xT B B= ∂ − ∂ ∂ +∂

According to the definition of the symmetric space, 
(35) decouples to

	

[ , ] [ , ],
[ , ],

t m k m

k m

Q TP Q P D P
TP Q P

λ = − −
 = �

(36)

where we have used [D, Pk] = 0 because k = Cg(D), 
P = Pk + Pm, Pk ∈ k, and Pm ∈ m. Because

	 1[ , ],k mP T Q P−= � (37)

the first equation in (36) can be written as

	 1[ ad ad ad ] .t mQ T Q T Q D Pλ−
•= − − � (38)

Assuming ( )

0
,

N
i i

i
P P λ

=

=∑  the recursion operator appear-

ing on the right of (38) is that

	 ( 1)1 ( )( ad ad ) (ad ) ,jj
m mT Q T Q P Q P −−

•− = � (39)

where j = 1, 2, …, N – 1.
Substituting the P into the first equation in (36), we 

have

	 (0) (0)[ , ].t m kQ TP Q P= − � (40)

Because Q ∈ m = span{e±a}, we suppose

	
( ).Q q e p eα α

α α
α θ+

−
∈

= +∑
�

(41)

Hence, we have derived from (41) and (42) that

	

(0)

(0) 1

,

1 ( ),

1 ( )[ , ],

m

k

P Tq e Tp e
a

P T q Tp p Tq e e
a

α α
α α

α θ

α β β α
α β

α β θ

−
+∈

−
−

+∈


= +



 = −



∑

∑
�

(42)

where we have used the property [e
α
, e

β
] = 0, ∀α, β ∈ θ+.

We decompose (40) into the following form:

	

1

, ,

1 ( ( ) ( )[ , 

[ , ]]),

tq e T Tq e q T q Tp p Tq e
a

e e

α α β γ δ γ δ
α α β

α θ β γ δ θα θ

γ δ

+ +

−

+ ∈ ∈∈

−

= − −∑ ∑ ∑

� (43)

	

1

, ,

1 ( ( ) ( )

[ , [ , ]]).

tp e T Tp e p T q Tp p Tq
a

e e e

α α β γ δ γ δ
α α

α θ β γ δ θα θ

β γ δ

+ +

−
− −

+ ∈ ∈∈

− −

= − −∑ ∑ ∑

� (44)

According to the definition of the Riemann curvature 
tensor, (43) and (44) can be expressed by the Riemann 
curvature tensors as follows:

	

1

, ,
1

, ,

( ) ( ),

( ) ( ),

t

t

aq T Tq R q T q Tp p Tq

ap T Tp R p T q Tp p Tq

α α α β γ δ γ δ
βγ δ

β γ δ θ

α α α β γ δ γ δ
γδ β

β γ δ θ

+

+

−
−

∈
− −
− −

∈

 = − −

 = − −


∑

∑
�

(45)

which is the generalized nonlinear Schrödinger equation. 
If we take T = ∂x, (45) reduces to the result of Fordy and 
Kulish [28].
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Appendix

In the case of N = 3, the admitting equations of (3) are as 
follows:

(0) (0)

(1) (0) (0)

(1) (0) (0) (0)

(2) (0) (1) (0) (1) (0) (0)

(2) (1) (1) (1) (0)

(3)

[ , ] 0, [ , ] 0,

[ , ] 2 0,

[ , ] 2 3 0,

[ , ] [ , ] 2 0,

[ , ] 2 2 3 0,

[ , ] [

y x

y x y

y yy x xy xx

y x y yy

A S B S

A S AS BS

B S BS S S B

A S Q S AS AS BS BS S

B S BS S S B S B

A S
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