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Abstract: We first introduced a linear stationary equation
with a quadratic operator in d,_ and ay, then a linear evo-
lution equation is given by N-order polynomials of eigen-
functions. As applications, by taking N=2, we derived a
(2+1)-dimensional generalized linear heat equation with
two constant parameters associative with a symmetric
space. When taking N =3, a pair of generalized Kadomtsev-
Petviashvili equations with the same eigenvalues with the
case of N=2 are generated. Similarly, a second-order flow
associative with a homogeneous space is derived from the
integrability condition of the two linear equations, which
is a (2+1)-dimensional hyperbolic equation. When N=3,
the third second flow associative with the homogeneous
space is generated, which is a pair of new generalized
Kadomtsev-Petviashvili equations. Finally, as an applica-
tion of a Hermitian symmetric space, we established a pair
of spectral problems to obtain a new (2+1)-dimensional
generalized Schrédinger equation, which is expressed by
the Riemann curvature tensors.

Keywords: (2+1)-Dimensional Equation; Homogeneous
Space; Symmetric Space.

PACS Numbers: 05.45.Yv; 02.30.Jr; 02.30.1k.

1 Introduction

It has been an important task to generate integrable
systems in soliton theory. A great number of
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(1+1)-dimensional integrable systems had been found in
the past decades by applying zero-curvature equations,
Lax pairs, and other techniques (see, e.g. [1-12]). However,
it is more difficult to search for (2+1)-dimensional inte-
grable systems than the (1+1)-dimensional case [13-18].
Athorne and Dorfman [15] and Dorfman and Fokas [16] con-
structed Hamiltonian operators to generate (2+1)-dimen-
sional integrable systems over noncommutation rings.
Moreover, Fokas and Tu [17] and Tu et al. [18] introduced
a residue operator over an associative algebra to generate
the Kadomtsev-Petviashvili (KP) equation and the Davey-
Stewartson (DS) equation. This method was proposed by
Tu et al. [18], which was called the Tu-Andrushkiw-Huang
scheme, briefly called the TAH scheme. By applying the
TAH scheme, some (2+1)-dimensional hierarchies and
their corresponding Hamiltonian structures were obtained
by Zhang et al. [19-21]. However, there exists an open
problem that the integrability of the (2+1)-dimensional
hierarchies obtained by the TAH scheme cannot be deter-
mined. Another approach is that Ablowitz et al. [22] applied
some reduced equations of the self-dual Yang-Mills equa-
tions to generate some (1+1)- and (2+1)-dimensional inte-
grable equations, such as the Kortweg-de Vries equation
and the KP equation. On the basis of this procedure, Zhang
et al. [23, 24] generated some (2+1)-dimensional integra-
ble systems, including a (2+1)-dimensional integrable
coupling, which was the first result on (2+1)-dimensional
integrable coupling, to our best knowledge. In addition,
Athorne and Fordy [25] applied the symmetric and homo-
geneous spaces to generate the N-wave, the KP equation,
and the DS equation. Actually, we once adopted such sym-
metric space to generate nonlinear integrable couplings
and some (2+1)-dimensional integrable equations [26, 27].
In this paper, we first recalled some basic notions on the
symmetric and homogeneous spaces, then we introduced
a stationary linear equation with a quadratic operator in
d and E)y. An evolution equation is also introduced whose
compatibility with the stationary linear equation can gen-
erate higher dimensional integrable equations. In par-
ticular, a second-order flow, which is a (2+1)-dimensional
matrix heat equation, is obtained, which is associative
with the symmetric space. A third flow in (2+1) dimensions
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is obtained, which is a generalized KP equation associ-
ated with the symmetric space. Under the framework of
the homogeneous space, a second-order flow, which is a
(2+1)-dimensional hyperbolic equation, is expressed by
an element P of the Lie subalgebra m. For the third flow
associated with the homogeneous space, we generated the
m* components of the Lie subalgebra m, which is a gen-
eralized KP equation. It is an extended form of the result
presented by Athorne and Fordy [25]. Finally, we extended
a pair of spectral problems by Fordy and Kulish [28] with
the quadratic operators with respect to the operators o
and ay to further derive a new (2+1)-dimensional nonlin-
ear Schrodinger equation associative with the symmet-
ric space, which generalizes a main result by Fordy and
Kulish [28]. It is remarkable that the method for generat-
ing (2+1)-dimensional nonlinear equations presented here
is different from the Adler-Gelfand-Dikii (AGD) scheme,
the TAH scheme, and the binomial residue representation
scheme by Zhang et al. [29, 30].

2 The Symmetric and Homogeneous
Spaces

We first recall some basic notions on the Hermitian sym-
metric and reductive homogeneous spaces [25, 31]. A
homogeneous space of a Lie group G is a differentiable
manifold M on which G acts transitively. The subgroup of
G that leaves a given point p, e M fixed is called the iso-
tropy group at p, and is defined by

K=K, ={geG:g.p,=p,}-

Such manifold M can be identified with a coset space
G/K. In this paper, we only consider the decompositions of
the corresponding Lie algebras of the Lie group G and the
isotropy group K.

Let gand k be the Lie algebras of G and K, respectively,
and let m be the vector space complement of k in g. Then
we have

g=k®m, [k, k]ck,

where m is identified with the tangent space T M
of M=G/K at point p. When g satisfies the following
conditions:

g=k®m, [k, k]lck, [k, mlcm,

then G/K is called a reductive homogeneous space [25].
Such space possesses the defined connections with
curvature and torsion. At fixed point p,, the curvature and
torsion tensors are given by the Lie bracket operation on
m:
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(R(X’ Y)Z)po :_[[X, Y]k’ Z]’ T(X, Y)po
=—[X, Y], VX, Y, Zem.

When g satisfies the following conditions:
g=k®m, [k, klck, [k, mlcm, [m, m]ck,

then g is called a symmetric algebra and G/K is a symmet-
ric space. At fixed point p, the curvature is given by

(R(X, Y)Z)poz—[[X, Y], Z], VX, Y, Zem,

and the torsion is free. Assuming h is a Cartan subalgebra
of g, there exists an element A € h such that

k=C_(A)={Beg:B, A]=0}.

If A is regular, Cg(A):h. Otherwise, Cg(A):h. The
operator representation «(A) has three distinct eigen-
values: 0, ta. In particular, we have

m=m"+m", [A, k]=0, [4, X*]|=taX".

For any Xeg, X=X"+X"+X, and X'=)Xe

a a’

a
X =YX e ,where ¢ is summed over a special subset

0" of ghe positive root system ®*. In Hermitian symmetric
spaces, we have the convenient property that [X*, Y*]=0,
VX*, Y'e m*, and similarly for m-. Besides, X*Y*=0 for
all pairs of elements of m*, similarly for m-. However, for
the homogeneous space, we still have m=m*@®m-, but
each of m* is further split into blocks, each of which is an
eigenspace of «(A). 6* splits into several 0; subsets, each
of which a(A)=a)., ae@}f. Assuming Q € m, we can write

Q=Y 14, Q=2 .
J

3 Applications of the Symmetric
Space
Athorne and Fordy [25] once introduced the following
operator:
L=DX+Aay+Q,

where Q is a matrix function, and D, is a derivative with
respect to x. Now we consider a stationary linear equation
with a quadratic operator

Ly=Qy, L=0,-A0,-BJ 0, 1)
where A and B are diagonal matrices that have the same

sizes with the matrix Q; here Qe m.
A time evolution linear equation is given by
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N N
y, =>5" oy

i=0

@

Equating coefficients of 9 d’ (x,, X=X, y; i+j=0, 1,
..., N+1) in the commutator '
o (N-)
2 2 =1)Ni j
[0}—A49;-B0,9,-Q, 0, —>'S" "9, 9] ]=0

i=0

€)

can cause some evolution equations concerning S?(i=0,
1,...,N+1), A, B, Q, where A, B, and Q are the same-order
matrices with the matrices S®. In what follows, we con-
sider the cases where N=2 and N=3 associated with the
symmetric spaces.

By taking N=2 and by comparing the coefficients
of a;a;, i+j=0,1,2,3,4, (3) leads to the following
equations:

(4, S©]=0, (4)

[B, $”]=0, 5)

[4, $”1+2AS” +BS” =0, (6)

[B, S"]=—Bs{" +257+25"B,, @)

[4, $P1+24S"+AS” +BS+BSY +[Q, S”]-5)=0,  (8)

(B, s®]+Bs§) —2s¥ —S(”By —S“’)Byy =0, 9)

[Q, S"]+2A45” +AS)) +BS? +BS)) S\ -25”Q =0,  (10)

BSY'=257, (11)

Q,=-AS?-BS) +[S”, Ql+S.)+57Q,+5”Q,,. (12)
Assuming A, Be k, B=1I, we can take

SO=aA+pI, (13)

where « and 3 are constants independent of x, y, and t.
Equation (6) admits

SY=aA+pI, (14)
and (8) gives
SP=aQ. (15)
Equations (9-11) can be written as
lomae 9
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which indicates that there exist traveling-wave solutions
for the function Q. Equation (12) can be written together
with (16) as follows:

Q=aQ +@2f-a)Q  +(aA+pI)Q,,

which is a (2+1)-dimensional generalized heat equation
with parameters ¢ and j. To our best knowledge, it is a
new (2+1)-dimensional linear matrix equation.

Taking N=3, similar to the case of N=2, (3) admits
some differential equations (see Appendix) and

— (€] ) ) ) o) (D)
Q,=-AS?-BsU+[s?, Ql+s?+5°Q, +5°Q,,

+S(°)nyy. 17)

Taking B=1I, S®=A, A € k, the equations in the Appen-
dix have the following special solutions:

s¥=4, s?=q,
[A,S(3)]:—2AQy—Qy+[A, Ql+34qQ,
Q,=2Q,,

2459 -24Q, +S7+Q, -Q,,-24Q,=0,
5‘3)=28i3),

(18)

which implies that the solutions for Q, S® are traveling
waves. Equation (17) becomes

(€] G) G) (€] —
Q+AS?+8%+[Q, S¥]-S¥-AQ, -AQ, -QQ,=0.  (19)

Because S® e g, it can be decomposed into

SP=80+5%+59, (4, SP']=o0.

Equation (18) can be presented as

(4, SP1+[A, SP1=-24Q, -24Q, -Q, -Q, +[4, Q']
+[A, Q" ]+3AQ" +3AQ".

Therefore, we obtain the m* components of S® as

follows:

553]:é(_2AQ;—Qy*+[A, Q1+34Q"), (20)

5§3>=%(2AQ;+Q;—[A, Q']-34Q). (1)

Hence, with the help of (20) and (21), S® can be
written as

S(”:Sf)”+%[(—2Aay—ay+4A)(Q*—Q‘)—(Q*—Q‘)A]. 22)

The k component of (19) reads

AsY +SP +[Q, SP1+[Q, SP1-S, =0.

0,xx

(23)
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Substituting (20) and (21) into (23) yields

(422 +9,0 ~37)S? =_%{(2Aay +3,-4A)Q", Q']
+[Q", Q' 14+Q'AQ -Q AQ'}.

The m* component of (19) presents

(24)

+ €] ( + ()
Q +AS? +87 +[Q", SIS

+,XX

~AQ,~AQ;, =0;

that is,
Q= [-24°0, ~AQ, +AlA, Q) }+34°C;,~24Q;,
-Q;, +[A, Q; 1+3AQ,, +24Q, +Q, -[A, Q;]-3AQ] ]
+AQ) +AQ; -Q", S1.

(25)

Similarly, the m- component of (19) reads

— 1 21— - - 2M)-
Q = (-24°Q,,~AQ, +AlA, Q ]+34Q)

1 - : .
+-(=24Q, -, +[A, @, ]+3AQ)

1 _ _ _ _
+24Q,,+0,,-14,0,1-340,)

_[Q7’ S((J})]+AQ;y+AQ;yy’ (26)

where S((f) is determined by (24). Obviously, (25) and (26)
are all nonlocal, which are generalized KP equations with
the same eigenvalues.

4 Applications of the Homogeneous
Space

As applications of (4-12), we first consider a second-order

flow by taking S®=Ce k, and introducing an element

Pe mso that Q=[A, P]. Set B=1, then (4-12) can be solv-
able. In terms of (6) and (8), we get the solutions

sV=c, sP=[P, C].

Equation (11) gives
P =2P.
y X
Therefore, (12) can be written as
Q[:—A[Pyy, C]—[ny, Cl+[[P, C], [A, P]]m+CQy+Cny- (27)

Equation (27) is a (2+1)-dimensional hyperbolic equa-
tion, which is different from the N-wave equation pre-
sented by Athorne and Fordy [25].
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In what follows, we shall discuss the third-order flow
by taking B=1I, S9=SW=A, Ae k, and S?=Q and intro-
ducing Pe m such that Q=[A, P]. According to the equa-
tions in Appendix, we have

—_AcO_cB_[cB) @ ® ©
Q=-AS?-sV+[s?, Ql+5”Q,+5"Q, +5"Q,,.  (28)
In the following, we want to discover the k component
and the m* component of the matrix equation (28).
It is easy to see that

SsP=5Y +(-249 -9, +34)P+Q, (29)
Because
Qi=ZQf, [4, Q/]=aQ;.
j

Thus, the k component of (31) is that

~(49+0,0))S+ Y {[(-249, -9 +3A4)P' +Q/, Q;]
j

+[(-249,-0 +34)P"+Q;, Q/1+Q;Q;,+Q;Q;, }=0.  (30)

It is easy to see that

(4, Q/Q;

] Ly

1=(a,-a)Q/Q,.
Similar to the previously mentioned analysis, we can

obtain the m* components of (28) as follows:

Q]

1

aQ,=—A(-249 -0 +34)Q;, +alS,),
-(-249,-9,+34)Q,, -aQ;

i,xy i <ixy

+[(—2Aay —ay + 3A)QI_* s QI_* ]m+ + aiQi*Q:y + aiAQifm, (31)
aQ;,=A(-249,-0,+34)Q, +AQ;
+(-240,-9, +34)Q,, +P_ +a[Sy, Q']
—Q;[A, Q;y]_A[A’ RTW]_A[A’ R;/yy]’ (32)

where S” satisfies
2 3) _ — +
(40]+0,0,)S7=(I+3A)Y [P, Q]].
J
Equations (31) and (32) constitute a pair of new

generalized KP equations, which they have various
eigenvalues.

5 Applications of the Hermitian
Symmetric Space

In this section, we shall introduce an isospectral Lax pair
based on linear equations (1) and (2), whose integrability
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condition leads to a generalized nonlinear Schrédinger

equation under the framework of the symmetric spaces,

which can be expressed by the Reimann curvature tensors.
Consider the following isospectral problems:

(31 +%BZa§ —Baxay)w=(w+0)w» G3)

Y, =P(x,y, t, )y=Py, (34)
where B, De k, and Pe g. The integrability condition of
(33) and (34) reads

1., _
Q=, BB, ~BE,+P,—{Q, PI-2ID, PI=TP-[Q, P!

—AID, P], (35)

where T=1B9?~Bd 9 +2°.
4 y Xy X
According to the definition of the symmetric space,
(35) decouples to

{Q,=TP,,,—[Q, P]-A[D,P,],

TP.=[Q. P ], (36)

where we have used [D, P]=0 because I<=Cg(D),
P=P +P ,P ek, and P € m. Because

Pk:T_l[Qy Pm]’ (37)
the first equation in (36) can be written as
Q =[T—adQ.T’1adQ—1adD]Pm. (38)

N
Assuming P=Y P""}', the recursion operator appear-
i=0

ing on the right of (38) is that

(T-adQ-T"'adQ)P? =(adQ)P!"”,

wherej=1,2,...,N-1.
Substituting the P into the first equation in (36), we
have

39)

Q=TP"-[Q, P”]. (40)
Because Q € m=span{e, }, we suppose
Q= z (qae(z +paefa)' (41)
aeh*
Hence, we have derived from (41) and (42) that
1
PO==Y" (Tq% +Tp°e ),
" “Ew( q“e,+Tp“e_,)
: (42)
Pk(o)zg 2 T (q“Tp’ -p'Tq")e,, el
a,ﬁeﬁ+

Y. Wang et al.: New 2+1-Dimensional Nonlinear Dynamics = 781

where we have used the property [e , eﬁ] =0, Va, e 6.

We decompose (40) into the following form:

a 1 a - 0
Xare,= (X1(Tq . > AT @ T,
aco™ aef” ,y,0e0"

le,, e, 1D, (43)

1 .
Zp;‘e,fg(ZT(Tp“)e,u— Y, p’T (@ Tp’-p'Tq’)

aeht ac6” By0eb”

le_,, [e,, e_,ID. (44)

According to the definition of the Riemann curvature
tensor, (43) and (44) can be expressed by the Riemann
curvature tensors as follows:

ag;=T(Tg")- ), R, ,a'T(q'Tp’-p'Tq"),
By,0e0”

apta:T(Tp(z)_ R:;siﬂpﬁT—l(qupé _vaqé),

B.y0ed”

(45)

which is the generalized nonlinear Schrédinger equation.
If we take T=0,, (45) reduces to the result of Fordy and
Kulish [28].

Acknowledgments: This work was supported by the
National Natural Science Foundation of China (grant no.
11371361), the Innovation Team of Jiangsu Province hosted
by the Chinese University of Mining and Technology
(2014), and the Natural Science Foundation of Shandong
Province (grant no. ZR2013AL016). The authors are grate-
ful to the reviewers for their revised suggestions.

Appendix

In the case of N=3, the admitting equations of (3) are as
follows:

[4, $”]=0, [B, $”']=0,
[4, SV]+24S” +BS? =0,
[B, S"]+BS\” 25" -35”B =0,
[4, S?1+[Q, $V1+24S" + AS” +BS" +BS!) -5 =0,
[B, $¥]+BS"-25"-25"B -35“B, =0,
[4, SP1+[Q, SV]+2A4SP + ASY) + BS” +BSY) -S\) -35Q=0,
B +[B, SP1+BS?-25?-s"B -SYB =0,
y X vy vy
(€] @ G) o)} @ ) 1) (0) —
2489 +AS? +BS? +BS? +[Q, $¥1-52-25"Q -35q, =0,
BSY'=25?,
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