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Abstract: Propagation of magnetoplasma waves at an 
angle to a static magnetic field is studied for a random 
distribution of spherical metallic nanoparticles. A general 
analytical expression for dispersion relation of the system 
is derived and useful expressions are obtained in the lim-
iting cases. It is found that the interaction between lon-
gitudinal and transverse modes leads to coupled modes 
in the vicinity of the frequency ,pf ξω+  where ξ is the 
ratio of the volume occupied by all the nanoparticles to 
the entire volume, ωp the plasma frequency of electrons 
inside a nanoparticle, and f a geometrical factor of order 
unity (1/3 for spherical nanoparticles).
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1  Introduction
The interaction of electromagnetic waves with a random 
distribution of metallic nanoparticles is of great interest 
and has been studied in greater details in recent years 
[1–3]. In this way, Tajima et al. [4] showed that unlike an 
electron plasma in a metal, a random distribution of metal-
lic nanoparticles permits propagation below the plasma 
cutoff of electromagnetic waves whose phase velocity is 
close to but below the speed of light. Parashar [5] found 
that a periodic lattice of nanoparticles supports an elec-
trostatic mode of space charge oscillations with frequency 
lying in a narrow band and varying periodically around 

/ 3pω  with the wave number. In addition, Jain and Par-
ashar [6] studied the dispersion characteristics of electro-
static and electromagnetic oscillations of a collection of 

nanoparticles in the presence of a magnetic field in the 
Faraday configuration (in this case, the wave vector of the 
incident plane wave is parallel to the magnetic field).

On the other hand, Chakhmachi and Maraghechi [7] 
investigated the influence of a static magnetic field in the 
Faraday configuration on the Raman scattering of a milli-
metre pump wave propagating through periodic nanopar-
ticles. In addition, Chakhmachi [8] studied the stimulated 
Raman back scattering of extraordinary electromagnetic 
waves from the nanoparticle lattice in the presence of the 
static magnetic field in the Voigt configuration (in this 
case, the wave vector of the incident plane wave is per-
pendicular to the magnetic field). Furthermore, Sepehri 
Javan [9, 10] investigated the propagation of an intense 
electromagnetic waves through a periodic array of metal-
lic nanoparticle.

As mentioned earlier, in the previous articles [6–8], 
much attention was devoted to the two simple geometries: 
Faraday configuration and Voigt configuration. The main 
objective of this article is a numerical calculation of the 
basic properties of magnetoplasma waves propagating at 
an angle to the magnetic field for a random distribution 
of spherical metallic nanoparticles, where nanoparticles 
are separated by distances greater than their character-
istic size and concentration of metallic nanoparticles is 
lower than the percolation threshold. In other words, the 
present calculation is, in fact, correct only to first order 
in the volume fraction of nanoparticles. In this way, we 
use small values of filling factor ξ in the calculation 
because large volume fraction probably causes the per-
colation effect. Moreover, we note that characteristic size 
of nanoparticles is small compared to the wavelength in 
the effective medium. In addition, we find useful analytic 
expressions for propagation in some special cases such as 
unmagnetised, collisionless, and the Faraday and Voigt 
geometries. Some of the formulas are well known, and we 
repeat them only for the sake of completeness.

This article is organised as follows: In Section 2, we 
set the basic equations concerning the problem. Then, we 
obtain a general analytical expression for the dispersion 
relation of electromagnetic oscillations of the system in 
the presence of the external magnetic field and collisional 
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effects. In Section 3, the dispersion relation of magneto-
plasma waves is analysed in special cases. In Section 4, 
the numerical results are discussed, and finally, Section 5 
contains our conclusions.

2  Formulation of Problem
Consider, for the moment, a collection of spherical 
metallic nanoparticles with the uniform electron density 
equal to all nanoparticles. We now perturb this equilib-
rium with a plane electromagnetic wave and study the 
medium response. We assume that the wave frequency is 
high enough that the ions can be considered as station-
ary. Without losing any generality in our plane electro-
magnetic wave solutions, we have been taking B0 in the 
z-direction, and the k-vector to have components only in 
the x- and z-directions, as shown in Figure 1.

Under the influence of electric field of electromag-
netic wave, the electron cloud of the nanoparticles is 
displaced and leads to the creation of surface charges, 
positive where the cloud is lacking, negative where it is 
concentrated. However, one has to keep in mind that all 
the electrons of the nanoparticles are moving collectively 
while under the effect of the field. Such collective oscil-
lation leads to localised surface plasmons, in contrast to 
free plasmons occurring in the bulk metals [11]. Because of 
this dipolar charge repartition, there arises a strong restor-
ing force due to plasma electron space charge, which is 
different from but has similarity with the longitudinal 
plasma charge restoring force. Therefore, for a plasmonic 
nanoparticle, the equation of motion of an electron in the 
r-direction, is
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Figure 1: For wave propagation in a random distribution of magnet-
ised nanoparticles, the angle of propagation θ with respect to the 
static magnetic field is important. Here, we assume that B0 is along 
the z-axis of a rectangular coordinate system and that k is in the x−z 
plane, as shown.

where 2
pfω− r  is the restoring force on electron and pf ω  

(with f = 1/3) the surface plasmon frequency of the spheri-
cal metallic nanoparticle. Furthermore, r = xex + yey + zez, 
u = uxex + uyey + uzez, and 2 2

0 0/ .p e n mω = ε  Moreover, e and 
m are electron charge and mass and γ phenomenologi-
cal damping or the damping constant due to scattering 
of metal electrons, which may lead to wave absorption. 
It should be noted that the value of γ in very small par-
ticles is indeed expected to increase beyond its value in 
bulk samples, since the mean free path of the electrons 
is reduced as a result of collisions with the surfaces [12]. 
Resolving (1) into x, y, and z components and using the 
operator d/dt = −iω, we obtain
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where ωc = eB0/m is the electron cyclotron frequency. 
Using (2) and (3), we obtain
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where 2( ) ,pi fΞ ω ω γ ω= + −  2 2 2 2[ ( ) ] ,p ci fΓ ω ω γ ω ω ω= + − −  
χxx = χyy = Ξ, χzz = 1, χxy = −χyx = −iωωc. On simplifying (5)–(7), 
we obtain the velocity of electron cloud as
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Therefore, the current density J can be written as
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By using the ohm’s law (J = σ · E), we find the complex 
frequency-dependent tensor of electrical conductivity as
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This tensor conductivity can be substituted into the 
wave equation to construct a dispersion relation. The rel-
evant equations for the electromagnetic wave propagation 
are Faraday’s law and Ampere’s law coupled with Ohm’s 
law. These are found in the following equations:

	 ,iω∇× =E B � (11)

	 0 0 0 ,iµ ωµ∇× = −B J Eε � (12)

	 .σ= ⋅J E � (13)

Combining the above-mentioned equations leads to 
the wave equation
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where I is just the identity tensor or, in index notation, 
the matrix with ones along the main diagonal and zeros 
elsewhere. Since a phase dependence exp(ik·r − iωt) is 
assumed, the above-mentioned equation can be written 
in algebraic form as

	

2
2

2( . ) 0,k
c
ω− − ⋅ =E k k E Eε

�
(15)

where we have a dielectric tensor, denoted by ε, given 
by

0

.i σ
ω

= +Iε
ε

Since we are using tensor notation, we re-express the 
left-hand side of (15) in tensor notation. Therefore, we find
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where κ is the tensor defined by κ = I − kk/k2. Remember-
ing that we have chosen ky = 0, so k = k sin θex + k cos θez, 
where θ is the angle of the wave vector with respect to the 
z-axis. The dispersion relation is then derived from the 
requirement that the determinant of the tensor quantity 
in parentheses in (16) be zero. Thus, the dispersion of the 
system can be written as
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where 21 / ,pS ξω Ξ Γ= −  2 / ,xy pD iξχ ω Γ=  21 / ,pP ξω Ξ= −  and 
n = kc/ω. After doing some algebra, (17) becomes
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where

	

224 2
4 2

2 2sin 1 cos .
4

pc c
ξωω ω

ϒ θ θ
ΞΞ ω

 
= + −  

�
(19)

The above-mentioned equation is the original result of 
this work, the (complex) dispersion relation of electromag-
netic waves in a nanoparticle plasma in the presence of a 
static magnetic field. The ± sign indicates the left- and right-
hand polarisation waves, respectively. We note that structure 
of (18) is similar to the well-known Altar–Appleton–Hartree 
formula, which has been extensively applied to radio waves 
in the ionosphere [13, 14]. In Section 3, we study this disper-
sion relation in different cases.

3  �Analysis of the Dispersion 
Relation in Different Cases

In this section, we investigate the solution of (18) for dif-
ferent cases as below.

Case 1. If we neglect the external magnetic field effect, 
(18) leads to the following dispersion equation for propa-
gation of electromagnetic waves in an unmagnetised nan-
oparticle plasma
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This result is the same as (3) derived by Tajima  
et al. [4].

Case 2. In this case, the wave vector k is parallel to the 
magnetic field B0 (Faraday configuration), i.e. we have 
θ = 0. Therefore, (18) becomes
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The above-mentioned equation has four real solutions. 
On the other hand, since a factor 2[ ( ) ( ) ]pi fω ω γ ξ ω+ − +  has 
cancelled out in the numerator and denominator of (18), 
we also have a solution
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	 2( ) ( ) .pi fω ω γ ξ ω+ = + � (22)

This, of course, means that in the Faraday con-
figuration plasmons do not interact with other types of 
excitations [15]. If we assume γ = 0 and ξ = 4πℓ/3 (where 
ℓ = (R/d)3, R is the radius of each nanoparticle and d the 
separation between nanoparticles [7]), from (21), we get 
the result of [4].

Case 3. Here, we want to solve (18) by considering θ  0. 
The result gives the dispersion relation for quasi-parallel 
propagation. In this case, the term containing cos2θ domi-
nates in (18). After doing some algebra, one obtains
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where for the upper and lower signs, we call these the 
quasi-parallel, left-hand circularly polarised and the quasi-
parallel, right-hand circularly polarised, respectively.

Case 4. Now, we obtain a dispersion relation for the 
Voigt configuration, where the wave vector k is perpen-
dicular to the magnetic field B0 (θ = π/2). Therefore, (18) 
becomes
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which also has two solutions. First, we have
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which is the same as those presented by Tajima et al. [4]. 
The other solution of (24) is
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If we assume γ = 0, f = 0, and ξ = 1, from (26), we find the 
low-frequency and high-frequency extraordinary modes 
of an electron plasma in a metal. However, it is easy to 
find that our dispersion relation in the limiting case of the 
Voigt configuration, i.e. (26) does not agree with the result 
obtained by Chakhmachi [8]. We note the extraordinary 

modes of an electron plasma in a metal cannot derived 
from the Chakhmachi result, i.e. (10) in [8].

Case 5. Finally, we consider the case quasi-transverse 
dispersion (θ  π/2). Here, transverse means k is nearly 
perpendicular to the static magnetic field. For quasi-trans-
verse propagation, the first term in ϒ dominates, that is
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In this case, a binomial expansion of ϒ gives
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Substitution of the above-mentioned equation into 
(18) shows that the generalisation of the nonmagnetic 
modes dispersion to angles in the vicinity of π/2 is
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The subscript + here means that the positive sign has 
been used in (18). This mode may be called the quasi-
transverse-nonmagnetic modes. Choosing the – sign in 
(18) gives the quasi-transverse-extraordinary modes. We 
have
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4  Numerical Results and Discussion
Now, we present the simulation results of dispersion rela-
tion of magnetoplasma waves in a magnetised spherical 
nanoparticle plasma and investigate their dependence on 
the parameters θ, as shown in Figures 2 and 3 for ξ = 0.1. 
We note that the most interesting feature of propagation 
in the intermediate geometry is the coupling of plasmons 
with transverse waves. While in the Faraday configuration 
the dispersion curves may intersect, for any finite-angle θ, 
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Figure 3: Same as Figure 2 but for ωc/ωp = 0.5.
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Figure 2: Dispersion curves for magnetoplasma waves propagating in a random distribution of magnetised spherical nanoparticles with 
ωc/ωp = 0.2 and ξ = 0.1, when (a) θ = 0°, (b) θ = 10°, (c) θ = 60°, and (d) θ = 90°.

a repulsion takes place. One can see that by increasing θ, 
repulsion increases. It is clear that there is one intersec-
tion of modes (i.e. one coupling of longitudinal excitations 
and transverse magnetoplasma waves) in Figure 2(b), 

for ωc = 0.2ωp, and two intersections (i.e. two coupling of 
plasmon mode and transverse magnetoplasma waves) in 
Figure 3(b), for ωc = 0.5ωp. The reason for this behaviour 
becomes apparent from (22) and (23) (assuming small θ). 
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The point of intersection is given by the solution of these 
equations. For γ = 0, we obtain
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Thus, there is always an intersection of modes for the 
upper sign. For the lower sign, however, there is a real 
solution only if (f + ξ)1/2ωc cos θ > ξωp.

5  Conclusion
In summary, we have studied the propagation of linear 
electromagnetic waves in a random distribution of spheri-
cal metallic nanoparticles, in the presence of a static 
magnetic field and collisional effects. We have derived a 
general analytical expression for the dispersion relation 
of the system. Considering different cases such as unmag-
netised, collisionless, and Faraday configuration cases, 
some formulas presented in the previous studies have 
been obtained. However, we have found that our disper-
sion relation in the limiting case of the Voigt configuration 
does not agree with the result obtained by Chakhmachi 
[8]. In addition, we have presented in graphical forms the 
basic properties of magnetoplasma waves propagating at 
arbitrary angle θ to the magnetic field. We have shown 

that for θ ≠ 0° coupling of transverse magnetoplasma 
waves and plasmon mode takes place.
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