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Abstract: Propagation of magnetoplasma waves at an
angle to a static magnetic field is studied for a random
distribution of spherical metallic nanoparticles. A general
analytical expression for dispersion relation of the system
is derived and useful expressions are obtained in the lim-
iting cases. It is found that the interaction between lon-
gitudinal and transverse modes leads to coupled modes
in the vicinity of the frequency \/Ewp, where £ is the
ratio of the volume occupied by all the nanoparticles to
the entire volume, w, the plasma frequency of electrons
inside a nanoparticle, and f a geometrical factor of order
unity (1/3 for spherical nanoparticles).
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1 Introduction

The interaction of electromagnetic waves with a random
distribution of metallic nanoparticles is of great interest
and has been studied in greater details in recent years
[1-3]. In this way, Tajima et al. [4] showed that unlike an
electron plasma in a metal, a random distribution of metal-
lic nanoparticles permits propagation below the plasma
cutoff of electromagnetic waves whose phase velocity is
close to but below the speed of light. Parashar [5] found
that a periodic lattice of nanoparticles supports an elec-
trostatic mode of space charge oscillations with frequency
lying in a narrow band and varying periodically around
wp/ \/5 with the wave number. In addition, Jain and Par-
ashar [6] studied the dispersion characteristics of electro-
static and electromagnetic oscillations of a collection of

*Corresponding author: Afshin Moradi, Department of Engineering
Physics, Kermanshah University of Technology, Kermanshah, Iran,
E-mail: a.moradi@kut.ac.ir

nanoparticles in the presence of a magnetic field in the
Faraday configuration (in this case, the wave vector of the
incident plane wave is parallel to the magnetic field).

On the other hand, Chakhmachi and Maraghechi [7]
investigated the influence of a static magnetic field in the
Faraday configuration on the Raman scattering of a milli-
metre pump wave propagating through periodic nanopar-
ticles. In addition, Chakhmachi [8] studied the stimulated
Raman back scattering of extraordinary electromagnetic
waves from the nanoparticle lattice in the presence of the
static magnetic field in the Voigt configuration (in this
case, the wave vector of the incident plane wave is per-
pendicular to the magnetic field). Furthermore, Sepehri
Javan [9, 10] investigated the propagation of an intense
electromagnetic waves through a periodic array of metal-
lic nanoparticle.

As mentioned earlier, in the previous articles [6-8],
much attention was devoted to the two simple geometries:
Faraday configuration and Voigt configuration. The main
objective of this article is a numerical calculation of the
basic properties of magnetoplasma waves propagating at
an angle to the magnetic field for a random distribution
of spherical metallic nanoparticles, where nanoparticles
are separated by distances greater than their character-
istic size and concentration of metallic nanoparticles is
lower than the percolation threshold. In other words, the
present calculation is, in fact, correct only to first order
in the volume fraction of nanoparticles. In this way, we
use small values of filling factor £ in the calculation
because large volume fraction probably causes the per-
colation effect. Moreover, we note that characteristic size
of nanoparticles is small compared to the wavelength in
the effective medium. In addition, we find useful analytic
expressions for propagation in some special cases such as
unmagnetised, collisionless, and the Faraday and Voigt
geometries. Some of the formulas are well known, and we
repeat them only for the sake of completeness.

This article is organised as follows: In Section 2, we
set the basic equations concerning the problem. Then, we
obtain a general analytical expression for the dispersion
relation of electromagnetic oscillations of the system in
the presence of the external magnetic field and collisional
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effects. In Section 3, the dispersion relation of magneto-
plasma waves is analysed in special cases. In Section 4,
the numerical results are discussed, and finally, Section 5
contains our conclusions.

2 Formulation of Problem

Consider, for the moment, a collection of spherical
metallic nanoparticles with the uniform electron density
equal to all nanoparticles. We now perturb this equilib-
rium with a plane electromagnetic wave and study the
medium response. We assume that the wave frequency is
high enough that the ions can be considered as station-
ary. Without losing any generality in our plane electro-
magnetic wave solutions, we have been taking B in the
z-direction, and the k-vector to have components only in
the x- and z-directions, as shown in Figure 1.

Under the influence of electric field of electromag-
netic wave, the electron cloud of the nanoparticles is
displaced and leads to the creation of surface charges,
positive where the cloud is lacking, negative where it is
concentrated. However, one has to keep in mind that all
the electrons of the nanoparticles are moving collectively
while under the effect of the field. Such collective oscil-
lation leads to localised surface plasmons, in contrast to
free plasmons occurring in the bulk metals [11]. Because of
this dipolar charge repartition, there arises a strong restor-
ing force due to plasma electron space charge, which is
different from but has similarity with the longitudinal
plasma charge restoring force. Therefore, for a plasmonic
nanoparticle, the equation of motion of an electron in the
r-direction, is

a d 2) e e
—+y—+ r=——E-—uxB,_, 1
(dt2 th fo, m m 0 M

B

Figure 1: For wave propagation in a random distribution of magnet-
ised nanoparticles, the angle of propagation 6 with respect to the
static magnetic field is important. Here, we assume that B is along
the z-axis of a rectangular coordinate system and that k is in the x-z
plane, as shown.
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where —fw’r is the restoring force on electron and \/? o,
(with f=1/3) the surface plasmon frequency of the spheri-
cal metallic nanoparticle. Furthermore, r=xe + ye +ze,
u=ue +ue +ue, and w; =e’n,[e,m. Moreover, e and
m are electron charge and mass and y phenomenologi-
cal damping or the damping constant due to scattering
of metal electrons, which may lead to wave absorption.
It should be noted that the value of y in very small par-
ticles is indeed expected to increase beyond its value in
bulk samples, since the mean free path of the electrons
is reduced as a result of collisions with the surfaces [12].
Resolving (1) into x, y, and z components and using the
operator d/dt=—iw, we obtain

[w(w+iy)—fwi]x=%Ex —iwo Yy, )
[w(w+iy)—fw;]y=%Ey +iww X, (3)
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X

[w(w+iy)—fa);]z:£E
m

where w_=eB/m is the electron cyclotron frequency.
Using (2) and (3), we obtain

X:E XxxEx +XxyEy
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where E=w(w+iy)—fa);, F=[w(w+iy)—fw2]2 -w’o?,
X=Xy =55 X, =L X, = X, = —lww, . On simplifying (5)—(7),
we obtain the velocity of electron cloud as

e
I“ X

. nyEx +nyEy .

E +y E
uz_iw£|:xxx X Xxy y
m

3)

Therefore, the current density J can be written as

E +y E

XyXEX+XY}’EY XzzEz
+fey+Tez . 9)

By using the ohm’s law (J=¢ - E), we find the complex
frequency-dependent tensor of electrical conductivity as
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This tensor conductivity can be substituted into the
wave equation to construct a dispersion relation. The rel-
evant equations for the electromagnetic wave propagation
are Faraday’s law and Ampere’s law coupled with Ohm’s
law. These are found in the following equations:

VxE=iwB, (11)
VxB=u J-ioucE, (12)
J=0E. (13)

Combining the above-mentioned equations leads to
the wave equation
2
VZE-V(V.E)+‘”—2(1+1'£J-E=0,
c €

N

(14)

where I is just the identity tensor or, in index notation,
the matrix with ones along the main diagonal and zeros
elsewhere. Since a phase dependence exp(ik-r — iwt) is
assumed, the above-mentioned equation can be written
in algebraic form as
2
lczE—k(k.E)—Cz—ng:O, (15)
where we have a dielectric tensor, denoted by ¢, given
by

.o
e=I+i—.
€0

Since we are using tensor notation, we re-express the
left-hand side of (15) in tensor notation. Therefore, we find

2
(w_zi_kzﬁj'EZOy
C

(16)

where k is the tensor defined by k=1 — Kk/k’>. Remember-
ing that we have chosen ky= 0, so k=k sin fe _+k cos e,
where 0 is the angle of the wave vector with respect to the
z-axis. The dispersion relation is then derived from the
requirement that the determinant of the tensor quantity
in parentheses in (16) be zero. Thus, the dispersion of the
system can be written as

S—n’cos’® iD n’cos@sinf
det —iD S-n’ 0 =0, 17
n‘cosfsinf 0O P-n’sin’é
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where S=1—§a);E/F, D=i&y w*|T, P=1—§w;/E, and

v p

n=kc/w. After doing some algebra, (17) becomes
Eo? (1—&);}
2 =
L (18)
= w_ .
2(1— _”j—_csmzeiY
w = 2=
where
4 2 5 2\2
w
Y= wczsin“0+w—g(l— _”J cos’0. (19)
= w =

The above-mentioned equation is the original result of
this work, the (complex) dispersion relation of electromag-
netic waves in a nanoparticle plasma in the presence of a
static magnetic field. The * sign indicates the left- and right-
hand polarisation waves, respectively. We note that structure
of (18) is similar to the well-known Altar—Appleton—Hartree
formula, which has been extensively applied to radio waves
in the ionosphere [13, 14]. In Section 3, we study this disper-
sion relation in different cases.

3 Analysis of the Dispersion
Relation in Different Cases

In this section, we investigate the solution of (18) for dif-
ferent cases as below.

Case 1. If we neglect the external magnetic field effect,
(18) leads to the following dispersion equation for propa-
gation of electromagnetic waves in an unmagnetised nan-
oparticle plasma

2
w,

n2 =1_.—2.
a)(a)+ly)—fa)p

(20)
This result is the same as (3) derived by Tajima
et al. [4].

Case 2. In this case, the wave vector k is parallel to the
magnetic field B, (Faraday configuration), i.e. we have
0=0. Therefore, (18) becomes
2
: o

n’=1 L . 21
a)(a)+iy)—fwiia)wc @D

The above-mentioned equation has four real solutions.
On the other hand, since a factor [w(w+iy)—(f +§)a);] has
cancelled out in the numerator and denominator of (18),
we also have a solution
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w(w+iy)=(f+§)w;. (22)

This, of course, means that in the Faraday con-
figuration plasmons do not interact with other types of
excitations [15]. If we assume y=0 and &=4x//3 (where
¢=(R/d)’, R is the radius of each nanoparticle and d the
separation between nanoparticles [7]), from (21), we get
the result of [4].

Case 3. Here, we want to solve (18) by considering 6 = 0.
The result gives the dispersion relation for quasi-parallel
propagation. In this case, the term containing cos? domi-
nates in (18). After doing some algebra, one obtains
2
2 fo

n’=1 p , 23
w(w+iy)—fa);icua)C cosh 23)

where for the upper and lower signs, we call these the
quasi-parallel, left-hand circularly polarised and the quasi-
parallel, right-hand circularly polarised, respectively.

Case 4. Now, we obtain a dispersion relation for the

Voigt configuration, where the wave vector Kk is perpen-
dicular to the magnetic field B, (6 =7/2). Therefore, (18)

becomes
2 2
Eo? [l_sw,,]
2 —

n’=1 @ = , 24
= ( SwzJ w @4)
— | 1- Pl_Tcyc
’ = 28 2E
which also has two solutions. First, we have
Ew’
nw=l-——2 (25)

_w(w+iy)—fa); ’

which is the same as those presented by Tajima et al. [4].
The other solution of (24) is

Eo’ [1_(f+§)w;J

2 o(w+iy)

)
w+iy[l_ fw;‘ ]z[l
) o(w+iy)

Ifweassumey =0, f=0, and & =1, from (26), we find the
low-frequency and high-frequency extraordinary modes
of an electron plasma in a metal. However, it is easy to
find that our dispersion relation in the limiting case of the
Voigt configuration, i.e. (26) does not agree with the result
obtained by Chakhmachi [8]. We note the extraordinary

n’=1

fo, o
w(w+iy)—fw; w(w+iy)
(26)

DE GRUYTER

modes of an electron plasma in a metal cannot derived
from the Chakhmachi result, i.e. (10) in [8].

Case 5. Finally, we consider the case quasi-transverse
dispersion (0 =x/2). Here, transverse means Kk is nearly
perpendicular to the static magnetic field. For quasi-trans-
verse propagation, the first term in Y dominates, that is

2
(1)4 wz SwZ
—<sin0>—<| 1--—L | cos’6. @27)
= w =
In this case, a binomial expansion of Y gives
P 1/2
2 =2 2 2
. 4= S, | cos?f

Y:Z—_Csmze 1+— 2(1 _"j oy

= 0w E / sin 28)

2
2 — 2
w, . = 30
=—<tsin’ 6+—2[1— _”] cot’ 0.
2E W =

Substitution of the above-mentioned equation into
(18) shows that the generalisation of the nonmagnetic
modes dispersion to angles in the vicinity of /2 is
50); sin’ 6

n’ =1 . 29
* w(a)+iy)—fw;—§w; cos’6 (29)

The subscript + here means that the positive sign has
been used in (18). This mode may be called the quasi-
transverse-nonmagnetic modes. Choosing the — sign in
(18) gives the quasi-transverse-extraordinary modes. We
have

2

n =1
0 - (f+&w),
»’ o(w+iy)

fo,

w+iy ) ’
I0) [l_w(wﬂy)] [l

4 Numerical Results and Discussion

sin’@

fw, :
o(w+iy)-fo? ~ w(w+iy)

(30)

Now, we present the simulation results of dispersion rela-
tion of magnetoplasma waves in a magnetised spherical
nanoparticle plasma and investigate their dependence on
the parameters 6, as shown in Figures 2 and 3 for £=0.1.
We note that the most interesting feature of propagation
in the intermediate geometry is the coupling of plasmons
with transverse waves. While in the Faraday configuration
the dispersion curves may intersect, for any finite-angle 6,
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Figure 2: Dispersion curves for magnetoplasma waves propagating in a random distribution of magnetised spherical nanoparticles with
wc/a)p =0.2and £=0.1, when (a) 6=0°, (b) #=10°, (c) #=60°, and (d) 6=90°.
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Figure 3: Same as Figure 2 but for wc/wP:O.S.

a repulsion takes place. One can see that by increasing 6,
repulsion increases. It is clear that there is one intersec-
tion of modes (i.e. one coupling of longitudinal excitations
and transverse magnetoplasma waves) in Figure 2(b),

00 02 04 06 08 10 12 14

kc/wp

for =020, and two intersections (i.e. two coupling of
plasmon mode and transverse magnetoplasma waves) in
Figure 3(b), for w =050, The reason for this behaviour
becomes apparent from (22) and (23) (assuming small 6).
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The point of intersection is given by the solution of these
equations. For y =0, we obtain

K2 (f+8)"w_ cosb

o’ =(f+§)l/zwc cosBiEwp' GD

Thus, there is always an intersection of modes for the
upper sign. For the lower sign, however, there is a real
solution only if (f+&)"w_cos 6 >8w,.

5 Conclusion

In summary, we have studied the propagation of linear
electromagnetic waves in a random distribution of spheri-
cal metallic nanoparticles, in the presence of a static
magnetic field and collisional effects. We have derived a
general analytical expression for the dispersion relation
of the system. Considering different cases such as unmag-
netised, collisionless, and Faraday configuration cases,
some formulas presented in the previous studies have
been obtained. However, we have found that our disper-
sion relation in the limiting case of the Voigt configuration
does not agree with the result obtained by Chakhmachi
[8]. In addition, we have presented in graphical forms the
basic properties of magnetoplasma waves propagating at
arbitrary angle 0 to the magnetic field. We have shown
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that for 6 # 0° coupling of transverse magnetoplasma
waves and plasmon mode takes place.
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