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Abstract: In this article, we present results of the first-prin-
ciple study of the structural, electronic, and optical prop-
erties of the InN, InP binary compounds and their related 
ternary alloy InNxP1–x in the zinc-blend (ZB) phase within 
a nonrelativistic full potential linearised augmented plan 
wave (FP-LAPW) method using Wien2k code based on the 
density functional theory (DFT). Different approximations 
of exchange–correlation energy were used for the calcu-
lation of the lattice constant, bulk modulus, and first-
order pressure derivative of the bulk modulus. Whereas 
the lattice constant decreases with increasing nitride 
composition x. Our results present a good agreement 
with theoretical and experimental data. The electronic 
band structures calculated using Tran-Blaha-modified 
Becke–Johnson (TB-mBJ) approach present a direct band 
gap semiconductor character for InNxP1–x compounds at 
different x values. The electronic properties were also 

calculated under hydrostatic pressure for (P = 0.00, 5.00, 
10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP 
compound change from direct to indirect band gap at the 
pressure P  ≥  7.80 GPa. Furthermore, the pressure effect on 
the dielectric function and the refractive index was carried 
out. Results obtained in our calculations present a good 
agreement with available theoretical reports and experi-
mental data.

Keywords: Band Gap; InNxP1–x; Optical Properties; Pres-
sure Effect; Semiconductor.

1  Introduction
Semiconductor compounds are the basis materials for 
different fields of technologies, as well as new classes of 
optoelectronic devices. Some examples include high elec-
tron mobility and transistors, heterostructures, light-emit-
ting diodes, photodetectors, and modulators.

The InN and InP compounds are interesting semicon-
ductors materials for high-frequency electronic devices, 
by reason of its superior speed electrons. These alloys 
have undergone a variety of experimental and theoretical 
studies. Recently, in experimental study, the electronic 
structure of InP was studied by Ley et al. [1]. Aspnes and 
Studna measured the dielectric function of III–V semicon-
ductors of InP and obtained more other optical constants 
in the energy range 1.5–6.0 eV [2]. Besides, the dielectric 
constants of InP compound between 0.7 and 5.0 eV includ-
ing a band gap around 1.42 eV measured by Herzinger 
et al. [3]. The direct band gap of high-quality wurtzite InN 
films is reported [4, 5] to be from 0.65 to 1 eV. The band 
gap of the cubic InN is foreseen to be within this range 
or slightly lower. This allows manufacturing the high-
speed LDs and PDs for optical communication systems 
[4]. On the other hand, some results for structural and 
electronic properties were reported by Boussahla et al. [6], 
as well as Ben Fredj et al. [7, 8]. The strong dependence 
of the band gap on the N content has made diluted III–V 
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nitrides important materials for a variety of applications, 
including long wavelength optoelectronic devices [9, 10] 
and high-efficiency hybrid solar cells [11, 12]. Several 
theoretical studies of band structure calculations using 
density functional theory (DFT) have addressed the unu-
sually strong dependence of the fundamental gap on the 
N content in the group III–N–V alloys [13, 14]. Recently, 
structural and electronic properties of InNxP1–x alloys were 
investigated in full range (0 < x < 1) by Aslan et al. [15].

Some of the III–V compounds, in particular the InP, 
InN, and their ternary InNxP1–x solid solutions form crys-
tals with zinc blende arrangement, which is based on the 
cubic space group F4̅3m in which the lattice parameter 
obeys to the Vegard’s law and varies linearly with the com-
position x of nitrogen [16].

Here, we investigate the structural, electronic, and 
optical properties of the cubic InN and InP binary com-
pounds together with their related ternary InNxP1–x solid 
solutions using the first-principles calculations by per-
forming the Tran–Blaha-modified, Becke–Johnson 
(TB-mBJ) approach band structure calculations. The elec-
tronic and optical properties were also carried out under 
hydrostatic pressure effect. The calculations were made 

by applying a nonrelativistic full potential linearised aug-
mented plane waves (FP-LAPW) method in the context of 
the DFT as implemented in the Wien2k package [17].

2  Computational Details
Calculations were performed using DFT because of the effi-
ciency of this approach for different systems. For periodic 
systems, we have gathered an extensive experience with 
the all-electron full-potential linearised plane wave (FP-
LAPW)-based code Wien2k [18]. This code uses “forces” to 
optimise the crystal structure. The periodical calculations 
of properties, at the k-space through the Fourier transfor-
mations techniques, employed in expansions of both the 
electronic wave functions and the potential generated by 
the nucleus.

The exchange–correlation potential was treated 
within the generalised gradient approximation (WC-
GGA). In addition to this approximation, the (local density 
approximation, LDA) and (PBE-sol GGA) was also applied 
for computing structural properties such as the lattice 

Table 1: The lattice constants (a), bulk modulus (B), and pressure derivative of the bulk modulus (B′) for the InN, InP, and the zinc blende 
InNx P1–x alloys.

Composition x   Parameters   This work  Other theoretical 
studies

  Experimental 
data

WC-GGA  PBEsol-GGA  PW-LDA

InN   a (Å)   4.9926  4.9918  4.9471  4.945a, 4.98b  4.98f

  B (GPa)   140.5343  137.2588  145.5469  145a, 155.35b  137e

  B′   4.1757  3.7960  3.6884  4.75c, 4.49b 
InN0.75P0.25   a (Å)   5.2638  5.2624  5.2131   

  B (GPa)   103.3437  103.0356  111.7882   
  B′   4.7490  4.3744  4.7623   

InN0.5P0.5   a (Å)   5.5052  5.5036  5.4525   
  B (GPa)   84.1868  83.7418  92.0391   
  B′   4.5969  4.1304  4.3859   

InN0.25P0.75   a (Å)   5.7105  5.7087  5.6579   
  B (GPa)   73.0259  72.8655  78.5801   
  B′   4.3392  4.5467  4.6981   

InP   a (Å)   5.8814  5.8789  5.8299  5.72d, 5.85g  5.86d

  B (GPa)   67.7383  67.2997  71.0719  73.66d, 76.10h  72.00d

  B′   4.3041  4.5021  4.6221  4.20i  4.80i

aRef. [21].
bRef. [22].
cRef. [23].
dRef. [7].
eRef. [24].
fRef. [25].
gRef. [26].
hRef. [8].
iRef. [27].
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constants, bulk modulus, and their pressure derivatives. 
The obtained results were fitted using the Birch–Murna-
ghan’s equation of state [19].

In order to model the InNxP1–x alloys with different 
compositions x = 0.0, 0.25, 0.5, 0.75, and 1.0, we have used 
a cubic cell 1 × 1 × 1 with eight atoms. For each configura-
tion, the band gap energy, the dielectric constants, and 
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Figure 1: Energy versus volume curves of (a) InN, (c) InP, and (b) 
InN0.5P0.5 compounds for WC-GGA exchange–correlation energy 
approximations.
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Figure 2: Variation of the lattice constant versus composition, x, of 
the (ZB) InNxP1–x alloy.
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Figure 3: Variation of the bulk modulus versus composition, x, of 
the (ZB) InNxP1–x alloy.

the refractive index were studied under hydrostatic pres-
sure effect for different values of pressure (P = 0, 5, 10, 15, 
20, 25 GPa). The matrix size was defined with a parameter 
Rmt × Kmax equal to 8, where the Rmt denotes the minimum 
radius of the sphere in unit cell, and Kmax yields the extent 
of the largest K vector in the plane wave expansion. The 
muffin-tin radii of In, N, and P are adopted to be 2.1, 1.4, 
and 1.7 Bohr, respectively. We have chosen a value of –6.0 
Ry for the energy cutoff between the core and the valence 
states for both compounds, we have fixed lmax = 10 for 
wave function expansion inside the atomic spheres and 
the charge density was Fourier expanded up to Gmax = 12 
(Ryd). The integrals over the Brillouin zone are performed 
up to 47 k-points, the energy convergence was selected as 
0.0001 Ry.
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Figure 4: (a, b) The electronic band structures of the cubic (a) InN and (b) InP alloys within TB-mBJ approximation. The electronic band struc-
tures of the cubic (c) InN0.25P0.75, (d) InN0.5P0.5 and (e) InN0.75P0.25 alloys within TB-mBJ approximation.
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The band structures were calculated using the TB-mBJ 
approach with the parameterisation of Koller et al. [20]. The 
total and partial densities of states (DOSs) were calculated. 
We have to note that for the DOS calculations, we have 
used a denser k-mesh of 3000 k-points and we have distin-
guished the In (1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6), N (1s2), and P 
(1s2 2s2 2p6) as inner-shell electrons from the valence elec-
trons of In (4d10 5s2 5p1), N (2s2 2p3), and P (3s2 3p3) shells.

3  Results and Discussion

3.1  Structural Properties

The lattice constants (a), bulk modulus (B), and pressure 
derivatives of the bulk modulus (B′) at the corresponding 
volumes of cubic InNxP1–x alloys using the LDA, WC-GGA, 
and PBEsol-GGA approximations, for different compo-
sitions (x = 0.00, 0.25, 0.50, 0.75, 1.00), are computed. 
Results obtained are summarised in Table 1, together with 
available measured values and other theoretical avail-
able data. Our calculated lattice constants are very close 
to those given in the literature. We show as a prototype 
in Figure  1 the variation of total energy as a function of 
volume by fitting the total energies to the Murnaghan’s 
equation of state [19].

The difference can be observed between the lattice 
parameter value of InP (x = 0, a0 = 5.88 Å) compound, and 

Table 2: The band gap energies of the direct and indirect transitions of the InNx P1–x compounds for the compositions (x = 0.00, 0.25, 0.50, 
0.75, and 1.00), where the values are given in electron volts.

Composition 
x at P atom

  Band gap 
energy (eV)

 
 

This work  Other theoretical 
studies

  Experimental 
data

LDA_mBJ

InN   EΓ→Γ   0.79110  0:69a  0.7b

  EΓ→X   4.06859  2.765c  2:11d

InN0.75P0.25   EΓ→Γ   0.86179   
  EΓ→X   3.52952   

InN0.5P0.5   EΓ→Γ   0.87223   
  EΓ→X   3.35265   

InN0.25P0.75   EΓ→Γ   0.94014   
  EΓ→X   3.07013   

InP   EΓ→Γ   1.66753  1.423e  1.35f

  EΓ→X   2.36479  1.63g  2.21f

aRef. [30].
bRef. [25].
cRef. [22].
dRef. [31].
eRef. [32].
fRef. [33].
gRef. [27].
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Figure 5: The variations curves versus composition x of each band 
gap (EΓ→Γ, EΓ→X) of the InNxP1–x alloys.

these of the InN (x = 1, a0 = 4.99 Å) can be explained by the 
difference in the atomic radius of the P (0.98 Å) atom from 
that of the atom N (0.65 Å), which allows us to note that the 
decrease in lattice parameter of the InNxP1–x ternary com-
pounds have an inversely relationship with increasing x 
composition. In opposition to the lattice constant a0 and 
in concordance with the proportionality between the Bulk 
modulus and the lattice constants: 1

0B Vα −  [28], the bulk 
modulus increases with increasing x composition. The 
calculated equilibrium lattice constants of InNxP1–x alloys 
are plotted as a function of x composition in Figure 2. We 
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Table 3: The refractive index n of the InNxP1–x compounds (x = 0.00, 0.50, 1.00).

Compound   FP-LAPW 
n(ω = 0)

  Herve–Vandam 
n(ω = 0)

  Ravindran 
n(ω = 0)

  Reddy 
n(ω = 0)

  Moss 
n(ω = 0)

  Kumarn 
(ω = 0)

  Other works 
n(ω = 0)

InN   3.32  3.39  3.59  3.83  3.31  3.63  2.92a

InN0.5P0.5   3.52  3.34  3.55  3.74  3.24  3.53  –
InP   3.39  2.86  3.15  3.08  2.75  2.85  3.32b

aRef. [40].
bRef. [41].
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can observe a slight deviation from the Vegard’s law [29], 
the physical origin of this deviation should be mainly due 
to the difference in atomic radii and the lattice mismatch 
between binary compounds InP an InN which is at about 
15.11 %. A quadratic polynomial function is used to fit the 
calculated values of the structural properties. The fit func-
tion is given as fellow:

	 InN InP( ) (1 ) (1 ) a x xa x a x x b= + − − − � (1)

The bowing parameters of the lattice constants 
curves are found to be equal to –0.27051, –0.27074, and 
–0.25371 for the WC-GGA, PBEsol-GGA, and PW-LDAs, 
respectively.

With the same scheme, we have calculated the 
bowing parameter of the bulk modulus for InNxP1–x, solid 
solutions. Values are 82.0594, 75.1226, and 67.1898 for the 
WC-GGA, PBEsol-GGA, and PW-LDA approaches, respec-
tively. The bulk modulus versus composition x for the 
InNxP1–x alloys are depicted in Figure 3. Unfortunately, we 
have not found any report in literature for more compari-
son of our results for the ternary alloys InNxP1–x.

3.2  Electronic Structure

In this section, the energy band structures and the density 
of states DOS are investigated for both binary constituents 
InP, InN, and their related ternary alloys InNxP1–x. For a 
wide range of materials, standard DFT calculations using 
modern approximations as well as the generalised gra-
dient approach (GGA), the local density LDA, and other 
approximations give extremely useful results in struc-
tural properties calculations, but it is known that they 
underestimate dramatically the band gaps of most semi-
conductors and leads to incorrect prediction comparing 
with experimental results. In this regard, we have intro-
duced the Tran–Blaha-modified Becke Johnson (TB-mBJ) 
approach in our calculations. The TB-mBJ approximation 
gives a very much improved band gaps for a large variety 
of materials including semiconductors.

In this approach, the TB-mBJ potential is given by
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Figure 8: The direct and indirect band gaps energies versus pres-
sure of (a) InN, (b) InP, and (c) InN0.5P0.5 alloys.

where g′ is the average of g=|∇ρ|/ρ in the unit cell of 
volume Vcell. According to a fit to the experimental values 
of band gaps, A and B parameters values are A = –0.012 
and B = 1.023 bohr1/2.
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Table 4: The direct and indirect gap energies of the InN, InP, and InN0.50P0.50 compounds at different pressure values with TR-mBJ approach.

Composition 
x at P atom

  Band gap 
energy (eV)

 
 

Hydrostatic pressure P (GPa)

0  5  10  15  20  25

InN   EΓ→Γ   0.79110  0.88842  0.97088  1.04396  1.10098  1.15155
  EΓ→X   4.06859  4.08692  4.11275  4.13811  4.15406  4.17004

InN0.75P0.25   EΓ→Γ   0.86179  0.98163  1.07573  1.15816  1.22139  1.27984
  EΓ→X   3.52952  3.61036  3.67263  3.72586  3.76517  3.80134

InN0.5P0.5   EΓ→Γ   0.87223  0.96123  1.06396  1.10902  1.13676  1.14807
  EΓ→X   3.35265  3.32565  3.33382  3.31844  3.30200  3.28279

InN0.25P0.75   EΓ→Γ   0.94014  0.98412  0.97020  0.92748  0.87693  0.82095
  EΓ→X   3.07013  3.02893  2.98615  2.94030  2.89729  2.85431

InP   EΓ→Γ   1.66753  2.03754  2.28303  2.47566  2.63950  2.77618
  EΓ→X   2.36479  2.24213  2.12825  2.02815  1.94413  1.86804

Table 5: The hydrostatic pressure coefficients, α and β for the cubic 
InN, InP, and InN0.50P0.50 compounds.

Compounds  Band gap (TB-mBJ)  α (10−2 eV/GPa)  B (10−4 eV/GPa)

InN   EΓ→Γ   2.03, 2.54a  –2.39, –1.51a

  EΓ→X   0.51, 0.59a  –0.36, –0.53a

InN0.50P0.50   EΓ→Γ   2.34  –4.91
  EΓ→X   –0.14  –0.42

InP   EΓ→Γ   6.97, 7.81a  –10.7, –10.53a

  EΓ→X   –2.61, –2.09a  2.51, 1.65a

aRef. [43].

Results obtained using this approach are closed to the 
available experimental data. The calculated band struc-
tures of the InNxP1–x compounds at different composition 
x = (0.00, 0.25, 0.50, 0.75, 1.00), within the TB-mBJ approx-
imation, are shown in Figure 4.

Our calculations allow us to notice that the consid-
ered compounds are semiconductors in the range of all 
concentrations with a direct band gap of about 0.79, 0.87, 
and 1.66 eV, for the InN, InN0.5P0.5, and InP, respectively. 
These values confirm the importance of these compounds 
for the design and analysis of various optoelectronic and 
photonic devices.

Results obtained here for the direct band gap (Γ → Γ) 
and indirect one (Γ → X), for each concentration x, are 
reported in Table 2. It is clearly seen that the InNxP1–x direct 
band gap (EΓ→Γ) increases when composition x decreases 
and can be explained by the effect of N-dopant on the 
decrease in lattice parameter and also the presence of new 
energy bands in the material. Inversely, the indirect (EΓ→X) 
band gap decreases with the P-dopant augmentation.

Moreover, the variation curves versus composition x 
of each band gap (EΓ→Γ, EΓ→X) undergo a simple polyno-
mial quadratic fit and are shown in Figure 5. The InNxP1–x 
bowing factor values of the energy gap is found to be 

1.5625 and –0.5007 eV for direct and indirect transitions, 
respectively.

The equations of fitted curves of the InNxP1–x direct 
and indirect band gaps are given by the following 
equations:

	 21.587 2.2936 1.5625E x x
Γ Γ→ = − + � (4)

	 22.4411 2.0475 0.5007E x x
Γ Χ→ = + − � (5)

3.3  Density of States

The density of states tells us how many states per unit 
energy exist in the vicinity of a certain energy level.

Figure  6 shows the total and the partial densities 
of states of InN, InP, and InN0.5P0.5 alloys, respectively. 
They were calculated using the plane wave-local density 
approximation (PW-LDA). It can be seen from Figure 6a 
that the valence band comprises two regions, a lower 
(LVB) and upper (UVB) bands, respectively. For the 
InN compound, the In-4d and N-2s states are dominant 
in the LVB, with a high contribution of In-4d states, 
while the UVB is dominated by In-5s states, with a little 
contribution of In-5p and N-2s states. The conduction 
band (CB) is essentially populated by In-5s, In-5p and 
N-2p states.

It is seen from Figure 6b that the In-4d and P-3s 
orbital contribute to the UVB of the DOS in InP binary 
compound. The uppermost part of the valence band is 
dominated of the In-5p and P-3p states, with a small con-
tribution of In-4d states. The CB is formed of a mixture of 
all states, with a high contributions of the In-5s and P-3p 
orbitals.

It is observed from Figure 6c that in the InN0.50P0.50 
ternary alloy, the LVB is mainly populated by In-4d, N-2s 
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Figure 9: The dielectric function of (a, b) InN, (c, d) InP and (e, f) InN0.50P0.50 compounds under hydrostatic pressure at 0.0, 15, and 25 GPa.

and P-3s states. The UVB is essentially formed by In-5s and 
a mixture of In-5p, N-2p and P-3p states. The CB results 
from a mixture of In-5s, In-5p, and a small contribution of 
N-2p and P-3p states.

4  Optical Properties
In order to investigate the optical properties of the ternary 
alloys InNxP1–x, we have studied all the possible transitions 

between valence and CBs. The frequency-dependent die-
lectric functions ε1(ω) and ε2(ω) [34], the real and imagi-
nary parts of the complex dielectric function ε(ω) are 
given by the following equations:

	

2
1 2 20

( )2( ) 1 dP
ω ε ω

ε ω ω
π ω ω

∞ ′ ′
= + ′

−′∫
�

(6)

In the imaginary part ε2(ω), the momentum dipole 
elements
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	 ( ) |cv vk ckM k u u|=< ∇ >δ � (7)

describes the direct transitions between the valence band 
and the CB uvk and uck states, respectively, with δ as a unit 

vector defining the electric field. The integral is carried 
out over the first Brillouin zone.

On the other hand, P designates that the integral is to 
be evaluated in the principal value sense in the real part 
ε1(ω). This latter can be calculated from imaginary part by 
means of the Kramers–Kronig transformation [35].

The spectral variations of the dielectric function ε(ω) 
within the real and imaginary parts for the InN, InP com-
pounds, and their related ternary InNxP1–x alloy at the com-
position x = 0.5 are shown in Figure 7.

From the variation curves of the imaginary part of the 
dielectric function ε2(ω) according to the energy, which 
reflects the absorption of the material. We can get differ-
ent direct interband transitions. The main peaks of the 
structure are visible at 3.70, 5.63, 7.6, and 9.98 eV which 
correspond well to the InN compound at energies 0.72, 
4.20, 7.33, 7.93 eV, respectively. These peaks may belong to 
the electronic direct transition from In-3p states to In-4s 
and N-2p states as predicted by Usman et  al. [36]. The 
peak around 7.33 eV is attributed to 3p, 4s valence states 
of Indium to N-2p and In-4s [36]. Whereas, the peak at 
9.98 eV is related to mixed transitions.

For the InP alloy, we observe two peaks located at 2.73 
and 4.23 eV. We have to note that our calculated peak posi-
tions are much closer to Feng et al. data (3.06, 4.69 eV) [37] 
than the calculated values (2.40, 4.10 eV) [38] using the 
FPLMTO method. The first peak corresponds mainly to the 
interband direct transitions from the top of valence bands 
to the bottom of CBs.

The maximum of absorption is located at 9.98, 33.55, 
and 16.76 eV for InN, InP, and InN0.5P0.5, respectively.

Moreover, we have calculated the refractive index 
n(ω) using the following relation:
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Other models were used to calculate the refractive 
index n(ω) for comparison and confirmation of results. 
These models are presented as follow:

Moss model [39]:

	 4
g 95 eVn E = � (9)

where n and Eg are, respectively, the refractive index and 
the energy gap.

Ravindra model [39]:

	 g4.084 0.62 n E= − � (10)

Herve–Vandamme model [39]:

	

2
2

g

1 An
E B

 
= + +  �

(11)

where A is the hydrogen ionisation energy 13.6 eV and 
B = 3.47 eV is a constant presumed to be the difference 
between the UV resonance energy and the band gap Eg.

Reddy model [39]:

	 4
g( 0.365) 154n E − = � (12)

Kumar and Singh model [39]:

	 c
gn KE= � (13)

where K = 3.3668 and C = –0.32234.
The static values of the refractive index n(ω) for ω = 0 

are listed in Table  3. As can be seen from Figure 10, the 
refractive index n(ω) decreases when increasing the nitro-
gen composition x. The values obtained here are also com-
puted using different models (8–12), cited above, for the 
validation and comparison purposes. Results agree well 
between these models.

5  Hydrostatic Pressure Effect
When a material is destined for a technological 
application, it becomes necessary to study the com-
portment of the material under external disturbances 
such as pressure, temperature, electric field, and mag-
netic field. In this article, we have chosen to study the 
hydrostatic pressure on the energy gaps and the optical 
properties.

Variations of band gap energies and optical 
properties under hydrostatic pressure were calculated 
using the FP-LAPW methods within LDA and TB-mBJ 
approach, respectively. Firstly, we have calculated the 
lattice constant values as a function of pressure at P 
equal to 0, 5, 10, 15, 20, and 25 GPa, using the following 
formula [42]:
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where B is the bulk modulus, B′ the pressure derivative of 
the bulk modulus, and a(P) the lattice parameter at the 
indicated pressure P.

The direct and indirect band gap energies of the 
InNxP1–x at x = 0.00, 0.50, and 1.00 compositions were com-
puted and plotted in Figure 8.

When the applied pressure is increased, a small 
variation for both gap energies is observed with an 
increase in the direct band gap EΓ→Γ and a decrease in the 
indirect band gap EΓ→X, and that is due to the decrease 
of the lattice constant (volume compression). We can 
also notice that the InP compound changes character 
from a direct to an indirect band gap semiconductor at 
P  ≥  7.80  GPa. The direct and indirect band gap energy 
values are listed in Table  4. Furthermore, we have 
fitted our results to a quadratic function as given in the 
empirical formula [42]:

	 2
g g( ) (0)E P E P Pα β= + + � (15)

where Eg(0) represents the band gap energy at zero pres-
sure, P is the pressure in GPa, α and β are the first- and 
second-order pressure coefficients, respectively. The pres-
sure coefficients α and β obtained from the fitted curves 
of the cubic InN and InP binary compounds as well as the 
InN0.50P0.50 ternary alloy are summarised in Table 5. Results 
obtained here are compared to the available data where 
a good agreement is observed for binary constituents. We 
have to note that we have not found any report in litera-
ture for comparison.

We reported on the optical properties under different 
values of pressure for InN, InP, and InN0.50P0.50 alloys. The 
dielectric functions versus photon energy and the behav-
iour of refractive indices at various hydrostatic pressures 
were investigated and shown in Figures 9 and 10, respec-
tively. We can see the similarity of spectra of the dielec-
tric function under different values of pressure except of 
a slight shift explained by the effect of pressure on the 
band energies. On the other hand, the refractive index 
decreases slightly due to the condensation of atoms and 
compression of the unit cell volume. It is clearly seen 
from Figure  10a–c that the refractive index decreases 
dramatically versus pressures for the InN compound. For 
the second binary compound InP, we observe a decrease 
in the value of the refractive index versus pressure. The 
maximum of the value of the refractive index is found to 
be equal to 5.4 and observed at the energy value of 4.85 eV. 
The refractive index of the ternary alloy InN0.50P0.50 obeys 

to the same behaviour and the maximum of the refrac-
tive index is 4.24 and it is located at the energy value of 
0.5 eV. Roughly, the pressure presents no significant effect 
and this confirms the stability of optical properties of our 
material.

In Figure 11, we present both the effect of the pressure 
and the nitride composition on the refractive index. The 
examination of the curve given in Figure 11 shows that the 
refractive index decreases upon increasing the pressure 
in the considered range and the same observation when 
regarding the composition increasing.

Knowing that the energy loss function is a primordial 
tool for the investigation of different aspects of materi-
als [44]. Electron energy loss function for InN, InP, and 
InN0.50P0.50 under pressure are depicted in Figure  12. We 
observe from this figure that for a photon with energy 
lesser than the band gap of the considered compound no 
energy loss occurs and this means no scattering happens. 
In the intermediate energy range, inelastic scattering 
is observed and the loss energy value is maximal. The 
major peaks for a pressure equal to zero are located at 
23.82, 14.61, and 13.90 eV for InN, InP, and the InN0.50P0.50, 
respectively. These peaks in the energy loss spectrum are 
shifted to higher energy under pressure and correspond to 
plasma resonance and the corresponding frequency is the 
plasma frequency.

6  Conclusion
The structural, electronic, and optical properties of zinc-
blende InN, InP, and InNxP1–x solid solutions have been 
carried out using the FP-LAPW method within DFT theory. 
We have considered the effect of pressure variations on 
the direct and indirect energy band gaps and optical prop-
erties of the InN, InP, and InNxP1–x compounds. The con-
clusions drawn from this study are as follows:
(i)	 The lattice constant of the InNxP1–x decreases when 

increasing the concentration of nitride and the 
bulk modulus increases with the increase in the 
concentration x.

(ii)	 The direct energy band gaps decrease upon increas-
ing the nitride composition x. The InNxP1–x presents a 
direct band gap for all composition x.

(iii)	In the considered pressure range, the ternary alloy 
InNxP1–x presents direct band gap energy for each com-
position and we observe a small increasing for both 
direct and indirect band gap energies versus pressure.

(iv)	 Under pressure, the structures of the optical para-
meters of both binary compounds and their ternary 
InNxP1–x solid solution present a good optical stability.
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