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Abstract: We consider a two-dimensional Dirac oscillator
in the presence of a magnetic field in non-commutative
phase space in the framework of relativistic quantum
mechanics with minimal length. The problem in question
is identified with a Poschl-Teller potential. The eigenval-
ues are found, and the corresponding wave functions are
calculated in terms of hypergeometric functions.
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1 Introduction

The Dirac relativistic oscillator is an important potential
for both theory and application. For the first time, it was
studied by Ito et al. [1]. They considered a Dirac equation
in which the momentum p is replaced by p-impwr,
with 7 being the position vector, m the mass of the par-
ticle, and w the frequency of the oscillator. The interest in
the problem was revived by Moshinsky and Szczepaniak
[2], who gave it the name of Dirac oscillator (DO) because,
in the non-relativistic limit, it becomes a harmonic oscil-
lator with a very strong spin—orbit coupling term. Physi-
cally, it can be shown that the DO interaction is a physical
system that can be interpreted as the interaction of the
anomalous magnetic moment with a linear electric field
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[3, 4]. The electromagnetic potential associated with
the DO has been found by Benitez et al. [5]. The DO has
attracted a lot of interest because not only it provides one
of the examples of the Dirac equation exact solvability
but also for its numerous physical applications [6-10].
Recently, Franco-Villafane et al. [11] exposed the proposal
of the first experimental microwave realisation of the one-
dimensional DO. The experiment relies on a relation of the
DO to a corresponding tight-binding system. The experi-
mental results obtained, concerning the spectrum of the
one-dimensional DO with and without the mass term, are
in good agreement with those obtained in the theory. In
addition, Quimbay and Strange [12, 13] showed that the
DO can describe a naturally occurring physical system.
Specifically, the case of a two-dimensional DO can be
used to describe the dynamics of the charge carriers in
graphene, and hence its electronic properties. Also, the
exact mapping of the DO in the presence of a magnetic
field with a quantum optics leads to regarding the DO as a
theory of an open quantum systems coupled to a thermal
bath [6].

The unification between the general theory of relativ-
ity and the quantum mechanics is one of the most impor-
tant problems in theoretical physics. This unification
predicts the existence of a minimal measurable length on
the order of the Planck length. All approaches of quantum
gravity show the idea that near the Planck scale, the stand-
ard Heisenberg uncertainty principle should be reformu-
lated. The minimal length uncertainty relation appears in
the context of the string theory, as a consequence of the
fact that the string cannot probe distances smaller than
the string scale h\/ﬁ where  is a small positive para-
meter called the deformation parameter. This minimal
length can be introduced as an additional uncertainty
in position measurement, so that the usual canonical
commutation relation between position and momentum
operators becomes [%, p] =in(1+Bp°). This commuta-
tion relation leads to the standard Heisenberg uncertainty
relation AXAp >ii(1+ B(Ap)?), which clearly implies the
existence of a non-zero minimal length Ax_ = h\/ﬁ . This
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modification of the uncertainty relation is usually termed
the generalised uncertainty principle (GUP) or the minimal
length uncertainty principle [14-17]. Investigating the
influence of the minimal length assumption on the energy
spectrum of quantum systems has become an interesting
issue primarily for two reasons. First, this may help to set
some upper bounds on the value of the minimal length.
In this context, we can cite some studies of the hydrogen
atom and a two-dimensional Dirac equation in an exter-
nal magnetic field. Moreover, the classical limit has also
provided some interesting insights into some cosmologi-
cal problems. Second, it has been argued that quantum
mechanics with a minimal length may also be useful to
describe non-point-like particles, such as quasi-particles
and various collective excitations in solids, or composite
particles (see [18] and references therein).

Nowadays, the reconsideration of the relativistic
quantum mechanics in the presence of a minimal measur-
able length has been studied extensively. In this context,
many papers were published where a different quantum
system in space with the Heisenberg algebra was studied.
They are the Abelian Higgs model [19], the thermostatics
with minimal length [20], the one-dimensional hydrogen
atom [21], the casimir effect in minimal length theories
[22], the effect of minimal lengths on electron magnetism
[23], the DO in one and three dimensions [24-28], the non-
commutative (NC) (2+1)-dimensional DO and quantum
phase transition [10], the solutions of a two-dimensional
Dirac equation in the presence of an external magnetic
field [29], the NC phase space Schrédinger equation [30],
and the Schrédinger equation with harmonic potential in
the presence of a magnetic field [31].

The study of NC spaces and their implications in
physics is an extremely active area of research. It has
been argued in various instances that non-commutativity
should be considered as a fundamental feature of space
time at the Planck scale. On the other side, the study of
quantum systems in an NC space has been the subject of
much interest in past years, assuming that non-commuta-
tivity may be, in fact, a result of quantum gravity effects.
In these studies, some attention has been paid to the
models of NC quantum mechanics (NCQM). The interest
in this approach lies on the fact that NCQM is a fruitful
theoretical laboratory where we can get some insight on
the consequences of non-commutativity in field theory
by using standard calculation techniques of quantum
mechanics. Various NC field theory models have been dis-
cussed as well as many extensions of quantum mechan-
ics. Of particular interest is the so-called phase space
non-commutativity, which has been investigated in the
context of quantum cosmology, black holes physics, and
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the singularity problem. This specific formulation is nec-
essary to implement the Bose-Einstein statistics in the
context of NCQM (see [32-36]).

The purpose of this work is to investigate the formula-
tion of a two-dimensional DO in the presence of a magnetic
field by solving fundamental equations in the framework
of relativistic quantum mechanics with minimal length
in the NC phase space. To do this, we first mapped the
problem in question into a commutative space by using
an appropriate transformations. Then, we solved it in the
presence of a minimal length. We would like to mention
here that the origin of relativistic Landau problem and the
DO is entirely different. In the former case, the magnetic
field is introduced via minimal coupling, whereas in the
latter case, the interaction is introduced via non-minimal
coupling and can be viewed as anomalous magnetic inter-
action [37, 38].

The article is organised as follows. In Section 2, we
solve the DO in the presence of magnetic field in NC
phase space. Then, in Section 3, we study this problem
in the framework of relativistic quantum mechanics with
minimal length. Finally, in Section 4, we present the
conclusion.

2 The Solutions in Non-commutative
Phase Space

To begin with, we note that the NC phase space is charac-
terised by the fact that their coordinate operators satisfy
the following equation [32-36]:

(NC) (NC) _-~ (NC) (NC)1 _sn
[x,™,x, 1=, ,[p, ", p,""1=i0,,

X', "] =ino ,, @

14

where E)W and i@w are antisymmetric tensors of space
dimension. In order to obtain a theory that includes the
aspects of being unitary and causal, we choose éw =0
and 9(”:0, which implies that the time remains as a
parameter and the non-commutativity affects only the
physical space. By replacing the normal product with
star product, the Dirac equation in commuting space will
change into the Dirac equation in NC space:

Hy(p, )%, (x) = By, (x), @

where the x—product Moyal between two functions is
defined by

(f »)(x) =expBéa,,axanf(x)g(y)|Xy. ©
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Since the system in which we study is two dimen-
sional, we limit our analysis to the xy plane, where the NC
algebra is written by

(NC) (NC ]_196 , [p(NC) NC)] _196 ,

’piNC)] _Zhéi}" (l!]_ly 2)-

[x;
(NC)

(4)

[x;

with € is two-dimensional Levi-civita tensor.

Instead of solving the NC Dirac equation by using the
star product procedure, we use Bopp’s shift method, that
is, we replace the star product by the usual product by
making a Bopp’s shift
(NC) _

: ——eep P9 =p + 19 5)

1)]

X

Hence, in the two-dimensional NC phase space, (5)
becomes

é é 0
=x=— bV =y B =ty

X( NC) _

(6)

In this case, the two-dimensional DO equation, in
commutative space, which is written by
—im wBy) +pm,c’ Yy, =Ey,,

{ca (p, —imoa)Bx) +cay(py

is modified and transformed into

(NC) (NC

—im wpx ) + ca, (p" - im wpy
+Bm0c2}tpD=ENC1/)D. 7)

{ca (p|

Using the following representation of Dirac matrices,

01 0 i), (10
Um0 [1 oj yzay:[z’ o)’ﬁ:(o —1]’ ®

and withy, =, y,)", (7) becomes

mc’ ¢
o P Vg [, ©)
Cp+ _moc wz wZ
or
mc*y +cpp,=E ., (10)
oy, —-mcip,=E ., (11)
where
p_=p" —ip" +im w(x™ —iy™) =0 (p, ~ip,)
+im wo,(x—iy), (12)
D, p(NC)+lp(NC) —im (X + i) =g (p, +ip,)
—imwo,(x+iy), (13)
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and where
mao ~ )
=1+—2-0, o, =
AT T amwn (14)
From (10) and (11), we have
{c’p.p, —(E;. —mic")}y, = (15)

Now, in order to solve the last equation, and for the
sake of simplicity, we bring the problem into the momen-

tum space.
Recalling that
x=ih—", y =in—— p,=p.b,=P (16
apx’y ap,’ v )

and passing onto polar coordinates with the following
definition [29]:

p,=pcost, p = psind, p’ =p: +p;, (17)
fczih—a =ih cosei——smei , (18)
ap, dp p 90
cosf o
—lh—:zh sin 9—+——
y ap, ( p p 69) 19
Equations (12) and (13) transform into
d io
=e™ A= 20
p op o pad (20)
Jd i
=e" + A —+—— |}, 21
p, {glp (ap pael} 1)
where
0
=1+ m, o (22)
ZmOwh

With the aid of these expressions, the p p, term,
appears in (15), can be written by
p.p,=0/p’~20~1

So, (15) becomes

¥ 19 19 0
‘pt - A’ +——+——|+2ido——2A0 — =0,
{le (ap pip p? aezj %90 & C}wl
(24)
with
E;. —-mxc"
&= = (25)
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With the help of the following relation [39]

v, (p, 0)=f(p)e™, (26)
Equation (24) is modified and transforms into
a’ 1d
[ ftp) 1d/(p) m f(p)]+(x K f(p)=0, @)
dp* p dp
with
22 +1) + 2
Kzz—al(rzz ) C,k2=%. (28)
Putting that
K
f(p)=p"e * F(p), (29)
then, the differential equation
, | 2m+1 , )
F +( —2kij —[2k(m+1) —k*]F =0, (30)
p

is obtained for F(p) which by using, instead of p, the
variable xt = kp?, is transformed into the Kummer equation:

d’F dF 1{ }
t—— 1-t}— 1-—F=0, 31
dr’ Hme }dt Tk G

2
whose solution is the confluent series .F,(a; m + 1; t), with

KZ

:—(m+1)——

4k G2

The confluent series becomes a polynomial if and
only if a=-n,(n=0, 1, 2,). Thus, we have [40]

y.(p,0)=C,  p"e i . 1( —n;|m| +1; kp?)e™, (33)

o ~ 0
E_ ) =+mc? 1+4( 0 ) 1+
( NC)n 0 \/ zmowh

The total associated wave function is

]n. (34)

1

cp, Y.
2
ENC +myc

YD, 0)= (35)

Now, in the presence of an external magnetic field, (7)
is transformed into

(NC)
o222
2c
eBx

(NC) . .
*ca, Hpi“‘“ By ]—imowﬂy““} ﬁmocz}wu =y,

(36)

im wBx! NC)}
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where € is the eigenvalue of the system. Here, the potential
vectors is chosen as

(NC) (NC)
:( By , BX_’ Oj’ (37)
2 2
and (36) can be cast into a detail form as follows:
mc> cp ~ U
(1 p_z [gjljze[l’{)l]. (38)
b, —mycC 1/)2 1/)2
with
- eBy'" ) . . eBxN®
pz(piNC)+ ;’C +IInOa)X(NC)—l p;NC)_ =
+m oy, (39)
- eBy™® eBx O
D, :(p(NC) n 32’C —im ox™ +i p;NC) —
+m,oy™® (40)
or
ﬁ_:piNC)_ip;NC) +im0d)(X(NC) _iy(NC))’ (41)
p,=p" + lp( N —im (XN +iy™N), (42)
where
- o, _lelB
B 27 mc (43)

is a cyclotron frequency.

Thus, the (2+1)-dimensional DO in a magnetic field is
mapped onto the one with reduced angular frequency @
in the absence of magnetic field. Hence, the only role of a
magnetic field consists in reducing the angular frequency,
and the entire dynamics remains unchanged.

Using the mapping defined by (6), the systems of
equations become

p_=o(p, —ip,) +imao,(x-iy), (44)
p,=o(p, +ip,) —imdo,(x+iy). (45)
By the same way used above, we obtain
¥,(p,0)=C, p"e Ed F( —n; |m|+1; kp?)e™, (46)
5 m,o - 0
e =xmc’ [1+4 1+ — |n. (47)
" 2h 2m @h

The last equation concerning the eigenvalue is in a
good agreement with the one obtained in the literature [6].
The corresponding total eigenfunction is given by



DE GRUYTER
1
YD, 0)=| D, (P, (48)
e+m’

In this section, we have studied the solutions of the
two-dimensional DO with or without an external mag-
netic field by using the same way described in [29]: the
authors work within a momentum space representation
of the Heisenberg algebra, and by an appropriate trans-
formation, the problem is identified as a Kummer differ-
ential equation where the solutions are well known. The
solutions that we have found are in wellagreement with
those obtained in the literature. This agreement allows us
to extend this method by introducing the concept of the
minimal length.

3 The Problem with a Minimal
Length

3.1 The Solutions without a Magnetic Field
In the minimal length formalism, the Heisenberg algebra
is given by

[x,p] :ihéi}.(1+ﬁp2),

where >0 is the minimal length parameter. A representa-
tion of X, and P;> which satisfies (49), may be taken as

(49)

d .
X =i(1+ Bp*)—, p.=p.
=in(1+ fp*) a p=n, (50)
or
A . 2 d ~ . 2 d
x=in(1+ pp*)—, y=in(1+ pp*) —, (51)
dp, dp,
p,=p.b,=p, (52)
In this case, (15) is modified and becomes
{c’PP (&’ —mic" )}y, =0, (53)
with
. ) a .0
P =o(p,—ip )-A(1+pp*)| ——i—|, (54)
ap, dp,
. 5 a .0
P =o(p,—ip,)+A(1+pp*)| —+i—|. (55)
dp, 9p,

In the polar coordinates, (54) and (55) can be written as

A. Boumali and H. Hassanabadi: Exact Solutions of the (2+1)-Dimensional Dirac Oscillator =—— 623

P =e" {le - A1+ Bp*) (% - é%}}, (56)
P =e" {gzpwl( 1+ ﬁpz)(%+é%]}. (57)

When we evaluate the P_P, term, we get
PP =g’p’+2(1+ fp’) | do (z’i—lj-mz p2 il
- "o ap 90
? 19

- A (1+pp*)’ —+——+ii
pap p’ao’)

2 (58)
ap

and then we have

sl o)

# 19 18
_1214_ 22_+__+___2 :0,5
(1+ ") [apz o pzaazj E]wl (59)
with
22 4
gt T‘)C (60)
c
Putting that
1/)1 = h(p)eim"’ (61)
Equation (60) reads
|:Q12p2_2(1+ﬁp2){/1@1(m+1)+ﬁ/12[p%_mj}
d2 1d m
221+ 8p2)2| L 2 G M ey —0.
( ﬂp)[dpz »dp pz) -’3} (p)=0. (62)

This equation can be written in another form as
follows:

{—a(p)d2+b(p)i+c(p)—§2}h(p)=o, )
dp dp
where
a(p)=2*(1+ pp*)?, (64)
12 1 232

b(p)=—2ﬂlz(l+ﬁp2)p—%, (65)

c(p) =0 p* — 2Ao,(m+1)(1+ fp*) + 2A’m(1+ fp*)
A1+ pp*)’m’
Ty ©

The solutions of (63) can be found by using the follow-
ing transformations [41]:
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(67)

h(p) = p(P)p(p), q=1ﬁdp

with
J.x( p)dp

Using these transformations, we obtain a form similar
to the Schrédinger differential equation, so

p(p)=e (68)

[— d ; +V(q)Jso(p) =&p(p), (69)
dg
where
( )_2b+a’_ 1 70)
P = "y
and
V(p)=0;p* - 20,(m+1)(1+ pp’) + 21 'm(1+ fp*)
+BA2(1+ Bp )M[ _1} 1)
p 4
Using that
=—tan(qi\/7 ), 72)
JB
we get
6,5, -1 ¢,(&,-1)
V(p)=—+pA’
(») ﬁ+ﬁ {sm(ql() cos(q/l()} (73)
with
1
CI(C -1)= m’ —Z (74)
- LS L T 75
£,(6,-1)- (m m+2J(m ﬁ,1+2J' 75)

Thus, we have
2 -1
. d +1U0 ¢,(¢, )+
dg® 2 sin’(aq)

with & =& + (/) and U,=w with u=A/B.
The last equation is the well-known Schrodinger
equation in a Poschl-Teller potential where [39]

U%Uo{g(cl—l) +c2(c2—1)}

sin’(ug) cos*(uq)

£,(5,-1)
cos’(aq)

}}p(p) =E%(p) (76)

77)

with §,>1and {,>1. Thus, following (74) and (75), we have
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{=mt- 79)
£
£, =—4 m+1-2 (79)
2 ﬁl
Introducing the new variable
z=sin’(uq), (80)

the Schrodinger equation is transformed into

g 1( 1_1) 2( 2_1)

(81)
Now, putting
& &
p=22(1-2)2¥(z2), (82)
we arrive at
z(l—z)‘l’”+K§l+%)—z(§1+§z+1)}P’
1]&? 2y
+Z{F_(§1+CZ) }‘P— (83)

The general solutions of this equation are [40, 42]

W=C,,F(a;b; c; 2)+C, z'¢ JE(a+1-c;b+1-c;5 2—c; 2),
(84)

where
1 £ 1 £ 1
=5[cl ve, +§J b=5(cl 4, —uij c=t 4. (89)
With the condition a=-n, we obtain

£2 =u’(g,+¢,+2n)%

In order to obtain the energy spectrum, it should
be noted that in the limit § — 0, the energy of spectrum
should be covert to no-GUP result. Thus, we choose

(86)

1
§,=m 2 (87)
1 0
=——|m+l-—-L|. 88
g, 5 ( ﬁflj (88)
Following this, we obtain
mjc“+4c2(l+mé] 1+ 0 n
2h 2m wh
e, =% _ ,
2 9 2
+4c°B| 1+ n
2m oh (89)
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where
1+ M® 6
1 2h .
B< By, B, = 3 = ,withm>0.  (90)
m+_—|1+—— |hom
2 2m wh 0
So, the non-zero minimal length is
L (1+5)
AXminzh ﬂ<(AXmin )O = l (91)

3 5 “min
m+—| 1+
2 2m, wh

with | = is the characteristic length of the DO,

mow

and (Axmm)0 is the admissible length above which the
physics becomes experimentally inaccessible. We can
see that the influence of the NC parameters on (Ax_, ), is
very clear. Now, expanding to first order in terms of the
variable 3 we have [24]

. -
e, =tmc’ [1+ 1 (1+ Owej TR,
" mc’ 2n 2m wh

0

28| 1+ 0
ZmOwh n’

m’c? mao ~ ]
° 1+ ?2(1+ 0“’9] 1+L n
m.c 2h 2m wh

0

x| 1+

(92)

The first term is the energy spectrum of the usual
two-dimensional DO, and the second term represents the
correction due to the presence of the minimal length. As
mentioned in [23], we note the dependence on n?, which
is a feature of hard confinement. For a large values of n,
we have

€, = hon, (93)

which means the energy continuum for large n for the DO
without the minimal length disappears in the presence of
the minimal length, and consequently the behaviour of
the DO can be described by a non-relativistic harmonic
5 _
o1, T )

ZmOwh

oscillator with a frequency of o =

According to (85) and (87), we can see that the para-
meter c=m+1 is an integer; thus, either the two solutions
of (84) coincide or one of the solutions will blow up. Now,
when c is an integer greater than 1, which is our case, the
second solution diverges. Thus, the component y, will has
the following form:
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gy &
(¥,),.(p,0,2)=(C), . p e™z?(1-2)?

LE(=n; b, |m|+1; 2). (94)

Finally, the total associated eigenfunction is determined by
1

wn’m(pa 0’ Z)= CP+ 1/’1-
e+mc?

(95)

3.2 The Solutions in the Presence of a
Magnetic Field

Now, in the presence of a uniform magnetic field, (7)
is transformed into

(NC) 3
{cax l:[ pN+ _eB;/ ] —im wpx 1
c

(NC) eBX(NC) . A (NC) 2 2 =
+ca, || p, By —im wpBy +Bmc” y =ap,.

(96)
In this case, (9) takes the following form:
2 P
m0~c cr i 1/)1 —c w1 , (97)
cP. -myc” \ ¥, Y,

with

(NC)

(NC)
5 | ney , €By . ey s ney €Bx
P—(px +2—J+1moa)x —z(py ——j

c 2c
+ mowy( NC) , (98)
- By™ ) . . eBx'®)
p=| pvor € —im x| pNe) _
* (p‘ 2c Mo b, 2c
+m oy, (99)
or
P =o(p,—ip,) +im@do,(x~iy), (100)
13+:gl(px+ipy)+imo&)gz(x+iy), (101)
where
- o, _le|B
= 5 @ = m.c s (102)

and where w_is a cyclotron frequency. According to the
above case, the eigen solutions are given by

Bt 5
(%),(p,0,2)=(C)), p 2e™z?(1-2)?

LE(-n; b, Im| +1; 2), (103)
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mao ~
m§C4+4c2(1+ Owej 1+ 0~ n
2h 2m o

— 2 ’
+4c’Bl 1+ 0~ n’
2m wh

n T

where the total wavefunction is given by

1

Yo (P 0,2)=| P |y,
€+m’

(104)

4 Results and Discussions

Here, we have obtained exact solutions of the two-dimen-
sional DO in NC phase space with the presence of minimal
length. Firstly, by adopting the same procedure that used
by Menculini et al. [29], we have solved the problem only
in the case of NC space. The results found are in well agree-
ment with those obtained in the literature. After that, we
have introduced the minimal length in the problem in
question. This introduction has been made as follows:
(i) we write the coordinates of the NC space with those in
commutative space by using the Bopp shift approxima-
tion, and (ii) then we introduce the minimal length in our
equation. By these, the problem in question is identified
with a Poschl-Teller potential. Also, when 0 and 0 tend to
zero, we recover exactly the same results of [43].

Finally, let us note that the non-relativistic harmonic
oscillator is used as a model for describing the quark’s
confinement in mesons and baryons, while the DO is
expected to give a good description of the confinement
in heavy quark systems. Quimby and Strange suggested
that the two-dimensional DO model can describe some
properties of electrons in graphene. This model explains
the origin of the left-handed chirality observed for charge
carriers in monolayer and bilayer graphene. They have
shown that the change in the strength of a magnetic field
leads to the existence of a quantum phase transition in the
chirality of the systems. In addition, in a recent paper, it
has been shown that we can modulate the system of gra-
phene under a magnetic field with a model based on a DO.
With this, the author has determined all thermodynamic
properties of this system by using the thermal zeta func-
tion [44, 45].

In our case, a possible application is the determina-
tion of the upper limit of the length in comparison with
the data found experimentally for the case of graphene:
this idea has been used by Menculini et al. [29] in order to
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obtain an upper bound on the minimal length appearing
in the framework of GUP.

5 Conclusion

In this article, we have exactly solved the DO in two
dimensions in the presence of an external magnetic field
in the framework of relativistic quantum mechanics with
minimal length and in the NC phasespace. Firstly, the
eigensolutions of the problem in question are obtained in
NC space. Then, we extend our study in the presence of a
minimal length. The energy levels, for both cases, show a
dependence on n? in the presence of the minimal length,
which describe a hard confinement. For the large values of
n, our DO becomes like a non-relativistic harmonic oscil-
lator. The dependence of the non-zero minimum length
on the noncommutativite parameters is very clear. In the
limit where 8 — 0, and where 6 and 6 tend to zero, we
recover the results obtained in the literature.
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