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Abstract: We consider a two-dimensional Dirac oscillator 
in the presence of a magnetic field in non-commutative 
phase space in the framework of relativistic quantum 
mechanics with minimal length. The problem in question 
is identified with a Poschl–Teller potential. The eigenval-
ues are found, and the corresponding wave functions are 
calculated in terms of hypergeometric functions.
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1  Introduction
The Dirac relativistic oscillator is an important potential 
for both theory and application. For the first time, it was 
studied by Ito et al. [1]. They considered a Dirac equation 
in which the momentum p�  is replaced by im ,p rβω−

� �  
with r�  being the position vector, m the mass of the par-
ticle, and ω the frequency of the oscillator. The interest in 
the problem was revived by Moshinsky and Szczepaniak 
[2], who gave it the name of Dirac oscillator (DO) because, 
in the non-relativistic limit, it becomes a harmonic oscil-
lator with a very strong spin–orbit coupling term. Physi-
cally, it can be shown that the DO interaction is a physical 
system that can be interpreted as the interaction of the 
anomalous magnetic moment with a linear electric field 

[3, 4]. The electromagnetic potential associated with 
the DO has been found by Benitez et al. [5]. The DO has 
attracted a lot of interest because not only it provides one 
of the examples of the Dirac equation exact solvability 
but also for its numerous physical applications [6–10]. 
Recently, Franco-Villafane et al. [11] exposed the proposal 
of the first experimental microwave realisation of the one-
dimensional DO. The experiment relies on a relation of the 
DO to a corresponding tight-binding system. The experi-
mental results obtained, concerning the spectrum of the 
one-dimensional DO with and without the mass term, are 
in good agreement with those obtained in the theory. In 
addition, Quimbay and Strange [12, 13] showed that the 
DO can describe a naturally occurring physical system. 
Specifically, the case of a two-dimensional DO can be 
used to describe the dynamics of the charge carriers in 
graphene, and hence its electronic properties. Also, the 
exact mapping of the DO in the presence of a magnetic 
field with a quantum optics leads to regarding the DO as a 
theory of an open quantum systems coupled to a thermal 
bath [6].

The unification between the general theory of relativ-
ity and the quantum mechanics is one of the most impor-
tant problems in theoretical physics. This unification 
predicts the existence of a minimal measurable length on 
the order of the Planck length. All approaches of quantum 
gravity show the idea that near the Planck scale, the stand-
ard Heisenberg uncertainty principle should be reformu-
lated. The minimal length uncertainty relation appears in 
the context of the string theory, as a consequence of the 
fact that the string cannot probe distances smaller than 
the string scale β�  where β is a small positive para
meter called the deformation parameter. This minimal 
length can be introduced as an additional uncertainty 
in position measurement, so that the usual canonical 
commutation relation between position and momentum 
operators becomes 2ˆˆ[ , ] ( 1 ).x p i pβ= +�  This commuta-
tion relation leads to the standard Heisenberg uncertainty 
relation 2ˆˆ ( 1 ( ) ),x p i pβ∆ ∆ ≥ + ∆�  which clearly implies the 
existence of a non-zero minimal length min .x β∆ = �  This 
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modification of the uncertainty relation is usually termed 
the generalised uncertainty principle (GUP) or the minimal 
length uncertainty principle [14–17]. Investigating the 
influence of the minimal length assumption on the energy 
spectrum of quantum systems has become an interesting 
issue primarily for two reasons. First, this may help to set 
some upper bounds on the value of the minimal length. 
In this context, we can cite some studies of the hydrogen 
atom and a two-dimensional Dirac equation in an exter-
nal magnetic field. Moreover, the classical limit has also 
provided some interesting insights into some cosmologi-
cal problems. Second, it has been argued that quantum 
mechanics with a minimal length may also be useful to 
describe non-point-like particles, such as quasi-particles 
and various collective excitations in solids, or composite 
particles (see [18] and references therein).

Nowadays, the reconsideration of the relativistic 
quantum mechanics in the presence of a minimal measur-
able length has been studied extensively. In this context, 
many papers were published where a different quantum 
system in space with the Heisenberg algebra was studied. 
They are the Abelian Higgs model [19], the thermostatics 
with minimal length [20], the one-dimensional hydrogen 
atom [21], the casimir effect in minimal length theories 
[22], the effect of minimal lengths on electron magnetism 
[23], the DO in one and three dimensions [24–28], the non-
commutative (NC) (2+1)-dimensional DO and quantum 
phase transition [10], the solutions of a two-dimensional 
Dirac equation in the presence of an external magnetic 
field [29], the NC phase space Schrödinger equation [30], 
and the Schrödinger equation with harmonic potential in 
the presence of a magnetic field [31].

The study of NC spaces and their implications in 
physics is an extremely active area of research. It has 
been argued in various instances that non-commutativity 
should be considered as a fundamental feature of space 
time at the Planck scale. On the other side, the study of 
quantum systems in an NC space has been the subject of 
much interest in past years, assuming that non-commuta-
tivity may be, in fact, a result of quantum gravity effects. 
In these studies, some attention has been paid to the 
models of NC quantum mechanics (NCQM). The interest 
in this approach lies on the fact that NCQM is a fruitful 
theoretical laboratory where we can get some insight on 
the consequences of non-commutativity in field theory 
by using standard calculation techniques of quantum 
mechanics. Various NC field theory models have been dis-
cussed as well as many extensions of quantum mechan-
ics. Of particular interest is the so-called phase space 
non-commutativity, which has been investigated in the 
context of quantum cosmology, black holes physics, and 

the singularity problem. This specific formulation is nec-
essary to implement the Bose–Einstein statistics in the 
context of NCQM (see [32–36]).

The purpose of this work is to investigate the formula-
tion of a two-dimensional DO in the presence of a magnetic 
field by solving fundamental equations in the framework 
of relativistic quantum mechanics with minimal length 
in the NC phase space. To do this, we first mapped the 
problem in question into a commutative space by using 
an appropriate transformations. Then, we solved it in the 
presence of a minimal length. We would like to mention 
here that the origin of relativistic Landau problem and the 
DO is entirely different. In the former case, the magnetic 
field is introduced via minimal coupling, whereas in the 
latter case, the interaction is introduced via non-minimal 
coupling and can be viewed as anomalous magnetic inter-
action [37, 38].

The article is organised as follows. In Section 2, we 
solve the DO in the presence of magnetic field in NC 
phase space. Then, in Section 3, we study this problem 
in the framework of relativistic quantum mechanics with 
minimal length. Finally, in Section 4, we present the 
conclusion.

2  �The Solutions in Non-commutative 
Phase Space

To begin with, we note that the NC phase space is charac-
terised by the fact that their coordinate operators satisfy 
the following equation [32–36]:

	

( NC ) ( NC ) ( NC ) ( NC )

( NC ) ( NC )

[ , ] , [ , ] ,
[ , ] ,
x x i p p i
x p i

ν µ µν µ ν µν

µ ν µν

θ θ

δ

= =
=

�

� � (1)

where 
µν

θ�  and i
µν

θ  are antisymmetric tensors of space 
dimension. In order to obtain a theory that includes the 
aspects of being unitary and causal, we choose 0 0

ν
θ =�  

and θ̅
0ν

 = 0, which implies that the time remains as a 
parameter and the non-commutativity affects only the 
physical space. By replacing the normal product with 
star product, the Dirac equation in commuting space will 
change into the Dirac equation in NC space:

	 ˆ ( , ) ( ) ( ),D D DH p x x E xψ ψ=� � (2)

where the –product Moyal between two functions is 
defined by

	
( )( ) exp ( ) ( ) | .

2 a bab x x x y
if g x f x g yθ ∂ ∂ =

 
=   

��
�

(3)
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Since the system in which we study is two dimen-
sional, we limit our analysis to the xy plane, where the NC 
algebra is written by

	

( NC ) ( NC ) ( NC ) ( NC )

( NC ) ( NC )

[ , ] , [ , ] ,
[ , ] , ( , 1, 2 ).

i j ij i j ij

i j ij

x x i p p i
x p i i j

θ θ

δ

= =
= =

�

�

ε ε
� (4)

with ij is two-dimensional Levi-civita tensor.
Instead of solving the NC Dirac equation by using the 

star product procedure, we use Bopp’s shift method, that 
is, we replace the star product by the usual product by 
making a Bopp’s shift

	
( NC ) ( NC )1 1, .

2 2i i ij j i i ij jx x p p p xθ θ= − = +�
� �
ε ε

�
(5)

Hence, in the two-dimensional NC phase space, (5) 
becomes

	

( NC ) ( NC ) ( NC )

( NC )

, , ,
2 2 2

.
2

y x x x

y y

x x p y y p p p y

p p x

θ θ θ

θ

= − = + = +

= −

� �

� � �

� � (6)

In this case, the two-dimensional DO equation, in 
commutative space, which is written by

2
0 0 0{ ( im ) ( im ) } ,x x y y D Dc p x c p y m c Eα ωβ α ωβ β ψ ψ− + − + =� � �

is modified and transformed into

( ) ( ) ( ) ( NC )
0 0

2
0

{ ( im ) ( im )
} .

NC NC NC
x x y y

D NC D

c p x c p y
m c E

α ωβ α ωβ

β ψ ψ

− + −
+ =

� �

� � (7)

Using the following representation of Dirac matrices,

	

0 1 0 1 0
, , ,

1 0 0 0 1x x y y

i
i

α σ α σ β
     −

= = = = =     −     
�

�
(8)

and with ψD = (ψ1, ψ2)T, (7) becomes

	

2
0 1 1

NC2
2 20

,
m c cp

E
cp m c

ψ ψ

ψ ψ
−

+

     
=     −      �

(9)

or

	 2
0 1 2 NC 1 ,m c cp Eψ ψ ψ−+ = � (10)

	 2
1 0 2 NC 2 ,cp m c Eψ ψ ψ+ − = � (11)

where

	

( NC ) ( NC ) ( NC ) ( NC )
0 1

0 2

im ( ) ( )
im ( ),
x y x yp p ip x iy p ip

x iy
ω

ω
− = − + − = −

+ −
�

� � (12)

	

( NC ) ( NC ) ( NC ) ( NC )
0 1

0 2

im ( ) ( )
im ( ),

x y x yp p ip x iy p ip
x iy

ω

ω
+ = + − + = +

− +
�

� � (13)

and where

	

0
1 2

0

1 , 1 .
2 2
m

m
ω θ

θ
ω

= + = +�
� �

� �

�
(14)

From (10) and (11), we have

	 2 2 2 4
NC 0 1{ ( )} 0.c p p E m c ψ− + − − = � (15)

Now, in order to solve the last equation, and for the 
sake of simplicity, we bring the problem into the momen-
tum space.

Recalling that

	
ˆ ˆ, , , ,x x y y

x x

x i y i p p p p
p p
∂ ∂

∂ ∂
= = = =� �

�
(16)

and passing onto polar coordinates with the following 
definition [29]:

	 2 2 2cos ,  sin , ,x y x yp p p p p p pθ θ= = = + � (17)

	

sinˆ cos ,
x

x i i
p p p
∂ ∂ θ ∂

θ
∂ ∂ ∂θ

 
= = −  
� �

�
(18)

	

cosˆ sin ,
y

y i i
p p p
∂ ∂ θ ∂

θ
∂ ∂ ∂θ

 
= = +  
� �

�
(19)

Equations (12) and (13) transform into

	
1 ,i ip e p

p p
θ ∂ ∂

λ
∂ ∂θ

−
−

   = − −     
�

�
(20)

	
1 ,i ip e p

p p
θ ∂ ∂

λ
∂ ∂θ+

   = + +     
�

�
(21)

where

	
0

0

1 .
2

m
m

θ
λ ω

ω

 
= +  

�
�

�
(22)

With the aid of these expressions, the p
−
p

+
 term, 

appears in (15), can be written by

	

2 2 2 2
2 2 2
1 1 12 2 22 2 .p p p i

p pp p
∂ λ ∂ λ ∂ ∂

λ λ λ
∂ ∂θ∂ ∂θ− + = − − − − +� � �

�
(23)

So, (15) becomes

	

2 2
2 2 2
1 1 1 12 2 2

1 1 2 2 0,p i
p pp p

∂ ∂ ∂ ∂
λ λ λ ζ ψ

∂ ∂θ∂ ∂θ

   − + + + − − =     
� � �

� (24)

with

	

2 2 4
NC 0

2 .
E m c

c
ζ

−
=

�
(25)
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With the help of the following relation [39]

	 im
1( , ) ( ) ,p f p e θψ θ = � (26)

Equation (24) is modified and transforms into

	

2 2
2 2 2

2 2

d ( ) 1 d ( ) ( ) ( ) ( ) 0,
dd

f p f p m f p k p f p
p pp p

κ
 

+ − + − =   �
(27)

with

	

2
12 2 1

2 2

2 ( 1)
, .

m
k

λ ζ
κ

λ λ

+ +
= =
� �

�
(28)

Putting that

	

2
2

2( ) ( ),
k pmf p p e F p

−
= �

(29)

then, the differential equation

	

22 1 2 [ 2 ( 1) ] 0,mF kp F k m F
p

κ
 ++ − − + − =′′ ′   �

(30)

is obtained for F(p) which by using, instead of p, the 
variable xt = kp2, is transformed into the Kummer equation:

	

2 2

2

d d 1{ 1 } 1 0,
d 2 4d

F Ft m t m F
t kt

κ 
+ + − − + − = 

  �
(31)

whose solution is the confluent series 1F1(a; m + 1; t), with

	

21 ( 1) .
2 4

a m
k

κ= + −
�

(32)

The confluent series becomes a polynomial if and 
only if a = −n,(n = 0, 1, 2,). Thus, we have [40]

	

2
2 im2

1 , 1 1( , ) ( ;| | 1;  ) ,
k pm

n mp C p e F n m kp e θψ θ
−

= − +
�

(33)

	

2 0
NC 0

0

( ) 1 4 1 1 .
2 2n

m
E m c n

m
ω θ

θ
ω

   
= ± + + +      

�
� �

�
(34)

The total associated wave function is

	

, 1
2

NC 0

1
( , ) .n m cpp

E m c
ψ θ ψ+

 
 =  
 +  �

(35)

Now, in the presence of an external magnetic field, (7) 
is transformed into

	

( NC )
( NC ) ( NC )

0

( NC )
( NC ) ( NC ) 2

0 0

im
2

im ,
2

x x

y y D D

eByc p x
c

eBxc p y m c
c

α ωβ

α ωβ β ψ ψ

   
+ −      

   
+ − − + =      

�

� � ε

� (36)

where  is the eigenvalue of the system. Here, the potential 
vectors is chosen as

	

( NC ) ( NC )

, , 0 ,
2 2

By BxA
 

= −  
�

�
(37)

and (36) can be cast into a detail form as follows:

	

2
0 1 1

2
2 20

.
m c cp
cp m c

ψ ψ

ψ ψ
−

+

     
=     −     

� ��
� ��

ε

�
(38)

with

	

( NC ) ( NC )
( NC ) ( NC ) ( NC )

0

( NC )
0

im
2 2

,
x y

eBy eBxp p x i p
c c

m y

ω

ω

−

   
= + + − −      
+

�

�(39)

( NC ) ( NC )
( NC ) ( NC ) ( NC )

0

( NC )
0

im
2 2x y

eBy eBxp p x i p
c c

m y

ω

ω

+

   
= + − + −      
+

�

� (40)

or

	 ( NC ) ( NC ) ( NC ) ( NC )
0im ( ),x yp p ip x iyω− = − + −� � � (41)

	 ( NC ) ( NC ) ( NC ) ( NC )
0im ( ),x yp p ip x iyω+ = + − +� � � (42)

where

	 0

| |, .
2
c

c
e B
m c

ω
ω ω ω= − =�

�
(43)

is a cyclotron frequency.
Thus, the (2+1)-dimensional DO in a magnetic field is 

mapped onto the one with reduced angular frequency ω�  
in the absence of magnetic field. Hence, the only role of a 
magnetic field consists in reducing the angular frequency, 
and the entire dynamics remains unchanged.

Using the mapping defined by (6), the systems of 
equations become

	 1 0 2( ) im ( ),x yp p ip x iyω− = − + −� �� � � (44)

	 1 0 2( ) im ( ).x yp p ip x iyω+ = + − +� �� � � (45)

By the same way used above, we obtain

	

2
2 im2

1 , 1 1( , ) ( ;  | | 1;  ) ,
k pm

n mp C p e F n m kp e θψ θ
−

= − +��
�

(46)

	

2 0
0

0

1 4 1 1 .
2 2n

m
m c n

m
ω θ

θ
ω

   
= ± + + +      

� �
�� �

ε

�
(47)

The last equation concerning the eigenvalue is in a 
good agreement with the one obtained in the literature [6].

The corresponding total eigenfunction is given by
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, 1
2

0

1
( , ) .n m cpp

m c
ψ θ ψ+

 
 =  
 + 

��

ε
�

(48)

In this section, we have studied the solutions of the 
two-dimensional DO with or without an external mag-
netic field by using the same way described in [29]: the 
authors work within a momentum space representation 
of the Heisenberg algebra, and by an appropriate trans-
formation, the problem is identified as a Kummer differ-
ential equation where the solutions are well known. The 
solutions that we have found are in wellagreement with 
those obtained in the literature. This agreement allows us 
to extend this method by introducing the concept of the 
minimal length.

3  �The Problem with a Minimal 
Length

3.1  The Solutions without a Magnetic Field

In the minimal length formalism, the Heisenberg algebra 
is given by

	 2ˆˆ[ , ] ( 1 ),i i ijx p i pδ β= +� � (49)

where β > 0 is the minimal length parameter. A representa-
tion of ˆix  and ˆ ,ip  which satisfies (49), may be taken as

	

2 d ˆˆ ( 1 ) , 
di i i

i

x i p p p
p

β= + =�
�

(50)

or

	

2 2d dˆˆ ( 1 ) , ( 1 ) ,
d dx y

x i p y i p
p p

β β= + = +� �

�
(51)

	 ˆ ˆ, .x x y yp p p p= = � (52)

In this case, (15) is modified and becomes

	 2 2 2 4
0 1{ ( )} 0,c P P m cε ψ− + − − = � (53)

with

	

2
1( ) ( 1 ) ,x y

x y

P p ip p i
p p
∂ ∂

λ β
∂ ∂−

 
= − − + −  
�

�
(54)

	

2
1( ) ( 1 ) .x y

x y

P p ip p i
p p
∂ ∂

λ β
∂ ∂+

 
= − + + + 

 
�

�
(55)

In the polar coordinates, (54) and (55) can be written as

	

2
1 ( 1 ) ,i iP e p p

p p
θ ∂ ∂

λ β
∂ ∂θ

−
−

   = − + −     
�

�
(56)

	

2
2 ( 1 ) .i iP e p p

p p
θ ∂ ∂

λ β
∂ ∂θ+

   = + + +     
�

�
(57)

When we evaluate the P
−
P

+
 term, we get

2 2 2 2
1 1

2 2
2 2 2

2 2 2

2( 1 ) 1

1 1( 1 ) ,

P P p p i p i
p

p
p pp p

∂ ∂ ∂
β λ βλ

∂θ ∂ ∂θ

∂ ∂ ∂
λ β

∂∂ ∂θ

− +

     = + + − − +         
 

− + + +  

� �

�
(58)

and then we have

2 2 2 2
1 1

2 2
2 2 2 2

12 2 2

2( 1 ) 1

1 1( 1 ) 0,

p p i p i
p

p
p pp p

∂ ∂ ∂
β λ βλ

∂θ ∂ ∂θ

∂ ∂ ∂
λ β ξ ψ

∂∂ ∂θ

      + + − − +           
 

− + + + − =   

� �

�(59)

with

	

2 2 4
02

2 .
m c
c

ε
ξ

−
=

�
(60)

Putting that

	 im
1 ( ) ,h p e θψ = � (61)

Equation (60) reads

2 2 2 2
1 1

2 2
2 2 2 2

2 2

d2( 1 ) ( 1)
d

d 1 d( 1 ) ( ) 0.
dd

p p m p m
p

mp h p
p pp p

β λ βλ

λ β ξ

    − + + + −       
 

− + + − − =   

� �

� (62)

This equation can be written in another form as 
follows:

	

2
2

2

d d( ) ( ) ( ) ( ) 0,
dd

a p b p c p h p
pp

ξ
  − + + − = 
   �

(63)

where

	 2 2 2( ) ( 1 ) ,a p pλ β= + � (64)

	

2 2 2
2 2 ( 1 )

( ) 2 ( 1 ) ,
p

b p p p
p

λ β
βλ β

+
= − + −

�
(65)

	

2 2 2 2 2
1 1

2 2 2 2

2

( ) 2 ( 1)( 1 ) 2 ( 1 )

( 1 )
.

c p p m p m p

p m
p

λ β βλ β

λ β

= − + + + +

+
+

� �

� (66)

The solutions of (63) can be found by using the follow-
ing transformations [41]:



624      A. Boumali and H. Hassanabadi: Exact Solutions of the (2+1)-Dimensional Dirac Oscillator

	

1( ) ( ) ( ),  d ,
( )

h p p p q p
a p

ρ ϕ= = ∫
�

(67)

with

	
( ) d

( ) .
p p

p e
χ

ρ = ∫
�

(68)

Using these transformations, we obtain a form similar 
to the Schrödinger differential equation, so

	

2

2

d ( ) ( ) ( ),
d

V q p p
q

ϕ ξϕ
 

− + =   �
(69)

where

	

2 1( ) ,
4 2
b a

p
a p

χ
+ ′

= = −
�

(70)

and

	

2 2 2 2 2
1 1

2 2 2
2 2 2

2

( ) 2 ( 1)( 1 ) 2 ( 1 )

( 1 ) 1( 1 ) .
4

V p p m p m p

p
p m

p

λ β βλ β

λ β
βλ β
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+  
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� �

�

(71)

Using that

	

1 tan( ),p qλ β
β

=
�

(72)

we get

	

1 1 2 22
2 2

( 1) ( 1)1( ) ,
sin ( ) cos ( )

V p
q q

ζ ζ ζ ζ
βλ

β λ β λ β

 − − = − + + 
   �

(73)

with

	
2

1 1
1( 1) ,
4

mζ ζ − = −
�

(74)

	

1 1
2 2

1 3( 1) = .
2 2

m mζ ζ
βλ βλ

   
− − + − +      

� �

�
(75)

Thus, we have

	

2
1 1 2 2 2

02 2 2

( 1) ( 1)d 1 ( ) ( )
2d sin ( ) cos ( )
U p p

q q q
ζ ζ ζ ζ

ϕ ξ ϕ
α α

  − − − + + =  
    �

(76)

with 2 2 2
1( / )ξ ξ α β= +  and U0 = u2 with .u λ β=

The last equation is the well-known Schrödinger 
equation in a Poschl–Teller potential where [39]

	

1 1 2 2
0 2 2

( 1) ( 1)1
2 sin ( ) cos ( )

U U
uq uq

ζ ζ ζ ζ − − 
= + 

   �
(77)

with ζ1 > 1 and ζ2 > 1. Thus, following (74) and (75), we have

	
1

1 ,
2

mζ = ±
�

(78)

	

1
2

1 1 .
2

mζ
βλ

 
= ± + −  

�

�
(79)

Introducing the new variable

	 2sin ( ),z uq= � (80)

the Schrödinger equation is transformed into

2
1 1 2 2

2

( 1) ( 1)1 1( 1 ) 0.
2 4 1

z z z
z zu

ζ ζ ζ ζξ
ϕ ϕ ϕ

 − −   − + − + − − =′′ ′     −  
� (81)

Now, putting

	
1 2

2 2( 1 ) ( ),z z z
ζ ζ

ϕ Ψ= − �
(82)

we arrive at

	

1 1 2

2
2

1 22

1( 1 ) ( 1)
2

1 ( ) 0.
4

z z z

u

Ψ ζ ζ ζ Ψ

ξ
ζ ζ Ψ

  
− + + − + +′′ ′    

 
+ − + = 

  � (83)

The general solutions of this equation are [40, 42]

	 1
1 2 1 2 2 1( ; ; ; ) ( 1 ; 1 ; 2 ; ),cC F a b c z C z F a c b c c zΨ −= + + − + − −

� (84)

where

	
1 2 1 2 12 2

1 1 1, , .
2 2 2

a b c
u u
ξ ξ

ζ ζ ζ ζ ζ
   

= + + = + − = +       �
(85)

With the condition a = −n, we obtain

	 2 2 2
1 2( 2 ) .u nξ ζ ζ= + + � (86)

In order to obtain the energy spectrum, it should 
be noted that in the limit β → 0, the energy of spectrum 
should be covert to no-GUP result. Thus, we choose

	
1

1 ,
2

mζ = +
�

(87)

	

1
2

1 1 .
2

mζ
βλ

 
= − + −  

�

�
(88)

Following this, we obtain

	

2 4 2 0
0

0
2

2 2

0

4 1 1
2 2

,
4 1

2

n

m
m c c n

m

c n
m

ω θ
θ

ω

θ
β

ω

   
+ + +      

= ±
 
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�
� �

�

ε

� (89)
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where

	

0

0 0

0
0

1
21< , = , with 0.

3
12 2

m

m
m m

m

ω
θ

β β β
θ

ω
ω

 
+  

>
 + +  

�
�

�
�

�

(90)

So, the non-zero minimal length is

	

0

min min 0 min

0

11 2( ) ,
3

12 2

m

x x l
m

m

ω
θ

β
θ
ω

 
+  

∆ = < ∆ =
 + +  

�
��

�
�

(91)

with min
0

l
m ω

=
�  is the characteristic length of the DO,  

 
and (Δxmin)0 is the admissible length above which the 
physics becomes experimentally inaccessible. We can 
see that the influence of the NC parameters on (Δxmin)0 is 
very clear. Now, expanding to first order in terms of the 
variable β we have [24]
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2 2
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41 1 1
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n
mm c

ω θ
θ

ω

θ
β

ω

ω θ
θ

ω

   
± + + +      

  
+    × +    

+ + +        

��
� �

�

�
� �

ε

� (92)

The first term is the energy spectrum of the usual 
two-dimensional DO, and the second term represents the 
correction due to the presence of the minimal length. As 
mentioned in [23], we note the dependence on n2, which 
is a feature of hard confinement. For a large values of n, 
we have

	 ,n nω= �ε � (93)

which means the energy continuum for large n for the DO 
without the minimal length disappears in the presence of 
the minimal length, and consequently the behaviour of 
the DO can be described by a non-relativistic harmonic 

oscillator with a frequency of 
0

2
1 .

2
c

m
β θ

ω
ω

 
= +  � �

According to (85) and (87), we can see that the para
meter c = m+1 is an integer; thus, either the two solutions 
of (84) coincide or one of the solutions will blow up. Now, 
when c is an integer greater than 1, which is our case, the 
second solution diverges. Thus, the component ψ1 will has 
the following form:

	

1 21
im2 2 2

1 , 1 ,

2 1

( ) ( , , ) ( ) ( 1 )
( ;  , | | 1;  ).

n m n mp z C p e z z
F n b m z

ζ ζ
θψ θ

−
= −

− + � (94)

Finally, the total associated eigenfunction is determined by

	

, 1
2

0

1
( , , ) .n m cPp z

m c
ψ θ ψ+

 
 =  
 + ε

�

(95)

3.2  �The Solutions in the Presence of a 
Magnetic Field

Now, in the presence of a uniform magnetic field, (7) 
is transformed into

	

( NC )
( NC ) ( NC )

0

( NC )
( NC ) ( NC ) 2

0 0

im
2

im .
2

x x

y y D D

eByc p x
c

eBxc p y m c
c

α ωβ

α ωβ β ψ ψ

    + −       
   + − − + =        

�

� � ε

� (96)
In this case, (9) takes the following form:

	

2
0 1 1

2
2 20

,
m c cP
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ψ ψ

ψ ψ
−

+

     
=     −     

�

� ε
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(97)

with

	

( NC ) ( NC )
( NC ) ( NC ) ( NC )

0

( NC )
0

im
2 2

,

x y
eBy eBxP p x i p

c c
m y

ω

ω

−

   
= + + − −      

+

�

�(98)

	

(NC ) ( NC )
( NC ) ( NC ) ( NC )

0

( NC )
0

= im
2 2

,

x y
eBy eBxP p x i p

c c
m y

ω

ω

+

   
+ − + −      

+

�

�(99)

or

	
1 0 2( ) im ( ),x yP p ip x iyω− = − + −� �� � � (100)

	
1 0 2( ) im ( ),x yP p ip x iyω+ = + + +� �� � � (101)

where

	 0

| |, ,
2
c

c
e B
m c

ω
ω ω ω= − =�

�
(102)

and where ωc is a cyclotron frequency. According to the 
above case, the eigen solutions are given by

	

1 21
im2 2 2
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( ) ( , , ) ( ) ( 1 )
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ζ ζ
θψ θ

−
= −
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�
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2 4 2 0
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ω θ
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where the total wavefunction is given by

	

, 1
2

0

1
( , , ) .n m cPp z

m c
ψ θ ψ+

 
 =  
 + 

�

ε
�

(104)

4  Results and Discussions
Here, we have obtained exact solutions of the two-dimen-
sional DO in NC phase space with the presence of minimal 
length. Firstly, by adopting the same procedure that used 
by Menculini et al. [29], we have solved the problem only 
in the case of NC space. The results found are in well agree-
ment with those obtained in the literature. After that, we 
have introduced the minimal length in the problem in 
question. This introduction has been made as follows: 
(i) we write the coordinates of the NC space with those in 
commutative space by using the Bopp shift approxima-
tion, and (ii) then we introduce the minimal length in our 
equation. By these, the problem in question is identified 
with a Poschl–Teller potential. Also, when θ and θ ̅ tend to 
zero, we recover exactly the same results of [43].

Finally, let us note that the non-relativistic harmonic 
oscillator is used as a model for describing the quark’s 
confinement in mesons and baryons, while the DO is 
expected to give a good description of the confinement 
in heavy quark systems. Quimby and Strange suggested 
that the two-dimensional DO model can describe some 
properties of electrons in graphene. This model explains 
the origin of the left-handed chirality observed for charge 
carriers in monolayer and bilayer graphene. They have 
shown that the change in the strength of a magnetic field 
leads to the existence of a quantum phase transition in the 
chirality of the systems. In addition, in a recent paper, it 
has been shown that we can modulate the system of gra-
phene under a magnetic field with a model based on a DO. 
With this, the author has determined all thermodynamic 
properties of this system by using the thermal zeta func-
tion [44, 45].

In our case, a possible application is the determina-
tion of the upper limit of the length in comparison with 
the data found experimentally for the case of graphene: 
this idea has been used by Menculini et al. [29] in order to 

obtain an upper bound on the minimal length appearing 
in the framework of GUP.

5  Conclusion
In this article, we have exactly solved the DO in two 
dimensions in the presence of an external magnetic field 
in the framework of relativistic quantum mechanics with 
minimal length and in the NC phasespace. Firstly, the 
eigensolutions of the problem in question are obtained in 
NC space. Then, we extend our study in the presence of a 
minimal length. The energy levels, for both cases, show a 
dependence on n2 in the presence of the minimal length, 
which describe a hard confinement. For the large values of 
n, our DO becomes like a non-relativistic harmonic oscil-
lator. The dependence of the non-zero minimum length 
on the noncommutativite parameters is very clear. In the 
limit where β →  0, and where θ and θ̅ tend to zero, we 
recover the results obtained in the literature.
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