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Abstract: In this article, a fifth-order dispersive nonlinear 
Schrödinger equation is investigated, which describes the 
propagation of ultrashort optical pulses, up to the attosec-
ond duration, in an optical fibre. Rogue wave solutions are 
derived by virtue of the generalised Darboux transforma-
tion. Rogue wave structures and interaction are discussed 
through (i) the analyses on the higher-order rogue waves, 
the cubic, quartic, quintic, group-velocity, and phase-
parameter effects; (ii) a higher-order rogue wave consist-
ing of the first-order rogue waves via the interaction; (iii) 
characteristics of the rogue waves which are summarised, 
including the maximum/minimum values of the rogue 
waves and the number of the first-order rogue waves for 
composing the higher-order rogue wave; and (iv) spatial-
temporal patterns which are illustrated and compared 
with those of the ‘self-focusing’ nonlinear Schrödinger 
equation. We find that the quintic terms increase the time 
of appearance for the first-order rogue waves which form 
the higher-order rogue wave, and that the quintic terms 
affect the interaction among the first-order rogue waves, 
which elongates the distance of appearance for the higher-
order rogue wave.
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1  Introduction
Rogue waves, also known as the freak waves or monster 
waves, have been used to describe the isolated and large 
waves with higher amplitudes than the average wave 
crests around in the ocean and have also been seen in the 
Bose–Einstein condensates, plasmas, and optical fibres 
[1–6]. A model for the rogue waves in optical fibre commu-
nication is the ‘self-focusing’ nonlinear Schrödinger (NLS) 
equation [7, 8],
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where i2 = −1, x is the propagation variable, t is the trans-
verse variable (“time” in a moving frame) and ψ = ψ(x, t) 
is the complex envelope of the modulated wave, whose 
absolution value describes the intensity of the wave [6–8]. 
However, (1) is an approximation to the different physical 
systems [6, 7, 9]. For the better approximations, higher-
order effects should be considered via the inclusion of 
additional terms [6, 9–12]. If the self-steeping, self-fre-
quency-shift, supercontinuum-generation, pulse-deform-
ing phenomena and the fourth-order dispersion are 
considered in an optical fibre, the cubic and quartic terms 
need to be incorporated in (1) [6, 9, 11–16]. Furthermore, 
when the ultrashort optical pulses, up to the attosecond 
duration, propagate in a high-intensity optical field, the 
quintic terms are required to be taken into account [9, 
13–15, 17].

Motivated by the reasons mentioned, in this article, 
we will consider a fifth-order dispersive NLS equation [9],
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which describes the propagation of ultrashort optical 
pulses, up to attosecond duration, in an optical fibre, 
where H is the third-order Hirota operator, P is the fourth-
order Lakshmanan–Porsezian–Daniel (LPD) operator, Q 
is the quintic operator, f0 represents the phase parameter 
in the fibre, f1 represents the group velocity of the modu-
lated wave, α, γ, and δ are all the real coefficients of the 
cubic, quartic, and quintic terms, respectively [9,  13]. 
Especially, α is related to the supercontinuum-genera-
tion and pulse-deforming phenomena, γ is related to the 
fourth-order dispersion, and δ is related to the fifth-order 
dispersion, which should be considered when we inves-
tigate the ultrashort optical pulses [6, 9, 11–16]. For (2), 
Lax pair, Darboux transformation (DT) and multi-solition 
solutions have been obtained [9]. Special cases of (2) have 
been seen
(i)	 when f0 = 0, f1 = 0, α = 0, γ = 0, and δ = 0, (2) is degen-

erated into (1), the rogue wave solutions for (1) have 
been derived via the modified DT and generalised DT 
[8, 18]. Multi-soliton solutions and structures for (1) 
have been presented [19, 20];

(ii)	 when f0 = 0, f1 = 0, γ = 0, and δ = 0, (2) reduces to 
the Hirota equation for the third-order dispersion, 
self-steepening, and time-delay correction to the 
cubic nonlinearity in ocean waves [21, 22]. Painlevé 
analysis and higher-order rogue wave solutions for 
the Hirota equation based on the parameterized DT 
have been derived [23, 24]. Multi-soliton solutions 
for the Hirota equation have been obtained via the 
direct method [21]. Multi-solitons, breathers, and 
the first-order rogue waves for the Hirota equation 
have been derived via the DT and the limiting pro-
cesses [25];

(iii)	when f0 = 0, f1 = 0, α = 0, and δ = 0, (2) is simplified 
as the LPD equation for the ultrashort optical-pulse 
propagation in a long-distance, high-speed optical 
fibre transmission system [6, 9, 26, 27], and non-
linear spin excitations in the one-dimensional iso-
tropic biquadratic Heisenberg ferromagnetic spin 
with the octupole–dipole interaction [27, 28]. The 
first- and second-order rouge wave solutions for the 
LPD equation have been obtained via the modified 
DT [29]. The nth-order rogue wave solutions for the 

LPD equation in the determinant form have been 
presented [6].

Moreover, some effects of the higher-order terms on 
the first-order rogue waves have been investigated 
[30–34]. Rational W-shaped solitons on a continuous-
wave background for the Sasa–Satsuma equation have 
been obtained, and the stability properties of solutions 
have been investigated via the DT [30], with the relevant 
issues in [31, 32]. Solutions on the non-zero background 
for the Sasa–Satsuma equation have been derived, such 
as the breathers and rogue wave solutions, and the con-
dition to form the rogue wave has been obtained via the 
limiting processes [33]. Properties of the rational solu-
tions for the integrable Kundu–Eckhaus equation have 
been discussed [34].

However, to our knowledge, for (2), neither the gen-
eralised DT and rogue wave solutions nor structures and 
interaction of rogue waves have been discussed, which 
is the aim of our article. In Section 2, based on the Lax 
pair and DT in [9], generalised DT are constructed via 
the Taylor expansion and limiting processes. In Section 
3, rogue wave solutions for (2) are derived. In Section 4, 
higher-order rogue wave structures and interaction are 
studied. In Section 5, our conclusions are given.

2  Generalised DT for Equation (2)
In this section, we present the generalised DT for (2). 
With  the 2 × 2 Ablowitz–Kaup–Newell–Segur (AKNS) 
scheme, the Lax pair associated with (2) has been 
given as [9]
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where Φ = (φ1, φ2)T is a vector function, φ1 and φ2 are both 
the functions of x and t, the superscript T signifies the 
vector transpose, and the 2 × 2 matrices U and V have the 
forms
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where λ is a complex parameter independent of x and t 
and the compatibility condition Ux−Vt + [U, V] = 0 returns 
to (2).

By virtue of Lax pair (4), the DT matrix T[1] can be 
derived as [9]
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where the eigenfunction (φ1[1], φ2[1])T is a solution for Lax 
pair (4) at λ = λ1, φ1[1], and φ2[1] are the functions of x and 
t and λ is a complex parameter independent of x and t, 
the superscript ‘−1’ is the inverse matrix. The sign [k] (k = 1, 
2, 3, …) indicates that the matrice/function is engendered 
from the kth order DT.

With DT matrix (6), the generalised DT can be derived 
[8]. We assume that

	 �
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where �Γ  is a solution for Lax pair (4) at λ = λ1 + ε and 
�[0],ψ ψ=  where �ψ  is a solution for (2) whereas ε is the 

parameter independent of x and t. Expanding �Γ  at λ = λ1,
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is a solution for Lax pair (4) at �[0]ψ ψ=  and λ = λ1. 

Furthermore, the first-order generalised DT matrix T  [1] 
can be derived as
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where the eigenfunction (ϕ1[1], ϕ2[1])T = Γ[0], while ϕ1[1] 
and ϕ2[1] are both the functions of x and t. Therefore, the 
first-order solutions �[1]ψ  can be obtained as
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Through the limiting process on first order of the DT, 
we derive
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Thus, we obtain a new eigenfunction (ϕ1[2], ϕ2[2])T, 
which is a solution for Lax pair (4) at �[1]ψ ψ=  and λ = λ1, 
whereas ϕ1[2] and ϕ2[2] are the functions of x and t. The 
eigenfunction (ϕ1[2], ϕ2[2])T can be used for iterating to 
obtain the second-order generalised DT matrix and the 
solutions for (2) at λ = λ1. Thus, we can derive the second-
order generalised DT matrix T [2] as
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Then, the second-order solutions �[2]ψ  can be 
obtained as
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Similarly, the limiting process on the second order of 
the DT can be derived as
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Then, we get the eigenfunction (ϕ1[3], ϕ2[3])T, which is 
a solution for Lax pair (4) at �[2]ψ ψ=  and λ = λ1, whereas 
ϕ1[3] and ϕ2[3] are the functions of x and t. Meanwhile, we 
can derive the third-order solutions for (2) as
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where c1 and c2 are both the complex constants, 
1 2
0
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k kk
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= +∑ε ε  is a separating function which 

consists of 2n real parameters, τ0, T0, ..., τn−1, Tn−1, N indi-
cates the number of times for the nth order generalised DT.

For simplification, we set
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Then, we take h = 1 + 2 and expand �( )Γ ε  at λ = i

	 � 2 4[0] [1] [2] ,Γ Γ ΓΓ = + + +…ε ε � (20)

where  is a parameter independent of x and t. We exhibit 
the expression of Γ[0] as
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By the same token, the fourth-, even nth-order general-
ised DT for the (2) could be obtained.

3  �Rogue Wave Solutions for 
Equation (2)

In this section, we seek rouge wave solutions for (2). Once 
the seed solution, �[0],ψ  is chosen as a periodic plane 
wave solution, rogue wave solutions can be obtained 
[6, 8], �[0]ψ  for (2) could be chosen as

	 � 0(1 6 )[0] .i f xe γψ + −= � (16)

Furthermore, we get the eigenfunction �Γ  for Lax pair 
(4) at λ = ih as

By virtue of (10), we can obtain the first-order rogue 
wave solutions, �[1],ψ  as
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The first-order rogue wave solutions are W-shaped 
in the spatial-temporal pattern, which are similar to the 
solutions for the Sasa–Satsuma equation [25, 30–34]. 
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It’s noted that, taking S() = 0, we can calculate that the 
maximum value of the amplitude, | [1] |,ψ�  is equal to 3 at 
(x = 0, t = 0). The maximum values and positions remain 
the same about the first-order rogue wave, no matter how 
the parameters in (2) are chosen, which is different from 
the situations in Refs. [25, 30–34]. In this article, we can 
derive the higher-order rogue wave solutions via the gen-
eralised DT to investigate the effects of the higher-order 
terms, which have not been discussed in Refs. [25, 30–34].

We can derive the first-order generalised DT matrix, 
T  [1], with (9). Then, we get the eigenfunction, (ϕ1[2], 
ϕ2[2])T, with (11). Finally, we obtain the second-order solu-
tions, �[2],ψ  with (13). By the same token, we can obtain 
the third-order rogue wave solutions, �[3],ψ  for (2) with 
(12), (14), and (15).

The second-order rogue waves solutions, �[2],ψ  for 
(2) are given in Supplementary Material. Explicit expres-
sions for the third-order rogue waves is complicated due to 
its written length. Therefore, the third-order rogue waves 
solutions, �[3],ψ  for (2) are given in Supplementary Mate-
rial with f0 = 0, f1 = 0, α = 0, γ = 0, τ0 = 0, T0 = 0, τ1 = 0, τ2 = 0.

4  �Higher-Order Rogue Wave 
Structures and Interaction 
for Equation (2)

We investigate the properties and interaction of the second- 
and third-order rogue waves by means of illustrations.

Figure 1 shows that the group velocity, f1, affects the 
velocity of the rogue wave with f1 = −1, 0, and 1, respec-
tively. With f1 increasing, the rogue wave moves counter-
clockwise in the spatial-temporal pattern, as shown in 
Figure 1.

Figure 2  illustrates the second-order rogue waves when 
the coefficient of third-order term, α = −0.5, 0, and 0.5. With 
α increasing, the rogue wave moves counterclockwise in 

the spatial-temporal pattern around the point (x = 0, t = 0), 
which is similar to the effects caused by f1. With the effects 
inducing by the cubic terms, the time of appearance for 
the rogue wave elongates, while the distance does a little. 
In Figure 3, we can observe that the variation of the coef-
ficient of the fourth-order term, γ, does not change the 
shape of the rogue wave in the spatial-temporal pattern. 
However, with the increase of the absolute value of γ, elon-
gation firstly and compression on the direction of the spa-
tiality, x, occurs in Figure 3, which means that the distance 
of the appearance of the rogue wave is elongating firstly, 
next, with γ continued growth, the distance is shrinking, 
while the time elongates along with the maximum value 
of the rogue wave invariant.

Next, discussion focuses on the coefficient of the 
quintic terms, δ. Figure 4 shows that the second-order 
rogue waves with δ = 0, −0.03, and −0.06, respectively. In 
Figure 4a, the symmetric rogue wave for the NLS equa-
tion is shown. Positions of the rogue wave troughs and 
crests localise on the x = 0 axis. In Figure 4b and c, the 
rogue waves become asymmetric and turn counterclock-
wise in the spatial-temporal pattern, if a larger δ is taken, 
because δ changes the velocity of the rouge wave. If α = δ, 
the effect on the second-order rogue waves caused by δ is 
larger than that caused by α, as shown in Figures 2 and 4. 
However, the distance of the appearance for the second-
order rogue wave elongates, which is different from that 
for the first-order rogue wave. The reason might be the 
interaction among a few rogue waves to form a second-
order rogue wave. Meanwhile, positions of rogue-wave 
troughs and crests remain the same, which induces the 
asymmetric structure.

Table 1 presents that the maximum values and posi-
tions of the second-order rogue waves remain the same, 5 
at (x = 0, t = 0). If f0, f1, γ, α, and δ have different values, the 
minimum values of the rogue waves remain the same, 0. 
Asymmetric structure occurs, because the quintic terms 
have the effects on the rogue waves to change the velocity 
of the rogue wave; meanwhile, the positions and values of 

Figure 1: The second-order rogue waves via the solutions, �ψ[2],  in Supplementary Material with parameters: f0 = 0, α = 0, γ = 0, τ0 = 0, T0 = 0, 
τ1 = 0, T1 = 0, δ = 0, (a) f1 = −1; (b) f1 = 0; (c) f1 = 1.
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Figure 2: The same as Figure 1 except that f1 = 0 (a) α = −0.5; (b) α = 0; (c) α = 0.5.

Figure 3: The same as Figure 1 except that f1 = 0 (a) γ = 0; (b) γ = −0.1; (c) γ = −0.3.

Figure 4: The second-order rogue waves via the solutions, �[2],ψ  in Supplementary Material with parameters: f0 = 0, f1 = 0, α = 0, γ = 0, τ0 = 0, 
T0 = 0, τ1 = 0, T1 = 0, (a) δ = 0; (b) δ = −0.03; (c) δ = −0.06.

Table 1: Maximum amplitude and minimum amplitude values of the second-order rogue waves with S() = 0.

f0  f1  γ  α  δ  Maximum amplitude  Minimum amplitude

0  0  0  0  0  | [1]| 5 ( 0, 0)x tψ = = =�   | [1]| 0 ( 0, 1.757) ( 0, 0.465)x t x tψ = = = ± = = ±�

0  0  0  0  1  | [1]| 5 ( 0, 0)x tψ = = =�   | [1]| 0 ( 0, 1.757) ( 0, 0.465)x t x tψ = = = ± = = ±�

1  1  1  1  1  | [1]| 5 ( 0, 0)x tψ = = =�   | [1]| 0 ( 0, 1.788) ( 0, 0.465)x t x tψ = = = ± = = ±�

the wave troughs and crests remain the same. Conversely, 
the same-order rogue waves have the same maximum and 
minimum values of the rogue waves with the separating 
function, S() = 0.

Next, we discuss the interaction among the rogue 
waves by virtue of the separating function, S(). In Figure 5, 
the second-order rogue wave is separated into three single 
first-order rogue waves. In Figure 5a, the second-order 
rogue wave for the NLS equation shows a single higher 

hump and double lower symmetric humps. If the quintic 
terms have an impact on the rogue waves, the symmetric 
structure turns to the asymmetric one. The second-order 
rogue wave turns counterclockwise if a larger δ is taken 
and the distance and time of appearance for the second-
order rogue wave elongate, which fits the law mentioned 
in Figure 4. Then, the right one of the double humps in 
Figure 5b and c becomes higher than the left one, caused 
by the quintic terms. Meanwhile, the single hump has a 
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little position shift. Therefore, the amplitude of a single 
hump and the right one of the double become equal.

To be specific, we find that the maximum values of 
the single hump and the right one of the double become 
equal, caused by the quintic terms, as shown in Table 2. 
If δ becomes larger enough, the left hump of the double 
becomes the lower single one, and the other ones become 
double higher symmetric. No matter how the three humps 
move, they come out to be a “Triangular Cascades” 
pattern as mentioned in [35]. Therefore, the second-order 
rogue wave is composed of the three single first-order 
rogue waves via the interaction. By virtue of the separat-
ing function S(), the second-order rogue wave shows 
a “Triangular Cascades” state in the spatial-temporal 
pattern.

In Figure 6, the second-order rogue wave is separated 
into three first-order rogue waves with S() = 20. We can 
find that the second-order rogue wave in Figure 6a is 
similar to the image in Figure 5a except for the spatial-
temporal reversal. The other characteristics are similar to 
what we find in Figure 5.

Furthermore, we investigate the effects on the third-
order rogue wave caused by the quintic terms and interac-
tion among the rogue waves to form the third-order rogue 
wave by virtue of S(). Figure 7 shows the third-order rogue 
wave for (2) with δ = 0, −0.03, and −0.06. In Figure 7a with 
f0 = 0, f1 = 0, α = 0, γ = 0, and δ = 0, the third-order rogue 
wave for (1) shows a symmetric structure about the x = 0 
axis. With the effects caused by the quintic terms increas-
ing, the third-order rogue wave has a certain degree turn 
in the spatial-temporal pattern. The distance and time of 
appearance of the rogue wave elongate, with δ increas-
ing. Moreover, when the rogue wave damps in the spatial-
temporal pattern, the small wave crest occurs at the point 
away from the core (x = 0, t = 0). Therefore, we might con-
clude that the higher-order rogue wave is formed by some 
first-order rogue waves via the interaction, and the quintic 
terms would affect the interaction to form a small wave 
crest away from the core.

Meanwhile, the symmetric structure becomes asym-
metric about the x = 0 axis. However, if we turn the semi-
plane, x > 0, 180 degrees about the point (x = 0, t = 0), we 

Figure 5: The same as Figure 4 except that T1 = 10.

Table 2: Maximum amplitude values of the second-order rogue waves with S() = 10i2 and α = γ = f0 = f1 = 0.

δ   Maximum amplitude of single hump  Maximum amplitude of double humps (left; right)

0   3.20 (x = −2.067, t = 0)  2.92 (x = 1.189, t = −2.214); 2.92 (x = 1.189, t = 2.214)
−0.03  3.16 (x = −2.167, t = −2.416)  2.90 (x = 1.037, t = −1.378); 2.95 (x = 1.416, t = 3.398)
−0.06  3.10 (x = −2.429, t = −5.264)  2.90 (x = 0.932, t = −0.728); 2.98 (x = 1.747, t = 5.217)

Figure 6: The same as Figure 4 except that τ1 = 20.
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find that the semi-plane, x > 0, coincides with the semi-
plane, x < 0. If a larger δ is taken, the distortion of symmet-
ric structure of the third-order rogue wave becomes larger. 
With S() = 0, the maximum value of the third-order rogue 
wave is equal to 7.

Comparing the results with those we have gotten 
previously, we note that the maximum value of the nth-
order rogue wave is equal to (2n + 1). Meanwhile, the 
third-order rogue wave has six minimum-value points 
whose values are equal to zero. We also note that the 
number of the minimum values of the nth-order rogue 
wave is equal to (2n). Those results fit in those from 
(1) in [18], which means that the quintic terms have 
no impact on those characteristics for (2), such as the 
maximum/minimum values of the nth-order rogue wave 
aforementioned.

Figure 8 illustrates that the third-order rogue wave is 
separated into six single first-order rogue waves with δ = 0, 
−0.03, −0.06. We find that the six first-order rogue waves 
show a so-called “Triangular Cascades” pattern, as men-
tioned in [35], with S() = 200i4. With the effects on the 
rogue wave caused by the quintic terms increasing, the 
third-order rogue wave turns a certain degree in the spa-
tial-temporal pattern. Duration of time for the third-order 
rogue wave elongates, whereas the increase in distance 
duration is not obvious, because the third-order rogue 
wave is split into six first-order rogue waves, and the inter-
action among them attenuates, i.e., the effects induced 

by the quintic terms on the rouge wave are weakened. In 
Figure 8a, the third-order rogue wave for (1) is symmet-
rical about the t = 0 axis. With the value of δ increasing, 
the symmetric structure disappears caused by the quintic 
terms as shown in Figure 8.

Comparing Figure 8a with c, we observe that the dis-
tortion of each single rogue wave becomes larger, which 
has a kind of compression effect. The compression effect 
shows the width of the single rogue wave on the x direc-
tion with δ = −0.06 is longer than that with δ = 0. However, 
the relative positions of the six single rogue waves remain 
unchanged which is a kind of a slanting “Triangular 
Cascades” pattern induced by the quintic terms. Observ-
ing Figures 5 and 8, we may find that the nth-order rogue 

wave consists of 
( 1)

2
n n +

 
 

 first-order rogue waves via the 

interaction, which fits the results in [6].
With S() = 9000i4, we find that the third-order rogue 

wave shows a so-called “Pentagrams” pattern [35], as 
shown in Figure 9. The six single rogue waves are com-
pressed in the x = −t direction and prolonged in the x = t 
direction induced by the quintic terms. If we analyse the 
rogue waves for (2) at the viewpoint of the optical fibre, 
the rogue waves become longer in the time and distance 
duration with the effects caused by the quintic terms 
which might influence the information transmission in the 
optical fibre due to higher-order nonlinear effect. More
over, the symmetric structure is also changed as shown in 

Figure 7: The third-order rogue waves via the solutions, [3],ψ�  in Supplementary Material with parameters: f0 = 0, f1 = 0, α = 0, γ = 0, τ0 = 0, 
T0 = 0, τ1 = 0, T1 = 0, τ2 = 0, T2 = 0, (a) δ = 0; (b) δ = −0.03; (c) δ = −0.06.

Figure 8: The same as Figure 7 except that T1 = 200.
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as shown in Figures 5, 6, 8, and 9. Time and distance 
of the appearance of the rogue waves both elongate, 
caused by those quintic terms, as shown in Figures 
4 and 7. Increase of such a distance is different from 
the results obtained from the first-order rogue waves. 
Coefficient of the quintic terms, δ, affects not only the 
first-order rogue waves but also the interaction among 
them, so that the distance of appearance for a higher-
order rogue wave elongates.

(iv)	Spatial-temporal pattern of the higher-order rogue 
wave for (2) has been discussed via S(), compared 
with that for (1). With different S(), different spa-
tial-temporal patterns for the rogue waves have 
been observed, such as the “Triangular Cascades” 
and “Pentagrams” patterns, as shown in Figures 5, 
6, 8, and 9. Also, influence on a spatial-temporal 
pattern caused by δ has been investigated: With the 
effects of δ increasing, the time of the appearance 
of the rogue waves elongates, while the distance 
increases a little.
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Figure 9, which is called a slanting “Pentagrams” pattern. 
If we take S() = (τ1 + T1i)2, the rogue wave would show a 
“Triangular Cascades” pattern as shown in Figure 8. More-
over, if we take S() = (τ2 + T2i)4, the rogue wave would 
show a “Pentagrams” pattern as shown in Figure 9.

5  Conclusions
We have investigated a fifth-order dispersive NLS equa-
tion, i.e., (2), which describes the propagation of the 
pulses, up to the attosecond duration, in an optical fibre. 
Generalised DTs (11) and (14) have been constructed. First-
order rogue wave solutions (22), the second-order rogue 
wave solutions and the third-order rogue wave solutions 
presented in Supplementary Material have been obtained. 
Other results in this article are summarised as follows:
(i)	 Effects caused by the phase parameter, f0, group 

velocity of the pulse, f1, coefficient of cubic terms, α , 
quartic terms, γ, and quintic terms, δ, on the second-
order rogue wave for (2), have been studied. Group 
velocity of the pulse, f1, coefficient of cubic terms, α, 
and coefficient of quintic terms, δ, elongate the time 
of appearance of the rogue wave, with the distance 
invariant, as shown in Figures 1, 2, and 4. Coefficient 
of quartic terms, γ, makes the distance of the appear-
ance of the rogue wave elongating firstly, next, with γ 
continued growth, the distance shrinking, while the 
time elongates, as shown in Figure 3.

(ii)	 Characteristics of the higher-order rogue waves for 
(2) have been summarised with the separating func-
tion S() = 0, as shown in Table 3, which are similar to 
the results for (1) in Yang et al. and Akhmediev et al. 
[6, 18].

(iii)	Effects caused by the quintic terms after δ in (2), on 
the second- and third-order rogue waves, and inter-
action among the first-order rogue waves have been 
illustrated, compared with those for (1). The higher-
order rogue waves can be recognized to consist of 
some first-order rogue waves via each interaction, 

Figure 9: The same as Figure 7 except that T2 = 9000.

Table 3: Summary of characteristics for the higher-order rogue 
waves with S() = 0.

Order  Maximum 
amplitude

  Number of minimum 
amplitude

  Number of the first-
order rogue waves

2   5 (x = 0, t = 0)   4   3
3   7 (x = 0, t = 0)   6   6
⁝   ⁝   ⁝   ⁝
n   2n + 1(x = 0, t = 0)  2n   +( 1)

2
n n
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