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Abstract: In this article, a fifth-order dispersive nonlinear
Schrédinger equation is investigated, which describes the
propagation of ultrashort optical pulses, up to the attosec-
ond duration, in an optical fibre. Rogue wave solutions are
derived by virtue of the generalised Darboux transforma-
tion. Rogue wave structures and interaction are discussed
through (i) the analyses on the higher-order rogue waves,
the cubic, quartic, quintic, group-velocity, and phase-
parameter effects; (ii) a higher-order rogue wave consist-
ing of the first-order rogue waves via the interaction; (iii)
characteristics of the rogue waves which are summarised,
including the maximum/minimum values of the rogue
waves and the number of the first-order rogue waves for
composing the higher-order rogue wave; and (iv) spatial-
temporal patterns which are illustrated and compared
with those of the ‘self-focusing’ nonlinear Schrodinger
equation. We find that the quintic terms increase the time
of appearance for the first-order rogue waves which form
the higher-order rogue wave, and that the quintic terms
affect the interaction among the first-order rogue waves,
which elongates the distance of appearance for the higher-
order rogue wave.
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1 Introduction

Rogue waves, also known as the freak waves or monster
waves, have been used to describe the isolated and large
waves with higher amplitudes than the average wave
crests around in the ocean and have also been seen in the
Bose—Einstein condensates, plasmas, and optical fibres
[1-6]. A model for the rogue waves in optical fibre commu-
nication is the ‘self-focusing’ nonlinear Schrodinger (NLS)
equation [7, 8],

1
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where i?=-1, x is the propagation variable, t is the trans-
verse variable (“time” in a moving frame) and y =y(x, t)
is the complex envelope of the modulated wave, whose
absolution value describes the intensity of the wave [6-8].
However, (1) is an approximation to the different physical
systems [6, 7, 9]. For the better approximations, higher-
order effects should be considered via the inclusion of
additional terms [6, 9-12]. If the self-steeping, self-fre-
quency-shift, supercontinuum-generation, pulse-deform-
ing phenomena and the fourth-order dispersion are
considered in an optical fibre, the cubic and quartic terms
need to be incorporated in (1) [6, 9, 11-16]. Furthermore,
when the ultrashort optical pulses, up to the attosecond
duration, propagate in a high-intensity optical field, the
quintic terms are required to be taken into account [9,
13-15, 17].

Motivated by the reasons mentioned, in this article,
we will consider a fifth-order dispersive NLS equation [9],
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Hly(x, )] =y, +6lyp*y,,
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which describes the propagation of ultrashort optical

pulses, up to attosecond duration, in an optical fibre,

where H is the third-order Hirota operator, P is the fourth-

order Lakshmanan—Porsezian—Daniel (LPD) operator, Q

is the quintic operator, f, represents the phase parameter

in the fibre, f, represents the group velocity of the modu-
lated wave, «, y, and J are all the real coefficients of the

cubic, quartic, and quintic terms, respectively [9, 13].

Especially, « is related to the supercontinuum-genera-

tion and pulse-deforming phenomena, y is related to the

fourth-order dispersion, and ¢ is related to the fifth-order
dispersion, which should be considered when we inves-

tigate the ultrashort optical pulses [6, 9, 11-16]. For (2),

Lax pair, Darboux transformation (DT) and multi-solition

solutions have been obtained [9]. Special cases of (2) have

been seen

(i) when f,=0, f,=0, =0, y=0, and 6 =0, (2) is degen-
erated into (1), the rogue wave solutions for (1) have
been derived via the modified DT and generalised DT
[8, 18]. Multi-soliton solutions and structures for (1)
have been presented [19, 20];

(ii) when f =0, f,=0, y=0, and 0=0, (2) reduces to
the Hirota equation for the third-order dispersion,
self-steepening, and time-delay correction to the
cubic nonlinearity in ocean waves [21, 22]. Painlevé
analysis and higher-order rogue wave solutions for
the Hirota equation based on the parameterized DT
have been derived [23, 24]. Multi-soliton solutions
for the Hirota equation have been obtained via the
direct method [21]. Multi-solitons, breathers, and
the first-order rogue waves for the Hirota equation
have been derived via the DT and the limiting pro-
cesses [25];

(iii) when f, =0, f,=0, @=0, and 6 =0, (2) is simplified
as the LPD equation for the ultrashort optical-pulse
propagation in a long-distance, high-speed optical
fibre transmission system [6, 9, 26, 27], and non-
linear spin excitations in the one-dimensional iso-
tropic biquadratic Heisenberg ferromagnetic spin
with the octupole—dipole interaction [27, 28]. The
first- and second-order rouge wave solutions for the
LPD equation have been obtained via the modified
DT [29]. The n™-order rogue wave solutions for the
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LPD equation in the determinant form have been
presented [6].

Moreover, some effects of the higher-order terms on
the first-order rogue waves have been investigated
[30-34]. Rational W-shaped solitons on a continuous-
wave background for the Sasa—-Satsuma equation have
been obtained, and the stability properties of solutions
have been investigated via the DT [30], with the relevant
issues in [31, 32]. Solutions on the non-zero background
for the Sasa—Satsuma equation have been derived, such
as the breathers and rogue wave solutions, and the con-
dition to form the rogue wave has been obtained via the
limiting processes [33]. Properties of the rational solu-
tions for the integrable Kundu-Eckhaus equation have
been discussed [34].

However, to our knowledge, for (2), neither the gen-
eralised DT and rogue wave solutions nor structures and
interaction of rogue waves have been discussed, which
is the aim of our article. In Section 2, based on the Lax
pair and DT in [9], generalised DT are constructed via
the Taylor expansion and limiting processes. In Section
3, rogue wave solutions for (2) are derived. In Section 4,
higher-order rogue wave structures and interaction are
studied. In Section 5, our conclusions are given.

2 Generalised DT for Equation (2)

In this section, we present the generalised DT for (2).
With the 2x2 Ablowitz—Kaup—Newell-Segur (AKNS)
scheme, the Lax pair associated with (2) has been
given as [9]

@, =UQ,

D =V, @)

where ®=(¢,, ¢,)" is a vector function, ¢, and ¢, are both
the functions of x and t, the superscript T signifies the
vector transpose, and the 2x2 matrices U and V have the

forms
U= i[’l v ] (5a)
Y —A
5 .
V=3V, (5b)
j=0
with
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where A is a complex parameter independent of x and ¢
and the compatibility condition U -V, + [U, V] =0 returns
to (2).

By virtue of Lax pair (4), the DT matrix T[1] can be
derived as [9]

o LRI AT A E E AR AR A
10 A (g, gl |0 A e, ¢l |
©)

where the eigenfunction (¢,[1], ¢,[1])" is a solution for Lax
pair (4) at A=A, ¢[1], and ¢[1] are the functions of x and
t and A is a complex parameter independent of x and ¢,
the superscript ‘-1’ is the inverse matrix. The sign [k] (k=1,
2, 3, ...) indicates that the matrice/function is engendered
from the k™ order DT.

With DT matrix (6), the generalised DT can be derived
[8]. We assume that

l::F(}{l+e) 7

where T is a solution for Lax pair (4) at A=A + ¢ and
w=1[0], where ¥ is a solution for (2) whereas ¢ is the
parameter independent of x and t. Expanding T" atA=4,

C=T[0] +T[1] e+T[2] € +..., (8)
where I‘[k]:limiif(l)l (k=0, 1, 2 ), T'[0]
e~0 k! Rk =h T

is a solution for Lax pair (4) at y=1[0] and A=A,.

Furthermore, the first-order generalised DT matrix 7 [1]
can be derived as

2| ® O]l e[ 2 0 e il E
10 4] el gl [0 A, el |
)

where the eigenfunction (¢,[1], ¢,[1])"=T([0], while ¢ [1]
and ¢,[1] are both the functions of x and t. Therefore, the
first-order solutions [1] can be obtained as
204 =2, Mg [1]

lp 1117+, 11117

P[] =[0] + (10)

Through the limiting process on first order of the DT,
we derive

(T, )T
lim -

(e+T[1]],_, )IT[0] +T[1] e + o e)] )
=lim —

=r[o]+T[1l,_, Tl1.

Thus, we obtain a new eigenfunction (p,[2], ¢,[2])",
which is a solution for Lax pair (4) at y=[1] and A=A,
whereas ¢ [2] and ¢,[2] are the functions of x and t. The
eigenfunction (¢,[2], ¢,[2])" can be used for iterating to
obtain the second-order generalised DT matrix and the
solutions for (2) at A=A, Thus, we can derive the second-
order generalised DT matrix 7[2] as
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T[2] = 40 _ (p1[2] —<P;[2] ll 0 (pl[z] _<p;[2] B
0 4] [p,21 ¢l21 |0 A, ¢[2] |

(12)
Then, the second-order solutions w[2] can be
obtained as
_ 24 =A)e,[21¢:[2]
P21 = i) + S0 L2 1)

lp,[2117 +1p,[2]1*

Similarly, the limiting process on the second order of
the DT can be derived as

(Tl (TR, )T
lim — :
e—0 €

—Tlo}+(T1,_, +T12l,_, )T + )

T(2l,_, 70, T2,

Then, we get the eigenfunction (p,[3], ¢,[3]), which is
a solution for Lax pair (4) at y=1([2] and A=4, whereas
¢,[3] and ¢[3] are the functions of x and t. Meanwhile, we
can derive the third-order solutions for (2) as

2(4;-2,),3l9,[3]
lp, 3117 +19,311*

YB3l =y[2] + (15)

—%ix(l+6y—fo)(
M= s
. ELx1+6y— o (

—le

1+ 2iX + 2t + 12X+ 240Xy +60x0 + 2xf, + 27, + 20T, )
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with
A=ult+wox+S(e)], u=,-1-12,
¢, =c,(iA+u), c,=c,(il-pu), (18)

w=2a+60+A+4yA—4al’ —80)° —8yA’ +160A" + f,,

where ¢, and ¢, are both the complex constants,
S(e) :z:;;(rk +iT )e’* is a separating function which
consists of 2n real parameters, 7, T, ..., 7,_,, T,_,, N indi-

cates the number of times for the n'" order generalised DT.
For simplification, we set

(19)

Then, we take h=1 + €2 and expand T'(e) atA=i

C=T[0] +T[1]e +T[2] ¢ +..., (20)

where € is a parameter independent of x and t. We exhibit
the expression of I'[0] as

(21)

1+ 20X + 2t + 12X+ 24ixy +60x0 + 2xf, + 27, + 2T, )

By the same token, the fourth-, even n"-order general-
ised DT for the (2) could be obtained.

3 Rogue Wave Solutions for
Equation (2)

In this section, we seek rouge wave solutions for (2). Once
the seed solution, [0], is chosen as a periodic plane
wave solution, rogue wave solutions can be obtained

[6, 8], ¥[0] for (2) could be chosen as
glo =e b, (16)

Furthermore, we get the eigenfunction T for Lax pair
(4) atA=ihas

By virtue of (10), we can obtain the first-order rogue
wave solutions, [1], as

w[l] :_l‘eix(l-%-Gy—f0 )
5 . . .
(_Z_ 2ix + 2t +12xa - 24ixy + 60x0 + 2xf, + 27, — 211;)

X (1+ 2ix + 2t + 12xa+ 24ixy +60x0 + 2xf, + 27, + 2iT,)
AL(=1=2ix + 2t + 12xa - 24ixy + 60x0 + 2xf, + 27, — 2iT, )
X (=14 2ix + 2t + 12x0 + 24ixy + 60x0 + 2xf, + 27 + 2iT )]
+[(1=2ix + 2t +12x0 — 24ixy + 60x0 + 2xf, + 27, — 2iT,)
X (14 2ix + 2t + 12xa + 24ixy + 60x0 + 2xf, + 21 + 2iT, )]}.

(22)
The first-order rogue wave solutions are W-shaped

in the spatial-temporal pattern, which are similar to the
solutions for the Sasa—Satsuma equation [25, 30-34].
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It’s noted that, taking S(e)=0, we can calculate that the
maximum value of the amplitude, |¢[1]], is equal to 3 at
(x=0, t=0). The maximum values and positions remain
the same about the first-order rogue wave, no matter how
the parameters in (2) are chosen, which is different from
the situations in Refs. [25, 30-34]. In this article, we can
derive the higher-order rogue wave solutions via the gen-
eralised DT to investigate the effects of the higher-order
terms, which have not been discussed in Refs. [25, 30-34].

We can derive the first-order generalised DT matrix,
T [1], with (9). Then, we get the eigenfunction, (p,[2],
¢,[2])7, with (11). Finally, we obtain the second-order solu-
tions, [2], with (13). By the same token, we can obtain
the third-order rogue wave solutions, (3], for (2) with
(12), (14), and (15).

The second-order rogue waves solutions, ¥[2], for
(2) are given in Supplementary Material. Explicit expres-
sions for the third-order rogue waves is complicated due to
its written length. Therefore, the third-order rogue waves
solutions, ¥[3], for (2) are given in Supplementary Mate-
rial with f, =0, f,=0, =0, y=0,7,=0, T,=0,7,=0, 7,=0.

4 Higher-Order Rogue Wave
Structures and Interaction
for Equation (2)

Weinvestigate the properties and interaction of the second-
and third-order rogue waves by means of illustrations.

Figure 1 shows that the group velocity, f,, affects the
velocity of the rogue wave with f,=-1, 0, and 1, respec-
tively. With f, increasing, the rogue wave moves counter-
clockwise in the spatial-temporal pattern, as shown in
Figure 1.

Figure 2 illustrates the second-order rogue waves when
the coefficient of third-order term, & =-0.5, 0, and 0.5. With
a increasing, the rogue wave moves counterclockwise in
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the spatial-temporal pattern around the point (x=0, t=0),
which is similar to the effects caused by f,. With the effects
inducing by the cubic terms, the time of appearance for
the rogue wave elongates, while the distance does a little.
In Figure 3, we can observe that the variation of the coef-
ficient of the fourth-order term, y, does not change the
shape of the rogue wave in the spatial-temporal pattern.
However, with the increase of the absolute value of y, elon-
gation firstly and compression on the direction of the spa-
tiality, x, occurs in Figure 3, which means that the distance
of the appearance of the rogue wave is elongating firstly,
next, with y continued growth, the distance is shrinking,
while the time elongates along with the maximum value
of the rogue wave invariant.

Next, discussion focuses on the coefficient of the
quintic terms, 6. Figure 4 shows that the second-order
rogue waves with 6 =0, —0.03, and -0.06, respectively. In
Figure 4a, the symmetric rogue wave for the NLS equa-
tion is shown. Positions of the rogue wave troughs and
crests localise on the x=0 axis. In Figure 4b and c, the
rogue waves become asymmetric and turn counterclock-
wise in the spatial-temporal pattern, if a larger ¢ is taken,
because 0 changes the velocity of the rouge wave. If « =9,
the effect on the second-order rogue waves caused by 9 is
larger than that caused by «, as shown in Figures 2 and 4.
However, the distance of the appearance for the second-
order rogue wave elongates, which is different from that
for the first-order rogue wave. The reason might be the
interaction among a few rogue waves to form a second-
order rogue wave. Meanwhile, positions of rogue-wave
troughs and crests remain the same, which induces the
asymmetric structure.

Table 1 presents that the maximum values and posi-
tions of the second-order rogue waves remain the same, 5
at (x=0, t=0).Iff,, f, v, a, and ¢ have different values, the
minimum values of the rogue waves remain the same, O.
Asymmetric structure occurs, because the quintic terms
have the effects on the rogue waves to change the velocity
of the rogue wave; meanwhile, the positions and values of

Figure 1: The second-order rogue waves via the solutions, ¥[2], in Supplementary Material with parameters: f,=0,2=0,y=0,7,=0, T,=0,

7,=0,7,=0,0=0, (@) f,=-1; (b) f,=0; (0) f,=1.
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Figure 4: The second-order rogue waves via the solutions, 9[2], in Supplementary Material with parameters: f =0, f,=0,a2=0,y=0,7,=0,

T,=0,7,=0,T,=0, (@) =0; (b) 6=-0.03; (c) 6=-0.06.

Table 1: Maximum amplitude and minimum amplitude values of the second-order rogue waves with S(e)=0.

f, f, Y 13 d Maximum amplitude Minimum amplitude

0 0 0 0 0 [9]|=5(x=0, t=0) [#[1]]=0(x=0, t =%+1.757) (x=0, t =+0.465)
0 0 1 [9[1]|=5(x=0, t=0) [9[1]]=0(x=0, t =+1.757) (x =0, t =+0.465)

1 1 1 1 1 |[9M1]|=5(x=0, t=0) |[9[1]|=0(x=0, t=+1.788) (x=0, t =+0.465)

the wave troughs and crests remain the same. Conversely,
the same-order rogue waves have the same maximum and
minimum values of the rogue waves with the separating
function, S(e)=0.

Next, we discuss the interaction among the rogue
waves by virtue of the separating function, S(e). In Figure 5,
the second-order rogue wave is separated into three single
first-order rogue waves. In Figure 5a, the second-order
rogue wave for the NLS equation shows a single higher

hump and double lower symmetric humps. If the quintic
terms have an impact on the rogue waves, the symmetric
structure turns to the asymmetric one. The second-order
rogue wave turns counterclockwise if a larger J is taken
and the distance and time of appearance for the second-
order rogue wave elongate, which fits the law mentioned
in Figure 4. Then, the right one of the double humps in
Figure 5b and c becomes higher than the left one, caused
by the quintic terms. Meanwhile, the single hump has a
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Figure 5: The same as Figure 4 except that T,=10.

little position shift. Therefore, the amplitude of a single
hump and the right one of the double become equal.

To be specific, we find that the maximum values of
the single hump and the right one of the double become
equal, caused by the quintic terms, as shown in Table 2.
If 0 becomes larger enough, the left hump of the double
becomes the lower single one, and the other ones become
double higher symmetric. No matter how the three humps
move, they come out to be a “Triangular Cascades”
pattern as mentioned in [35]. Therefore, the second-order
rogue wave is composed of the three single first-order
rogue waves via the interaction. By virtue of the separat-
ing function S(e), the second-order rogue wave shows
a “Triangular Cascades” state in the spatial-temporal
pattern.

In Figure 6, the second-order rogue wave is separated
into three first-order rogue waves with S(e)=20. We can
find that the second-order rogue wave in Figure 6a is
similar to the image in Figure 5a except for the spatial-
temporal reversal. The other characteristics are similar to
what we find in Figure 5.

Furthermore, we investigate the effects on the third-
order rogue wave caused by the quintic terms and interac-
tion among the rogue waves to form the third-order rogue
wave by virtue of S(e). Figure 7 shows the third-order rogue
wave for (2) with 6 =0, —-0.03, and —0.06. In Figure 7a with
f,=0, f,=0, =0, y=0, and 0=0, the third-order rogue
wave for (1) shows a symmetric structure about the x=0
axis. With the effects caused by the quintic terms increas-
ing, the third-order rogue wave has a certain degree turn
in the spatial-temporal pattern. The distance and time of
appearance of the rogue wave elongate, with ¢ increas-
ing. Moreover, when the rogue wave damps in the spatial-
temporal pattern, the small wave crest occurs at the point
away from the core (x=0, t=0). Therefore, we might con-
clude that the higher-order rogue wave is formed by some
first-order rogue waves via the interaction, and the quintic
terms would affect the interaction to form a small wave
crest away from the core.

Meanwhile, the symmetric structure becomes asym-
metric about the x=0 axis. However, if we turn the semi-
plane, x > 0, 180 degrees about the point (x=0, t=0), we

Table 2: Maximum amplitude values of the second-order rogue waves with S(€)=10ie> and a =y =f, =f,=0.

S Maximum amplitude of single hump Maximum amplitude of double humps (left; right)
0 3.20 (x=-2.067,t=0) 2.92 (x=1.189, t=-2.214); 2.92 (x=1.189, t=2.214)
-0.03 3.16 (x=-2.167,t=-2.416) 2.90 (x=1.037,t=-1.378); 2.95 (x=1.416, t=3.398)

-0.06 3.10 (x=-2.429, t=-5.264)

2.90 (x=0.932, t=-0.728); 2.98 (x=1.747, t=5.217)

Figure 6: The same as Figure 4 except thatz,=20.
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Figure 7: The third-order rogue waves via the solutions, 9[3], in Supplementary Material with parameters: f,=0,f,=0,a=0,y=0,7,=0,

T,=0,7,=0,7,=0,7,=0, T,=0, (a) =0; (b) 6 =-0.03; (c) 6 =-0.06.

find that the semi-plane, x > 0, coincides with the semi-
plane, x < 0. If a larger J is taken, the distortion of symmet-
ric structure of the third-order rogue wave becomes larger.
With S(e) =0, the maximum value of the third-order rogue
wave is equal to 7.

Comparing the results with those we have gotten
previously, we note that the maximum value of the nt-
order rogue wave is equal to (2n + 1). Meanwhile, the
third-order rogue wave has six minimum-value points
whose values are equal to zero. We also note that the
number of the minimum values of the n™-order rogue
wave is equal to (2n). Those results fit in those from
(1) in [18], which means that the quintic terms have
no impact on those characteristics for (2), such as the
maximum/minimum values of the n™-order rogue wave
aforementioned.

Figure 8 illustrates that the third-order rogue wave is
separated into six single first-order rogue waves with 6 =0,
-0.03, —0.06. We find that the six first-order rogue waves
show a so-called “Triangular Cascades” pattern, as men-
tioned in [35], with S(e)=200ie*. With the effects on the
rogue wave caused by the quintic terms increasing, the
third-order rogue wave turns a certain degree in the spa-
tial-temporal pattern. Duration of time for the third-order
rogue wave elongates, whereas the increase in distance
duration is not obvious, because the third-order rogue
wave is split into six first-order rogue waves, and the inter-
action among them attenuates, i.e., the effects induced

K ‘
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Figure 8: The same as Figure 7 except that 7, =200.

by the quintic terms on the rouge wave are weakened. In
Figure 8a, the third-order rogue wave for (1) is symmet-
rical about the t=0 axis. With the value of 6 increasing,
the symmetric structure disappears caused by the quintic
terms as shown in Figure 8.

Comparing Figure 8a with c, we observe that the dis-
tortion of each single rogue wave becomes larger, which
has a kind of compression effect. The compression effect
shows the width of the single rogue wave on the x direc-
tion with 6 =-0.06 is longer than that with d =0. However,
the relative positions of the six single rogue waves remain
unchanged which is a kind of a slanting “Triangular
Cascades” pattern induced by the quintic terms. Observ-
ing Figures 5 and 8, we may find that the n®-order rogue

. )| .
wave consists of first-order rogue waves via the

interaction, which fits the results in [6].

With S(e) =9000ie*, we find that the third-order rogue
wave shows a so-called “Pentagrams” pattern [35], as
shown in Figure 9. The six single rogue waves are com-
pressed in the x=-t direction and prolonged in the x=t¢
direction induced by the quintic terms. If we analyse the
rogue waves for (2) at the viewpoint of the optical fibre,
the rogue waves become longer in the time and distance
duration with the effects caused by the quintic terms
which might influence the information transmission in the
optical fibre due to higher-order nonlinear effect. More-
over, the symmetric structure is also changed as shown in
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Figure 9: The same as Figure 7 except that 7,=9000.

Figure 9, which is called a slanting “Pentagrams” pattern.
If we take S(e) =(r, + T,i)€?, the rogue wave would show a
“Triangular Cascades” pattern as shown in Figure 8. More-
over, if we take S(e)=(z, + T,i)e*, the rogue wave would
show a “Pentagrams” pattern as shown in Figure 9.

5 Conclusions

We have investigated a fifth-order dispersive NLS equa-
tion, i.e., (2), which describes the propagation of the
pulses, up to the attosecond duration, in an optical fibre.
Generalised DTs (11) and (14) have been constructed. First-
order rogue wave solutions (22), the second-order rogue
wave solutions and the third-order rogue wave solutions
presented in Supplementary Material have been obtained.

Other results in this article are summarised as follows:

(i) Effects caused by the phase parameter, f,, group

velocity of the pulse, f,, coefficient of cubic terms, « ,

quartic terms, y, and quintic terms, 0, on the second-

order rogue wave for (2), have been studied. Group
velocity of the pulse, f,, coefficient of cubic terms, «,
and coefficient of quintic terms, J, elongate the time
of appearance of the rogue wave, with the distance
invariant, as shown in Figures 1, 2, and 4. Coefficient
of quartic terms, v, makes the distance of the appear-

ance of the rogue wave elongating firstly, next, with y

continued growth, the distance shrinking, while the

time elongates, as shown in Figure 3.

Characteristics of the higher-order rogue waves for

(2) have been summarised with the separating func-

tion S(e) =0, as shown in Table 3, which are similar to

the results for (1) in Yang et al. and Akhmediev et al.

[6, 18].

(iii) Effects caused by the quintic terms after 6 in (2), on
the second- and third-order rogue waves, and inter-
action among the first-order rogue waves have been
illustrated, compared with those for (1). The higher-
order rogue waves can be recognized to consist of
some first-order rogue waves via each interaction,

(i)

b
| |7' .
"kl
-“‘ %‘*“‘ ‘
% s 1585
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Table 3: Summary of characteristics for the higher-order rogue
waves with S(e)=0.

Order Maximum Number of minimum Number of the first-

amplitude amplitude order rogue waves
2 5(x=0, t=0) 4 3
7 (x=0,t=0) 6 6
n 2n+1(x=0,t=0) 2n n(n+1)
2

as shown in Figures 5, 6, 8, and 9. Time and distance
of the appearance of the rogue waves both elongate,
caused by those quintic terms, as shown in Figures
4 and 7. Increase of such a distance is different from
the results obtained from the first-order rogue waves.
Coefficient of the quintic terms, J, affects not only the
first-order rogue waves but also the interaction among
them, so that the distance of appearance for a higher-
order rogue wave elongates.

(iv) Spatial-temporal pattern of the higher-order rogue
wave for (2) has been discussed via S(e), compared
with that for (1). With different S(e), different spa-
tial-temporal patterns for the rogue waves have
been observed, such as the “Triangular Cascades”
and “Pentagrams” patterns, as shown in Figures 5,
6, 8, and 9. Also, influence on a spatial-temporal
pattern caused by 0 has been investigated: With the
effects of § increasing, the time of the appearance
of the rogue waves elongates, while the distance
increases a little.
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