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Abstract: The linear and nonlinear stability analysis of the 
motionless state (conduction solution) and of a vertical 
throughflow in an anisotropic porous medium are tested. 
In particular, the effect of a nonhomogeneous porosity 
and a constant anisotropic thermal diffusivity have been 
taken into account. Then, the accuracy of the linear insta-
bility thresholds are tested using a three dimensional 
simulation. It is shown that the strong stabilising effect of 
gravity field. Moreover, the results support the assertion 
that the linear theory, in general, is accurate in predict-
ing the onset of convective motion, and thus, regions of 
stability.
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1  Introduction
Penetrative convection refers to convective motion begin-
ning in an unstable layer and penetrating into an other-
wise stable layer or layers. Penetrative convection can 
be described in several ways, at least five of which are 
discussed in detail by Straughan [1]. One of the most 
widely employed models is internal heating, whereby 
an internal heat source (or sink) can cause a situation 
in which one part of a layer convects naturally while the 
other remains stable; so, penetrative convection can take 
place. Many references can be found describing convec-
tion via internal heating. One of the most significant of 

these has contributed greatly to progress in the research, 
that by Roberts [2], who developed a model of convec-
tion in a horizontal layer of fluid cooled from above, ther-
mally insulated from below, and uniformly heated by 
an internal source. Matthews [3] reviewed Roberts’ work 
and developed a model for the onset of penetrative con-
vection in a layer of fluid. A similar model of penetrative 
convection in a porous layer has been produced (see [4]). 
Mathematical models of penetrative convection, based on 
either an internal heat source or sink or using a nonlinear 
density–temperature relationship in the buoyancy term 
have been produced and rigorously analysed. Especially 
noteworthy are recent studies of linear instability and of 
nonlinear stability which are developed in other studies 
[5–8]. Further applications for some convection models 
have been developed and analysed [9–15].

Thermal convection in porous media has received 
considerable interest owing to many real-life applications 
([16] and the references therein). Therefore, many studies 
have been developed to study the solution of convection in 
porous media analytically and numerically. Abbasbandy 
et al. [17] give a series solution for a steady flow of a third-
grade fluid between two porous walls by the homotopy 
analysis method (HAM). Hayata et  al. [18] introduce an 
analysis for model of flow and heat transfer characteris-
tics in a third-grade fluid between two porous plates. In 
this study, the electrically conducting fluid fills the porous 
medium, and the solutions have been developed for small 
porosity and magnetic fields.

The literature on the study of the effect of vertical 
throughflow on convective instability in a porous medium 
is much less widespread, although recent studies include 
Harfash and Hill [19], Shivakumara and Khalili [20], Shi-
vakumara and Sureshkumar [21], Nield and Kuznetsov 
[22], Hill et al. [23] and Hill et al. [24].

Hill et al. [24] analysed the effect of anisotropic con-
stant diffusivity for a fluid saturated porous medium 
between two horizontal impermeable heat conduct-
ing walls, with z-dependent porosity. The model used is 
given by the Darcy-Boussinesq equations. They studied 
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this problem with constant gravity. Although the gravity 
field of the Earth is varying in height from its surface, we 
usually neglect this variation for laboratory purposes and 
treat the field as constant. However, this may not the case 
for large-scale convection phenomena occurring in the 
atmosphere, the ocean, or the mantle of the Earth.

When the difference between the linear (which pre-
dicts instability) and nonlinear (which predicts stability) 
thresholds is very large, the validity of the linear insta-
bility threshold to capture the onset of the instability is 
unclear. Thus, we utilise the stability analysis of Hill et al. 
[24] but with variable gravity effect. In our stability analy-
sis, we discover situations with large subcritical insta-
bilities and then develop a three-dimensional simulation 
for the problem to test the validity of these thresholds. 
To achieve this, we transform the problem into velocity-
vorticity-potential formulation and utilise second-order 
finite difference schemes. Recently, [25, 26] the accuracy 
of the linear instability thresholds are tested using three-
dimensional simulations. Our results show that the linear 
threshold accurately predicts the onset of instability in 
the basic steady state. However, the required time to arrive 
at the steady state increases significantly as the Rayleigh 
number tends to the linear threshold.

In the next section, we present the governing equa-
tions of motion and derive the associated perturbation 
equations. In Section 3, we introduce the linear and non-
linear analysis of our system. In Section 4, we introduce 
the numerical technique to solve the eigenvalue systems. 
In Section 5, the numerical results for the linear theory 
and a direct comparison with those of the global non-
linear theories are presented. In Section 6, we transform 
our system to velocity-vorticity-potential formulation and 
introduce the numerical solution of the problem in three 
dimensions. The three dimensions results of our numeri-
cal model are then compiled and discussed in the final 
section of this article.

2  Governing Equations
Let us consider a layer of a porous medium bounded by two 
horizontal planes and saturated by a binary fluid mixture. 
Let d > 0, Ωd = R2 × (0, d) and Oxyz be a Cartesian frame of 
reference with unit vectors i, j, k, respectively. We assume 
that the Oberbeck-Boussinesq approximation is valid 
and that the flow in the porous medium is governed by 
Darcy’s law of variable permeability k(z) = k0s(z), s(z)∈C([0, 
d])C1(0, d); allowing the gravity H(z) = 1 + εh(z) to depend 
on the vertical coordinate z, the basic equations are
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where ρf(T) = ρ0[1 – α(T – T0)], 2
1 ,xx yy∇ = ∂ + ∂  p is the 

pressure, v is the velocity, T is the temperature, μ is the 
viscosity, ρf is the density, g is the gravitational accelera-
tion, α is are the coefficient for thermal expansion, ρ0, T0, 
are reference density and temperature, K1 and K2 are posi-
tive constants, and k = (0, 0, 1). The derivation of (1) may 
be found in reference [16], pages 9, 24, and 29. The Bouss-
inesq approximation which is also employed is discussed 
in reference [27] where many additional references to this 
approximation may be found. The boundary conditions 
for the problem are v = (0,0,Tf) at z = 0,d, where Tf is a con-
stant, T = TU and T = TL at z = d and z = 0, respectively.

Let us now consider the basic steady state solution of 
(1)–(3) as follows:
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To investigate the stability of these solutions, we 
introduce perturbations ( , , )π θu �  by

,   ,   .p p T Tπ θ= + = + = +v u v �

Then, the perturbation equations are nondimension-
alized according to the scales (stars denote dimensionless 
quantities):
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where β = (TL – TU)/d and R2 is the Rayleigh numbers. The 
dimensionless perturbation equations are (after omitting 
all stars)
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where ζ = K1/K2, u = (u,v,w) and g(z) = QeQz/(eQ – 1). These 
equations hold on the region {z∈(0, 1)} × {(x,y)∈R2}, and 
the boundary conditions to be satisfied are
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	 0,   0,  at  0, 1,zθ= = =u � (7)

	 , ,  have a periodic structure in , .x yθ πu � � (8)

3  �Linear and Nonlinear Energy 
Stability Theories

Linear instability results for stationary convection are 
obtained via the application of standard procedures to the 
linearized version of (4)–(6). The critical linear instability 
thresholds are located through the following eigenvalue 
problem for growth rate σ:

	 2 2 2 2( ) 0,f D a W Df DW a Rf HΘ− − + = � (9)

	 2 2( ) ( ) = ,D a QD Rg z Wζ Θ Θ σΘ− − + � (10)

on z∈(0, 1). Here D = d/dz, w = Wei(mx + ny), θ = Θei(mx + ny) and 
a2 = m2 + n2 is a horizontal wave number. These equations 
are subject to the boundary conditions

	 0,  at  0, 1.W zΘ= = = � (11)

Linearized instability theory certainly shows where 
instability occurs. It does not, however, a priori yield any 
information on stability, nor does it necessarily predict the 
smallest instability threshold. It is possible that nonlinear 
terms will make a system become unstable long before 
the threshold predicted by linear theory is reached. Such 
instabilities are called subcritical. If we have a threshold 
below which we know all nonlinear perturbations decay 
in a precise mathematical way, then this will yield a non-
linear stability boundary. When this threshold is relatively 
close to the analogous threshold of linear theory, we may 
have some confidence that the linear results are actually 
predicting the physical picture correctly.

The eigenvalue system of nonlinear energy stability 
theory for system (4)–(6) can be derive using standard 
approach, [27]. Let V be a period cell for a disturbance to 
(4)– (6), and let ||·|| and 〈·,·〉 be the norm and inner product 
on L2(V). We derive energy identities by multiplying (4) by 
u, (8) by θ and integrating on V, we obtain
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where ϒ(z) = λH(z) + g(z) with λ a positive parameter to 
be chosen suitably later. We define
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H

I
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where H is the space of admissible functions, namely
2{ , (0, 1) :  0,  0, 1}.C w zθ θ= ∈ = = =uH

From (12), on taking into account (13) and applying 
the Poincaré inequality, we find

	

11 ,  0.
E

dE E
dt R

ϖ ϖ
 

≤ − − >   �
(14)

Thus, letting γ = ϖ(RE – 1)/RE and integrating we have

( ) (0) .tE t E e γ−≤

If RE > 1, then as t → ∞, E(t) tends to zero at least expo-
nentially, so we have shown the decay of θ and the decay 
of u then clearly follows. Now, to solve the maximisation 
problem (13), we introduce the Euler Lagrange equations. 
The Euler Lagrange equations are found from

	 0.δ δ− =I D � (15)
Thus, the Euler Lagrange equations which arise from 

the variational problem 1/RE = max
H

(I/D) can be written as:

	
3 ,

2 ( ) ,
( ) i i iu R z

f z
λ

δ ϒ θ ζ− =
�

(16)

	 , 0,i iu = � (17)

	 1 ,33( ) 2 2 0,R z wϒ ζ θ θ+ ∇ + = � (18)

where ς is a Lagrange multiplier. To remove the Lagrange 
multiplier we take the third component of the double curl 
of (16), then, we introduce the normal mode representa-
tion, to arrive

	 2 2 2 22 ( ) 2 ( ) 0,f D a W DfDW a R g H fλ λ λ Θ− − + + = � (19)

	 2 22( ) ( ) 0.D a R g H Wζ Θ λ− + + = � (20)

To (19) and (20) we add the boundary conditions

	 0,  0, 1.W zΘ = = = � (21)

4  Numerical Technique
In this section, we use the Chebyshev collocation method 
to solve the eigenvalue systems (9)–(10) and (19) and (20). 
Firstly, the systems (9)–(10) is transformed onto the Che-
byshev domain (–1,1) and the solutions W and θ treated as 



386      A.J. Harfash and A.K. Alshara: Comparison of Throughflow on Thermal Convection of Porous Medium

independent variables and expanded in a series of Cheby-
shev polynomials

	 0 0
( ),  ( ),

N N

n n n n
n n

W W T z T zΘ Θ
= =

= =∑ ∑
�

(22)

then, we insert (22) into the equations (13)–(14), and then 
substitute the Gauss–Labatto points which are defined by

	
cos ,  0,..., 2.

3i
iy i N
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π 
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(23)

Thus, we obtain 3N – 3 algebraic equations for 3N + 3 
unknowns W0, …, WN, Θ0, …, ΘN, Φ0, …, ΦN. Now, we can 
add six rows using the boundary conditions (11) as follows
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The inner product of each equation is taken with some 
Tk and the orthogonality of the Chebyshev polynomials 
exploited to obtain the following generalised eigenvalue 
problem:
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where X = (W0, …, WN, Θ0, …, ΘN), O is the zeros 
matrix, 

2 11 2( , ) ( ),n nI n n T z=  
2 11 2( , ) ( ),n nD n n T z= ′  

2 1
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1 2( , ) ( ),n nD n n T z= ′′  
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Ω2 = 4D2(n1, n2) – ζa2I(n1, n2)–2QD(n1, n2), n1 = 0, …, N – 2, 
n2 = 0, …, N. We computed the differentiation matrices, 
which are corresponded to the trail functions (22) analyti-
cally using Matlab routines.

We have solved (24) for eigenvalues σj by using the QZ 
algorithm from Matlab routines. Once the eigenvalues σj 
are found we use the secant method to locate where ,R

jσ  
R I

j j jσ σ σ= +  being the real and imaginary parts of eigen-
value σj. The value of R which makes 1 10, R Rσ σ=  being the 
largest eigenvalue, is the critical value of R for a2 fixed. We 
then use golden section search to minimise over a2 and 
find the critical value of R2 for linear instability. Numerical 

results are reported in the next section. In our use of the 
Chebyshev collocation method, we used polynomial of 
degree between 20 and 30. Usually 25 was found to be 
sufficient, but convergence was checked by varying the 
degree by examining the convergence of the associated 
eigenvector (which yields the approximate associated 
eigenfunction).

Returning to the nonlinear eigenvalue system (19) and 
(20), the Chebyshev collocation method yields
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Then, we can determine the critical Rayleigh RaE for 
fixed a2 and λ. Next, we employ golden section search to 
minimise in a2 and then maximise in λ to determine RaE for 
nonlinear energy stability,

	
2 2

2
maxmin R ( , ),E

a
Ra a

λ
λ=

�
(26)

where for all R2 < RaE we have stability. In fact, the opti-
mization problem (26) turns out to be very tricky. Numeri-
cally, it was found that there are local maxima, and one 
has to be very careful when searching to locate a maximum 
which is useful. Numerical results are reported in the next 
section and compared to those of linear instability theory.

5  Stability Analysis Results
The numerical results are presented for the gravity field 
g(z) = 1 – εz and f(z) = 1 + λ1z, whereeas the numerical 
routine is applicable to a wide variety of other fields. To 
investigate the possibility of a very widely varying gravity 
field (one which even changes sign) we choose ε to vary 
from 0 to 1.

Figure 1 shows the effect of increasing ε on the criti-
cal Rayleigh number for Q = 2, λ1 = 0.5 and ζ = 1. It is note-
worthy that the nonlinear stability curves are close to 
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those of linear theory. This shows that possible subcriti-
cal instabilities may only arise in a very small range of 
Rayleigh numbers, and it also demonstrates that linear 
instability theory is correctly capturing the physics of 
the onset of convection. Figure 1 demonstrates that Ra 
increases with increasing ε which shows the stabilizing 
effect of ε.

Figure 2 shows the effect of increasing ζ on the criti-
cal Rayleigh where Q = 2, λ1 = 1, and ε = 0.5. It is clear from 
this figure that Ra increases with increasing ζ which refers 
to the stabilizing effect of ζ. When ζ is small, it should be 
observed that the nonlinear Ra values are very close to the 
linear ones. Thus, the linear theory predicts the onset of 
convection accurately. However, the difference between 
the critical Rayleigh numbers for linear instability and 
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Figure 1: Visual representation of linear instability (solid line) and 
nonlinear stability (dashed line) thresholds, with critical Rayleigh 
number plotted against ε, where Q = 12, λ1 = 0.5 and ζ = 1.
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Figure 2: Visual representation of linear instability (solid line) and 
nonlinear stability (dashed line) thresholds, with critical Rayleigh 
number plotted against ζ, where Q = 12, λ1 = 0.5 and ε = 0.5.

nonlinear energy stability increases with increasing ζ 
values.

Figure 3 shows how increasing λ1 corresponds in 
general to greater destabilization. Again, it is very notice-
able that the nonlinear energy stability curves are close to 
those of linear instability. This is reinforcing the fact that 
the linear curves are a true representation that the physics 
of the onset of convection is being correctly reflected. The 
gap between the curves represents the small band where 
subcritical bifurcation may possibly occur.

A visual representation of the linear instability and 
global nonlinear stability thresholds is given in Figures 4 
and 5. To assist in the interpretation of the results, we 
recall that ascending and descending throughflow are 
represented by the positivity and negativity of the value 
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Figure 3: Visual representation of linear instability (solid line) and 
nonlinear stability (dashed line) thresholds, with critical Rayleigh 
number plotted against λ1, where Q = 12, ζ = 1 and ε = 0.5.
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Figure 4: Visual representation of linear instability (solid line) and 
nonlinear stability (dashed line) thresholds, with critical Rayleigh 
number plotted against Q, where λ1 = 0.5, ζ = 1 and ε = 0.5.
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of Q, respectively. Figures 4 and 5 clearly demonstrate 
that the linear and unconditional nonlinear thresh-
olds have excellent agreement for 0  ≤  Q  ≤  4. When Q is 
negative, the thresholds demonstrate less substantial 
agreement.

6  Three-Dimensional Simulations
In this article, we present an efficient, stable, and accu-
rate finite difference schemes in the vorticity-vector-
potential formulation for computing the convective 
motion of an incompressible fluid in a porous solid. The 
emphasis is on three dimensions and nonstaggered grids. 
We introduce a second-order accurate method based on 
the vorticity-vector-potential formulation on the non-
staggered grid whose performance on uniform grids is 
comparable with the finite scheme. We pay special atten-
tion to how accurately the divergence-free conditions for 
vorticity, velocity, and vector potential are satisfied. We 
derive the three-dimensional analog of the local vorticity 
boundary conditions.

By using the curl operator to (4), one gets the follow-
ing dimensionless form of the vorticity transport equation:

	
2

1 ( ) ( , , 0) ,
( ) ( )

f z v u R
f z f z

ω θ
′− − = ∇ ⋅ k

�
(27)

where the vorticity vector ω = (ξ1, ξ2, ξ3) is defined as

	 .ω = ∇ ⋅u � (28)

To calculate velocity from vorticity, it is convenient 
to introduce a vector potential ψ = (ψ1, ψ2, ψ3), which may 
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Figure 5: Visual representation of linear instability (solid line) and 
nonlinear stability (dashed line) thresholds, with critical Rayleigh 
number plotted against Q, where λ1 = 0.5, ζ = 5 and ε = 1.

be looked upon as the three-dimensional counterpart of 
two-dimensional stream function. The vector potential is 
defined by

	 .ψ= ∇ ⋅u � (29)
It easy to show the existence of such a vector potential 

for a solenoidal vector field (∇·u = 0). Such a vector poten-
tial can be required to be solenoidal, i.e.,

	 0.ψ∇⋅ = � (30)

Substituting (29) in (28) and using (30) yields

	 2 .ψ ω∇ = − � (31)

The set of equations (6), (27), (29) and (31) with appro-
priate boundary conditions were found to be a convenient 
form for numerical computations. The discretised form 
of these equations using second-order finite difference 
scheme can be written as
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+ + +

= − + + + = −

� (41)
where 2 2 2, , x y zδ δ δ  are the second-order central differ-
ence operators and δx, δy, δz are the first-order central 
difference operators. Here, 1

3
n

ijkξ +  and 1n
ijkθ +  are computed 

explicitly from (40) and (41), respectively, whereas 
1 1 1 1 1 1 1

1 , , 2 , , 3 , , 1, , , , , , ,n n n n n n n
i j k i j k i j k ijk ijk ijk ijku v wψ ψ ψ ξ+ + + + + + +  and 1

2
n

ijkξ +  are 
computed from (32 to 39) implicitly using the Gauss–
Seidel iteration method. The temperature on the bound-
ary can be computed explicitly using (7) and (8). However, 
a second-order implicit technique has been used to evalu-
ate the vorticity vector at the boundary form. To enforce 
the vorticity definition at the wall, we used a Taylor’s 
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series expansion to compute the vorticity values at the 
boundaries.

To solve (32)–(39) using Gauss–Seidel iteration 
method, in the first time level we give an initial values to 
the solutions. Then, we use these initial values to compute 
new values of solution, and the programme will continue 
in this process until satisfying the convergence criteria 
which is

, 1 , 1 , 1, , , 
1 1 1 2  2  3  3  

, , 
, 1 , 1 , 1 , 1, , , , 

1 1 
, 1

2  2

{| |,| |,| |,max
| |,| |,| |,| |,
|

n k n k n kn k n k n k
ijk ijk ijk ijk ijk ijk

i j k
n k n k n k n kn k n k n k n k
ijk ijk ijk ijk ijk ijk ijk ijk
n k

ijk

u u v v w w

η ψ ψ ψ ψ ψ ψ

ξ ξ

ξ ξ

+ + +

+ + + +

+

= − − −

− − − −

− 5, 
 |} 10 .n k
ijk

−<

where the indices k and k + 1 refer to the solutions in itera-
tion steps k and k + 1, respectively. The values of the solu-
tions in the last time level n will be the initial values to the 
next time level n + 1.

Here, we should mention that our scheme is flexible 
for various R values and, thus, the grid resolution has 
been selected according to the Ra values. We decrease the 
values of Δx, Δy, and Δz as the value of R increases. For 
our problem, we find that Δx = Δy = Δz = 0.02 is enough to 
give us accurate results.

7  Numerical Results
In this section, RaL, is the critical Rayleigh number for 
linear instability theory and RaE is the critical Rayleigh 
number for the global nonlinear stability theory. The cor-
responding critical wave numbers of the linear instabil-
ity and the global nonlinear stability will be denoted by 
aL and aE, respectively. In Table 1, we present numerical 
results of the linear instability and nonlinear stability 
analyses. The dimensions of the box, which are calcu-
lated according to the critical wave number, are shown in 
Table 1. We assume that the perturbation fields (u, θ,  P) 
are periodic in the x and y directions and denoted by 

[0, 4 / ] [0, 4 / 3 ] [0, 1]x ya aΩ π π= × ×  to be the perio-
dicity cell, where ax and ay are the wave numbers in 
the x and y directions, respectively; ax and ay are evalu-
ated according to the critical wave numbers aL where 

2 2 2 ,L x ya a a= +  and where Lx = 4π/ax and 4 / 3 .yLy aπ=  
These values of Lx and Ly are consistent with the hexago-
nal pattern of convection.

For numerical solutions of three dimensions prob-
lems, we used Δt = 5 × 10–5 and Δx = Δy = Δz = 0.02. The 
convergence criteria has been selected to make sure that 
the solutions arrive to a steady state. The convergence cri-
teria are

1 1 1 1
2 1 1 2  2  3  3  

, , 
1 1 1 11

1 1 2  2  

{| |, | |, | |, | |,max

| |, | |, | |, | |, | |}

n n n nn n n n
ijk ijk ijk ijk ijk ijk ijk ijk

i j k
n n n nn n n n n n

ijk ijk ijk ijk ijk ijk ijk ijk ijk ijk

u u

v v w w

η ψ ψ ψ ψ ψ ψ

ξ ξ ξ ξ θ θ

+ + + +

+ + + ++

= − − − −

− − − − −

and we select η2 = 10–6. The programme will continue in 
computing the results of the temperature, velocity, vorticity, 
and potential vector for new time levels until the results 
stratify the convergence criteria, otherwise, we stop the 
programme after 80,000 time levels, i.e., at the time τ = 4.

In order to display the numerical results clearly, the 
temperature, velocity, and vorticity contours are plotted in 
Figures 6–9 at Ra = 421 and Ra = 1688. In these figures, the 
temperature, velocity, and vorticity contours are presented 
at the time level τ = 4 as the possibility of arriving the solu-
tion to any steady state impossible. Figures 6–9 show the 
contours of u, v, w, and θ, respectively, at z = 0.05, z = 0.5 
and z = 0.95 in a, b and c for Q = – 12, λ1 = 0.5, ζ = 5 and ε = 1 
and Ra = 421. Also, Figures 6–9 show the contours of u, v, 
w, and θ, respectively, at z = 0.05, z = 0.5 and z = 0.95 in c, d 
and e for Q = 12, λ1 = 0.5, ζ = 5 and ε = 1 and Ra = 1688.

Figures 6–9 plot the contours of u, v, w and θ respec-
tively, at λ1 = 0.5, ζ = 5 and ε = 1 for two cases: Case1  
Q = – 12, τ = 4 and Ra = 421, case2 Q = 12, τ = 1.159 and 
Ra = 1688. Figure 6 plots the contour of perturbation 
velocity u for three positions z = 0.05, z = 0.95, and z = 0.95. 
For negative throughflow Q = – 12, the effect of negative 
direction flow from permeability surface (bottom surface) 
is clearly in Figure 6a–c, where the flow direction inverse 
the buoyancy effect (the buoyancy flow is up where the 
negative throughflow is down), this effect represents by 
multi-rotating cells have lower intensity than the positive 
direction of throughflow (Fig. 6d–f). These cells in a, b, 
and c are a sequence in sign of rotating (counter clock-
wise CCW-positive sign and clockwise CW-negative sign), 
where the maximum values of intensity u at the positions 

Table 1: Critical Rayleigh and wavenumbers 2 2, , , L E L ERa Ra a a  at λ1 = 0.5, ζ = 5 and ε = 1.

Q   RaL   2
La   RaE   2

Ea   λ

–12  430.7346813   33.16928351   288.6563395   12.73121491   1.680574242
12   1778.657379   18.58281978   452.4411301   24.72135955   1.701997193
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Figure 6: Contour plot of u for λ1 = 0.5, ζ = 5 and ε = 1. In (a), (b), (c) Q = – 12, τ = 4 and Ra = 421. In (d), (e), (f) Q = 12, τ = 1.159 and Ra = 1688.
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Figure 7: Contour plot of v for λ1 = 0.5, ζ = 5 and ε = 1. In (a), (b), (c) Q = – 12, τ = 4 and Ra = 421. In (d), (e), (f) Q = 12, τ = 1.159 and Ra = 1688.
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z = 0.05, 0.5 and 0.95 are 1.1,0.15 and 0.021, respectively. 
The cells in d, e, and f are more restricted and have value 
greater than a, b, and c, because the effect of the through-
flow add to the effect of buoyancy (same direction to up). 
The maximum values of intensity u at Q = 12 and the posi-
tions z = 0.05, 0.5 and 0.95 are 66,13 and 49, respectively.

Figure 7 indicates the contours of perturbation veloc-
ity v at Q = – 12 (Fig. 7a–c) and Q = 12 (Fig. 7d–f). It can be 
seen that the behaviour of velocity v is similar to veloc-
ity u except the cells are extended horizontally, and the 
sequence of the sign becomes row of cells. Also, the inten-
sity of velocity v for Q = 12 (d, e, and f) is greater than Q = – 
12 a, b, and c, and the reason as mentioned in the previous 
section. The maximum magnitudes of v are 1.4,0.19 and 
0.028 for a, b, and c, respectively, and 68, 12 and 43 for d, 
e, and f, respectively.

The distribution of velocity w is presented in Figure 8 
for Q = – 12 (Fig. 8a–c) and Q = 12 (Fig. 8d–f). This figure 
shows there are multiple cells for Q = – 12 and approxi-
mately four cells for Q = 12. The size of cells for Q = 12 
(Fig. 8d–f) are reduced towards the upper plane, where 
the cell at z = 0.95 is smallest. The magnitude of veloc-
ity w becomes maximum (wmax = 58) at z = 0.95 for Q = 12, 
because the effect of density difference (TL > TU) to up 
and the throughflow to up (the permeability effect to up) 
which make the velocity maximum.

Finally, the contour of perturbation temperature θ 
is cleared at Figure 9 at z = 0.05,0.5 and 0.95. The value of 
exact temperature is equal to mean temperature and per-
turbation temperature θ; therefore, the minus sign of θ 
means reduced in exact temperature. The number of cells 
approximately four cells for Q = 12 whereas for Q = – 12 there 
are many cells with different signs. The value θ is reduced 
towards the upper surface (θ = – 8.1,– 14 and – 16 at z = 0.05, 
0.5 and 0.95 respectively), this is returned to boundary con-
ditions where T = TL at z = 0 and T = TU at z = d (TL > TU).

In Figures 10 and 11, we show a summary of the 
numerical results where we introduce the maximum and 
minimum values of velocities vs. time. The solid, dash, 
dot, dash dot, dash dot dot, and short dash lines represent 
umax, umin, vmax, vmin, wmax, and wmin, respectively. In Figure 10, 
we select Q = – 12, λ1 = 0.5, ζ = 5, and ε = 1, then accord-
ing to the stability analysis, we have RaL = 430.7346813 
and RaE = 288.6563395. Here, it clear that we have very 
large subcritical stability region, as there is a big differ-
ence between the critical Rayleigh numbers of linear and 
nonlinear theories. From Figure 10, for Ra = 400, we can 
see that the solutions satisfy the convergence criterion 
at τ = 0.8068 and, thus, the solution arrives to the basic 
steady state within a short time. However, for Ra = 410, 
the program needs τ = 1.32115, to arrive to the basic steady 
state, which is expected, as the required time to arrive at 
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Figure 10: The numerical results for different Ra. We present the results for the maximum and minimum values of velocities vs. time for 
Q = – 12, λ1 = 0.5, ζ = 5 and ε = 1, RaL = 430.7346813, RaE = 288.6563395.
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a steady state increases with increasing Ra values until 
the solution does not arrive at any steady state. Moreover, 
for Ra = 420, the solutions do not satisfy the convergence 
criterion, and the program stops at τ = 4, but it is very 
clear that the solutions can achieve the convergence cri-
terion the next times. For Ra = 421 and Ra = 422, the solu-
tions could not arrive at any steady state and the program 
did not progress beyond τ = 4 and we let the programme 
run for a significant period to test the convection’s long-
time behaviour. We see that the values of the velocities 
increase at τ = 8, and then decrease at τ = 12 and continue 
in this oscillation. For Ra = 421 and Ra = 422, the convec-
tion behaviour oscillated and access to a stable state was 
impossible. Finally, for Ra = 424, the solutions arrive at a 
steady state early at τ = 2.9461, but this steady state is com-
pletely different from the basic one. For Ra = 424, here, 
according to the numerical results, the linear instability 
threshold is very close to the actual threshold, i.e., the 
solutions arrive to the basic steady state before the linear 
instability threshold.

In Figure 11, critical Rayleigh numbers for Q = 12, 
λ1 = 0.5, ζ = 5 and ε = 1 were computed, (9)–(10) and (19)–
(20) were solved, leading to the following stability results: 
RaL = 1778.657379, RaE = 452.4411301. In this case, the dif-
ference between the critical Rayleigh numbers of linear 

and nonlinear theories is very large. Figure 11 shows 
that for Ra = 1680, Ra = 1682, Ra = 1684, Ra = 1686, and 
Ra = 1887, the solutions quickly go to the basic steady 
state and satisfy the convergence criteria at τ = 1.53815, 
τ = 1.59605, τ = 1.6704, τ = 1.7892, and τ = 1.93085, respec-
tively. Moreover, for Ra = 1888, the solutions arrive at a 
steady state and the program stops at τ = 1.159. For Ra = the 
convection behaviour was very oscillated, and the access 
to the basic steady state was impossible. The results of 
Figure 11 explains that the stability behaviour is similar to 
the stability behaviour of Figure 10, as we found that the 
linear instability threshold is close to the actual thresh-
old. However, when Q is negative, it is clear that the actual 
threshold is very close to the linear instability threshold, 
whereas, for positive Q the actual threshold moves slightly 
from linear instability threshold. This pattern of results is 
similar to the behaviour of throughflow in a fluid layer 
(see [26]).

8  Conclusions
In this article we have explored a convection in an ani-
sotropy and symmetry in porous media with a constant 
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Figure 11: The numerical results for different Ra. We present the results for the maximum and minimum values of velocities vs. time for 
Q = 12, λ1 = 0.5, ζ = 5 and ε = 1, RaL = 1778.657379, RaE = 452.4411301.
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throughflow. Regions of very large subcritical instabili-
ties, i.e., where agreement between the linear instability 
thresholds and nonlinear stability thresholds is poor, are 
studied by solving for the full three-dimensional system. 
Numerically, we find that the convection has three differ-
ent patterns. The first picture, where Ra between RaL, and 
RaE, is that the solutions perturbations vanish, sending 
the solution back to the steady state, before the linear 
thresholds are reached. The required time to arrive at the 
steady state increases as the value of Ra increases. The 
second picture, where Ra is close to RaL is that solutions 
can tend to a steady state which is different to the basic 
steady state v̅= (0, 0, Tf). In the third picture, where Ra 
is very close or Ra>RaL, the solutions do not arrive at any 
steady state and oscillate.
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