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Abstract: The linear and nonlinear stability analysis of the
motionless state (conduction solution) and of a vertical
throughflow in an anisotropic porous medium are tested.
In particular, the effect of a nonhomogeneous porosity
and a constant anisotropic thermal diffusivity have been
taken into account. Then, the accuracy of the linear insta-
bility thresholds are tested using a three dimensional
simulation. It is shown that the strong stabilising effect of
gravity field. Moreover, the results support the assertion
that the linear theory, in general, is accurate in predict-
ing the onset of convective motion, and thus, regions of
stability.
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1 Introduction

Penetrative convection refers to convective motion begin-
ning in an unstable layer and penetrating into an other-
wise stable layer or layers. Penetrative convection can
be described in several ways, at least five of which are
discussed in detail by Straughan [1]. One of the most
widely employed models is internal heating, whereby
an internal heat source (or sink) can cause a situation
in which one part of a layer convects naturally while the
other remains stable; so, penetrative convection can take
place. Many references can be found describing convec-
tion via internal heating. One of the most significant of
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these has contributed greatly to progress in the research,
that by Roberts [2], who developed a model of convec-
tion in a horizontal layer of fluid cooled from above, ther-
mally insulated from below, and uniformly heated by
an internal source. Matthews [3] reviewed Roberts’ work
and developed a model for the onset of penetrative con-
vection in a layer of fluid. A similar model of penetrative
convection in a porous layer has been produced (see [4]).
Mathematical models of penetrative convection, based on
either an internal heat source or sink or using a nonlinear
density—-temperature relationship in the buoyancy term
have been produced and rigorously analysed. Especially
noteworthy are recent studies of linear instability and of
nonlinear stability which are developed in other studies
[5-8]. Further applications for some convection models
have been developed and analysed [9-15].

Thermal convection in porous media has received
considerable interest owing to many real-life applications
([16] and the references therein). Therefore, many studies
have been developed to study the solution of convection in
porous media analytically and numerically. Abbasbandy
et al. [17] give a series solution for a steady flow of a third-
grade fluid between two porous walls by the homotopy
analysis method (HAM). Hayata et al. [18] introduce an
analysis for model of flow and heat transfer characteris-
tics in a third-grade fluid between two porous plates. In
this study, the electrically conducting fluid fills the porous
medium, and the solutions have been developed for small
porosity and magnetic fields.

The literature on the study of the effect of vertical
throughflow on convective instability in a porous medium
is much less widespread, although recent studies include
Harfash and Hill [19], Shivakumara and Khalili [20], Shi-
vakumara and Sureshkumar [21], Nield and Kuznetsov
[22], Hill et al. [23] and Hill et al. [24].

Hill et al. [24] analysed the effect of anisotropic con-
stant diffusivity for a fluid saturated porous medium
between two horizontal impermeable heat conduct-
ing walls, with z-dependent porosity. The model used is
given by the Darcy-Boussinesq equations. They studied
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this problem with constant gravity. Although the gravity
field of the Earth is varying in height from its surface, we
usually neglect this variation for laboratory purposes and
treat the field as constant. However, this may not the case
for large-scale convection phenomena occurring in the
atmosphere, the ocean, or the mantle of the Earth.

When the difference between the linear (which pre-
dicts instability) and nonlinear (which predicts stability)
thresholds is very large, the validity of the linear insta-
bility threshold to capture the onset of the instability is
unclear. Thus, we utilise the stability analysis of Hill et al.
[24] but with variable gravity effect. In our stability analy-
sis, we discover situations with large subcritical insta-
bilities and then develop a three-dimensional simulation
for the problem to test the validity of these thresholds.
To achieve this, we transform the problem into velocity-
vorticity-potential formulation and utilise second-order
finite difference schemes. Recently, [25, 26] the accuracy
of the linear instability thresholds are tested using three-
dimensional simulations. Our results show that the linear
threshold accurately predicts the onset of instability in
the basic steady state. However, the required time to arrive
at the steady state increases significantly as the Rayleigh
number tends to the linear threshold.

In the next section, we present the governing equa-
tions of motion and derive the associated perturbation
equations. In Section 3, we introduce the linear and non-
linear analysis of our system. In Section 4, we introduce
the numerical technique to solve the eigenvalue systems.
In Section 5, the numerical results for the linear theory
and a direct comparison with those of the global non-
linear theories are presented. In Section 6, we transform
our system to velocity-vorticity-potential formulation and
introduce the numerical solution of the problem in three
dimensions. The three dimensions results of our numeri-
cal model are then compiled and discussed in the final
section of this article.

2 Governing Equations

Let us consider a layer of a porous medium bounded by two
horizontal planes and saturated by a binary fluid mixture.
Let d >0, Q,=R*x(0, d) and Oxyz be a Cartesian frame of
reference with unit vectors i, j, k, respectively. We assume
that the Oberbeck-Boussinesq approximation is valid
and that the flow in the porous medium is governed by
Darcy’s law of variable permeability k(z) =k s(2), s(z)e C([O,
d))NCY(0, d); allowing the gravity H(z) =1+ eh(z) to depend
on the vertical coordinate z, the basic equations are
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where pf(T) =p,1 - a(T - T)], Vf =0+ ayy, p is the
pressure, v is the velocity, T is the temperature, u is the
viscosity, Py is the density, g is the gravitational accelera-
tion, « is are the coefficient for thermal expansion, p, T,
are reference density and temperature, K, and K, are posi-
tive constants, and k=(0, 0, 1). The derivation of (1) may
be found in reference [16], pages 9, 24, and 29. The Bouss-
inesq approximation which is also employed is discussed
in reference [27] where many additional references to this
approximation may be found. The boundary conditions
for the problem are v= (0,0,Tf) at z=0,d, where Tf is a con-
stant, T=T,and T=T, at z=d and z=0, respectively.

Let us now consider the basic steady state solution of
(1)-(3) as follows:
V( TL B TU ) ( TI:ZJ

1-e™
id

To investigate the stability of these solutions, we
introduce perturbations (u, 7, 6) by

v=(0,0,T,), T(2)=T, +

v=u+V, p=i+p, T=0+T.

Then, the perturbation equations are nondimension-
alized according to the scales (stars denote dimensionless
quantities):

K, .. [ pr . Td
PO ST . S

k, gpak, K,
u—K—Zu*, tzd_Zt*’Rz_ngakodzﬁ,

d K, uk,

where f=(T, - T )/d and R* is the Rayleigh numbers. The
dimensionless perturbation equations are (after omitting
all stars)

f(—l)u=—Vfr+RH(z)0k, (4)
V-u=0, ®)
%+u.(ve)=Rg(z)W+§Vf9+aZZG—QE)ZG, (6)

where (=K /K, u=(u,;,w) and g(z) =Qe%/(e? - 1). These
equations hold on the region {ze (0, 1)} x{(x,y)e R?}, and
the boundary conditions to be satisfied are
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u=0, 6=0, at z=0, 1, @)

u, 0, 7 have a periodic structure inx,y. (8)

3 Linear and Nonlinear Energy
Stability Theories

Linear instability results for stationary convection are
obtained via the application of standard procedures to the
linearized version of (4)—(6). The critical linear instability
thresholds are located through the following eigenvalue
problem for growth rate o:

f(D*-a*)W - Df DW +a’Rf’HO® =0, 9

(D*-%a’)®-QDO +Rg(z)W =00, (10)

on ze (0, 1). Here D = d/dz, w = Weltm+ m) g = @elmx+m) and
a’=m? + n*is a horizontal wave number. These equations
are subject to the boundary conditions

(1)

Linearized instability theory certainly shows where
instability occurs. It does not, however, a priori yield any
information on stability, nor does it necessarily predict the
smallest instability threshold. It is possible that nonlinear
terms will make a system become unstable long before
the threshold predicted by linear theory is reached. Such
instabilities are called subcritical. If we have a threshold
below which we know all nonlinear perturbations decay
in a precise mathematical way, then this will yield a non-
linear stability boundary. When this threshold is relatively
close to the analogous threshold of linear theory, we may
have some confidence that the linear results are actually
predicting the physical picture correctly.

The eigenvalue system of nonlinear energy stability
theory for system (4)-(6) can be derive using standard
approach, [27]. Let V be a period cell for a disturbance to
(4)- (6), and let ||-|| and (-,-) be the norm and inner product
on LX(V). We derive energy identities by multiplying (4) by
u, (8) by 0 and integrating on V, we obtain

dE

=Z-7-D,
dt

W=0=0, at z=0, 1.

(12)
where
1
E(t)==|6]%,
() 2I| Il

2 2 1 2
D=CIV,01")+16,] >+l<m|u| >

Z=R{(Y(z)06,w),
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where Y(z) =AH(z) + g(z) with A a positive parameter to
be chosen suitably later. We define

1z
R mgx ’

E

(13)

where H is the space of admissible functions, namely

H={u, 6eC*(0,1): 6=w=0, z=0, 1}.

From (12), on taking into account (13) and applying
the Poincaré inequality, we find

d—E<—w(1—Ri)E, w >0.

dt . (14)

Thus, letting y =®(R, - 1)/R, and integrating we have
E(t)<E(0)e ™.

IfR,>1, then as t — oo, E(¢) tends to zero at least expo-
nentially, so we have shown the decay of 6 and the decay
of u then clearly follows. Now, to solve the maximisation
problem (13), we introduce the Euler Lagrange equations.
The Euler Lagrange equations are found from

0TI —-0D=0. (15)
Thus, the Euler Lagrange equations which arise from
the variational problem 1/R,=max, (Z/D) can be written as:

22
f(z)ui—RéwY(z)O—Cj, (16)
,, =0, a7
RY(z)w+22;V10+20y33 =0, (18)

where s is a Lagrange multiplier. To remove the Lagrange
multiplier we take the third component of the double curl
of (16), then, we introduce the normal mode representa-
tion, to arrive

2Mf(D? —a?)W - 2ADfDW + a*R(g + AH) f2©=0,  (19)
2D’ -a’t)®+R(g + AH)W =0. (20)

To (19) and (20) we add the boundary conditions
©=W=0, z=0, 1. (1)

4 Numerical Technique

In this section, we use the Chebyshev collocation method
to solve the eigenvalue systems (9)-(10) and (19) and (20).
Firstly, the systems (9)-(10) is transformed onto the Che-
byshev domain (-1,1) and the solutions W and 6 treated as
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independent variables and expanded in a series of Cheby-
shev polynomials

WziWnTn(z), @:i@nTn(z), (22)

n=0

then, we insert (22) into the equations (13)-(14), and then
substitute the Gauss—Labatto points which are defined by

J, i=0,..,N-2. (23)

=cos ad
V= N3
Thus, we obtain 3N - 3 algebraic equations for 3N + 3
unknowns W, ..., W,, 0, ..., 0, ®, ..., ®,. Now, we can
add six rows using the boundary conditions (11) as follows

BC,: iwﬂ:o, BC,: i(-n"wn:o, BC,: iq:o,
n=0 n=0 n=0
BC,: i(— )"0, =0.
n=0

The inner product of each equation is taken with some
T, and the orthogonality of the Chebyshev polynomials
exploited to obtain the following generalised eigenvalue
problem:

Q 'R 0O O
BC, 0..0 0..0 0..0
BC2 0...0 Y 0..0 0...0 X, (24)
RY Q, 0 I
0..0 BC, 0..0 0..0
0..0 BC, 0..0 0..0
where X=(W,, .., W,, 0, .., ©,), O is the zeros

matrix, I(n, n,)=T (z, ),
Y(n,,n,)=g(z,)I(n;,n,),
2(n,, n,)=f*(z,)H(z,)I(n;, n,),

Q =f(znl)(4D2(n1, n,) —a’l(n,n,)) - 2f"(z, )D,

D(n,,n,)=T/(z,),

D*(n,n,)=T"(z,),

Q,=4Dn, n,) - ta’l(n,, n,)-2QD(n, n,), n,=0, .., N - 2,
n,=0, .., N. We computed the differentiation matrices,
which are corresponded to the trail functions (22) analyti-
cally using Matlab routines.

We have solved (24) for eigenvalues o, by using the QZ
algorithm from Matlab routines. Once the eigenvalues o
are found we use the secant method to locate where af,
o= af + ag being the real and imaginary parts of eigen-
value o,. The value of R which makes 07 =0, 07 being the
largest eigenvalue, is the critical value of R for a? fixed. We
then use golden section search to minimise over a* and
find the critical value of R? for linear instability. Numerical
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results are reported in the next section. In our use of the
Chebyshev collocation method, we used polynomial of
degree between 20 and 30. Usually 25 was found to be
sufficient, but convergence was checked by varying the
degree by examining the convergence of the associated
eigenvector (which yields the approximate associated
eigenfunction).

Returning to the nonlinear eigenvalue system (19) and
(20), the Chebyshev collocation method yields

21Q, 0 0 —aA,
BC, 0..0 0..0 0..0
BC, 0..0 0..0 0..0
X=R X, (25)
0 29 -A, O
0..0 BC, 0..0 0..0
0..0 BC, 0..0 0..0

where
A(n,n,)=(AH(z, ) +g(z, NI(n;, n,),
A, (n,n)=f*(z,)(AH(z, ) +g(z,))I(n;, n,),

and

Q,=4D’(n,, n,)-Ca’I(n, n,)

Then, we can determine the critical Rayleigh Ra, for
fixed a? and 1. Next, we employ golden section search to
minimise in @’ and then maximise in 4 to determine Ra, for
nonlinear energy stability,

Ra, =m}axmin R* (a2, A), (26)
A 2

where for all R’><Ra, we have stability. In fact, the opti-
mization problem (26) turns out to be very tricky. Numeri-
cally, it was found that there are local maxima, and one
has to be very careful when searching to locate a maximum
which is useful. Numerical results are reported in the next
section and compared to those of linear instability theory.

5 Stability Analysis Results

The numerical results are presented for the gravity field
g(2)=1 - ez and f(z)=1 + Az, whereeas the numerical
routine is applicable to a wide variety of other fields. To
investigate the possibility of a very widely varying gravity
field (one which even changes sign) we choose ¢ to vary
from O to 1.

Figure 1 shows the effect of increasing ¢ on the criti-
cal Rayleigh number for Q =2, 4 =0.5 and { =1. It is note-
worthy that the nonlinear stability curves are close to
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Figure 1: Visual representation of linear instability (solid line) and
nonlinear stability (dashed line) thresholds, with critical Rayleigh
number plotted against e, where Q=12,4,=0.5and {=1.

those of linear theory. This shows that possible subcriti-
cal instabilities may only arise in a very small range of
Rayleigh numbers, and it also demonstrates that linear
instability theory is correctly capturing the physics of
the onset of convection. Figure 1 demonstrates that Ra
increases with increasing ¢ which shows the stabilizing
effect of €.

Figure 2 shows the effect of increasing ¢ on the criti-
cal Rayleigh where Q=2, 4, =1, and £=0.5. It is clear from
this figure that Ra increases with increasing ¢ which refers
to the stabilizing effect of . When ¢ is small, it should be
observed that the nonlinear Ra values are very close to the
linear ones. Thus, the linear theory predicts the onset of
convection accurately. However, the difference between
the critical Rayleigh numbers for linear instability and
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Figure 2: Visual representation of linear instability (solid line) and
nonlinear stability (dashed line) thresholds, with critical Rayleigh
number plotted against{, where Q=12,1,=0.5 and ¢=0.5.
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Figure 3: Visual representation of linear instability (solid line) and
nonlinear stability (dashed line) thresholds, with critical Rayleigh
number plotted against1,, where Q=12,{=1and ¢=0.5.

nonlinear energy stability increases with increasing ¢
values.

Figure 3 shows how increasing 4, corresponds in
general to greater destabilization. Again, it is very notice-
able that the nonlinear energy stability curves are close to
those of linear instability. This is reinforcing the fact that
the linear curves are a true representation that the physics
of the onset of convection is being correctly reflected. The
gap between the curves represents the small band where
subcritical bifurcation may possibly occur.

A visual representation of the linear instability and
global nonlinear stability thresholds is given in Figures 4
and 5. To assist in the interpretation of the results, we
recall that ascending and descending throughflow are
represented by the positivity and negativity of the value

175

1504

1254

Ra

1004

754 ~«< -

50 ST -

Figure 4: Visual representation of linear instability (solid line) and
nonlinear stability (dashed line) thresholds, with critical Rayleigh
number plotted against Q, where ,=0.5,{=1and e=0.5.
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Figure 5: Visual representation of linear instability (solid line) and
nonlinear stability (dashed line) thresholds, with critical Rayleigh
number plotted against Q, where 4, =0.5,{=5ande=1.

of Q, respectively. Figures 4 and 5 clearly demonstrate
that the linear and unconditional nonlinear thresh-
olds have excellent agreement for 0 < Q < 4. When Q is
negative, the thresholds demonstrate less substantial
agreement.

6 Three-Dimensional Simulations

In this article, we present an efficient, stable, and accu-
rate finite difference schemes in the vorticity-vector-
potential formulation for computing the convective
motion of an incompressible fluid in a porous solid. The
emphasis is on three dimensions and nonstaggered grids.
We introduce a second-order accurate method based on
the vorticity-vector-potential formulation on the non-
staggered grid whose performance on uniform grids is
comparable with the finite scheme. We pay special atten-
tion to how accurately the divergence-free conditions for
vorticity, velocity, and vector potential are satisfied. We
derive the three-dimensional analog of the local vorticity
boundary conditions.

By using the curl operator to (4), one gets the follow-
ing dimensionless form of the vorticity transport equation:

1 f'(z)
w— (=v, u, 0)=RV -0k, 27
12 f2) 7
where the vorticity vector w = (£, £, §,) is defined as
w=V-u. (28)

To calculate velocity from vorticity, it is convenient
to introduce a vector potential y = (y,, v,, ¥,), which may
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be looked upon as the three-dimensional counterpart of
two-dimensional stream function. The vector potential is
defined by

u=V-y. (29)

It easy to show the existence of such a vector potential

for a solenoidal vector field (V-u=0). Such a vector poten-
tial can be required to be solenoidal, i.e.,

V- =0. (30)
Substituting (29) in (28) and using (30) yields
Viy=-o. €3))

The set of equations (6), (27), (29) and (31) with appro-
priate boundary conditions were found to be a convenient
form for numerical computations. The discretised form
of these equations using second-order finite difference
scheme can be written as

n+1 n+1
(6)2(+6;2/+5§)wli,j,k:_§1i,j,k’ (32)
n+1 n+1
(6)2(+6)2/+6§)1/)2i,j,k=_§2i,1‘,k’ (33)
n+1 n+1
(6)2(+6)2/+6§)w3i,j,k:_§3i,j,k’ (34)
W =0 = O (35)
n+1 n+1 n+1
Viik™ 6zw1i,1’,k - 6xw3i,1‘,k ’ (36)
n+1 n+1 n+1
U™ 6xlp2i,j,k - 6yw1i,1‘,k’ (37)
1 n+1 f/ n+1 n+1
7§1ﬁk =f_k2vijk + RHkéyeijk ’ (38)
k k
1 n+1 f/ n+1 n+1
—£ ij :__kui‘ -R éxei' (39)
fk 2ijk sz ijk k ijk
£ =0, (40)
n+1 _pn
ijk ijk n n n n n n
}A—t} +up o 0% + vi].kéyHi].k +W 0,00
= ngw;k - Qazog +(g0% + Cé; +0? )ng, i,j,k=1,.,m-1

(41)
where 62, 5i, 02 are the second-order central differ-
ence operators and o, 6y, o0, are the first-order central
difference operators. Here, 5'3';; and 03; ' are computed
explicitly from (40) and (41), respectively, whereas
Ve Wan o Waiio W > Vi > Wi &L, and £
computed from (32 to 39) implicitly using the Gauss—
Seidel iteration method. The temperature on the bound-
ary can be computed explicitly using (7) and (8). However,
a second-order implicit technique has been used to evalu-
ate the vorticity vector at the boundary form. To enforce
the vorticity definition at the wall, we used a Taylor’s

are
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series expansion to compute the vorticity values at the
boundaries.

To solve (32)-(39) using Gauss—Seidel iteration
method, in the first time level we give an initial values to
the solutions. Then, we use these initial values to compute
new values of solution, and the programme will continue
in this process until satisfying the convergence criteria
which is
w;: |’|wg’ij'(k+l_

n, k n,k+1
Vi |’|Wijk -

n, k n,k+1
wli}' |’|w2ijk -
| I n,k+1
’ vijk

l<10™".

n,k+1

e =madlvi -
n,k+1 n, k
| e Ui

n, k+1 n, k
|§z ik _Ez ik

k

n,
ws ijk l,

n, k n,k+1 n, k
|’|§1ijk _Elijk )

Wijk

where the indices k and k + 1 refer to the solutions in itera-
tion steps k and k + 1, respectively. The values of the solu-
tions in the last time level n will be the initial values to the
next time level n + 1.

Here, we should mention that our scheme is flexible
for various R values and, thus, the grid resolution has
been selected according to the Ra values. We decrease the
values of Ax, Ay, and Az as the value of R increases. For
our problem, we find that Ax = Ay = Az = 0.02 is enough to
give us accurate results.

7 Numerical Results

In this section, Ra,, is the critical Rayleigh number for
linear instability theory and Ra, is the critical Rayleigh
number for the global nonlinear stability theory. The cor-
responding critical wave numbers of the linear instabil-
ity and the global nonlinear stability will be denoted by
a, and a,, respectively. In Table 1, we present numerical
results of the linear instability and nonlinear stability
analyses. The dimensions of the box, which are calcu-
lated according to the critical wave number, are shown in
Table 1. We assume that the perturbation fields (u, 6, P)
are periodic in the x and y directions and denoted by

Q=[0, 4m/a ] x[0, 4n/\/§ay] x[0, 1] to be the perio-

dicity cell, where a,_ and a, are the wave numbers in
the x and y directions, respectively; a_and a, are evalu-
ated according to the critical wave numbers a, where
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a =a +a§, and where Lx = 47/a_and Ly=47t/\/§ay.
These values of Lx and Ly are consistent with the hexago-
nal pattern of convection.

For numerical solutions of three dimensions prob-
lems, we used At = 5x107° and Ax = Ay = Az = 0.02. The
convergence criteria has been selected to make sure that
the solutions arrive to a steady state. The convergence cri-
teria are

n+1 n n+1 n n+1
zijk_wzijkl’ W}s ijk_w3ijk|’ |uijk —Uu

n+1 n n+1 n n+1 n
=& b 18 =&l 105 =0

n
k Wijk |’ | g1 ijk 1ijk 2 ijk 2 ijk ijk ijk

n
ijlc 12

1}

n+1
7, :1111]?113({|w1 ijk _lp;'ijk 1y

n+1

V|, W,

n+1
| 4 ijk ij

ijk
and we select 7,=10°. The programme will continue in
computing the results of the temperature, velocity, vorticity,
and potential vector for new time levels until the results
stratify the convergence criteria, otherwise, we stop the
programme after 80,000 time levels, i.e., at the time 7=4.
In order to display the numerical results clearly, the
temperature, velocity, and vorticity contours are plotted in
Figures 6-9 at Ra=421 and Ra=1688. In these figures, the
temperature, velocity, and vorticity contours are presented
at the time level 7 =4 as the possibility of arriving the solu-
tion to any steady state impossible. Figures 6-9 show the
contours of u, v, w, and 0, respectively, at z=0.05, z=0.5
andz=0.95ina, b and c for Q=-12,4=0.5,{=5and e =1
and Ra=421. Also, Figures 6-9 show the contours of u, v,
w, and 0, respectively, at z=0.05, z=0.5and z=0.95in ¢, d
and e for Q=12,4,=0.5,{=5and e=1and Ra=1688.
Figures 6-9 plot the contours of u, v, w and 0 respec-
tively, at 4, =0.5, {=5 and =1 for two cases: Casel
Q=- 12, =4 and Ra=421, case2 Q=12, t=1.159 and
Ra=1688. Figure 6 plots the contour of perturbation
velocity u for three positions z=0.05, z=0.95, and z=0.95.
For negative throughflow Q=- 12, the effect of negative
direction flow from permeability surface (bottom surface)
is clearly in Figure 6a—c, where the flow direction inverse
the buoyancy effect (the buoyancy flow is up where the
negative throughflow is down), this effect represents by
multi-rotating cells have lower intensity than the positive
direction of throughflow (Fig. 6d—f). These cells in a, b,
and c are a sequence in sign of rotating (counter clock-
wise CCW-positive sign and clockwise CW-negative sign),
where the maximum values of intensity u at the positions

Table 1: Critical Rayleigh and wavenumbers Ra,, Ra,, a’, a atA =0.5,{=5and¢=1.
Q Ra, a’ Ra, a A
-12 430.7346813 33.16928351 288.6563395 12.73121491 1.680574242

12 1778.657379 18.58281978

452.4411301 24.72135955 1.701997193
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Figure 8: Contour plotof wforAd =0.5,5=5ande=1.1In (a), (b), () Q=-12,7=4 and Ra=421. In (d), (e), () Q=12, 7=1.159 and Ra=1688.

Figure 9: Contour plot of 6 for4,=0.5,{=5and e=1.1In (a), (b), () Q=-12,7=4 and Ra=421. In (d), (e), (f) Q=12, 7=1.159 and Ra=1688.
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z=0.05, 0.5 and 0.95 are 1.1,0.15 and 0.021, respectively.
The cells in d, e, and f are more restricted and have value
greater than a, b, and c, because the effect of the through-
flow add to the effect of buoyancy (same direction to up).
The maximum values of intensity u at Q=12 and the posi-
tions z=0.05, 0.5 and 0.95 are 66,13 and 49, respectively.

Figure 7 indicates the contours of perturbation veloc-
ity vat Q=- 12 (Fig. 7a—c) and Q=12 (Fig. 7d—f). It can be
seen that the behaviour of velocity v is similar to veloc-
ity u except the cells are extended horizontally, and the
sequence of the sign becomes row of cells. Also, the inten-
sity of velocity v for Q=12 (d, e, and f) is greater than Q=—
12 a, b, and c, and the reason as mentioned in the previous
section. The maximum magnitudes of v are 1.4,0.19 and
0.028 for a, b, and c, respectively, and 68, 12 and 43 for d,
e, and f, respectively.

The distribution of velocity w is presented in Figure 8
for Q=- 12 (Fig. 8a—c) and Q=12 (Fig. 8d-f). This figure
shows there are multiple cells for Q=- 12 and approxi-
mately four cells for Q=12. The size of cells for Q=12
(Fig. 8d-f) are reduced towards the upper plane, where
the cell at z=0.95 is smallest. The magnitude of veloc-
ity w becomes maximum (w__ =58) at z=0.95 for Q=12,
because the effect of density difference (T,>T,) to up
and the throughflow to up (the permeability effect to up)
which make the velocity maximum.

DE GRUYTER

Finally, the contour of perturbation temperature 6
is cleared at Figure 9 at z=0.05,0.5 and 0.95. The value of
exact temperature is equal to mean temperature and per-
turbation temperature 0; therefore, the minus sign of 6
means reduced in exact temperature. The number of cells
approximately four cells for Q=12 whereas for Q=- 12 there
are many cells with different signs. The value 6 is reduced
towards the upper surface (0 =- 8.1,— 14 and — 16 at z=0.05,
0.5 and 0.95 respectively), this is returned to boundary con-
ditions where T=T, atz=0and T=T,atz=d (T,>T,).

In Figures 10 and 11, we show a summary of the
numerical results where we introduce the maximum and
minimum values of velocities vs. time. The solid, dash,
dot, dash dot, dash dot dot, and short dash lines represent
u ,u v v ,w_,andw_,respectively. In Figure 10,
we select Q=- 12, /11:0.5, =5, and ¢=1, then accord-
ing to the stability analysis, we have Ra, =430.7346813
and Ra,=288.6563395. Here, it clear that we have very
large subcritical stability region, as there is a big differ-
ence between the critical Rayleigh numbers of linear and
nonlinear theories. From Figure 10, for Ra=400, we can
see that the solutions satisfy the convergence criterion
at 7=0.8068 and, thus, the solution arrives to the basic
steady state within a short time. However, for Ra=410,
the program needs 7 =1.32115, to arrive to the basic steady
state, which is expected, as the required time to arrive at
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-1.0 . . . 15 . . B
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T T
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Figure 10: The numerical results for different Ra. We present the results for the maximum and minimum values of velocities vs. time for

Q=-12,1,=0.5,¢=5and e =1, Ra, = 430.7346813, Ra, = 288.6563395.
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Figure 11: The numerical results for different Ra. We present the results for the maximum and minimum values of velocities vs. time for

Q=12,4,=0.5,(=5and e=1, Ra,=1778.657379, Ra, = 452.4411301.

a steady state increases with increasing Ra values until
the solution does not arrive at any steady state. Moreover,
for Ra=420, the solutions do not satisfy the convergence
criterion, and the program stops at t=4, but it is very
clear that the solutions can achieve the convergence cri-
terion the next times. For Ra=421 and Ra=422, the solu-
tions could not arrive at any steady state and the program
did not progress beyond 7=4 and we let the programme
run for a significant period to test the convection’s long-
time behaviour. We see that the values of the velocities
increase at =8, and then decrease at =12 and continue
in this oscillation. For Ra=421 and Ra =422, the convec-
tion behaviour oscillated and access to a stable state was
impossible. Finally, for Ra =424, the solutions arrive at a
steady state early at r=2.9461, but this steady state is com-
pletely different from the basic one. For Ra=424, here,
according to the numerical results, the linear instability
threshold is very close to the actual threshold, i.e., the
solutions arrive to the basic steady state before the linear
instability threshold.

In Figure 11, critical Rayleigh numbers for Q=12,
2,=0.5, {=5 and £=1 were computed, (9)-(10) and (19)-
(20) were solved, leading to the following stability results:
Ra, =1778.657379, Ra,=452.4411301. In this case, the dif-
ference between the critical Rayleigh numbers of linear

and nonlinear theories is very large. Figure 11 shows
that for Ra=1680, Ra=1682, Ra=1684, Ra=1686, and
Ra=1887, the solutions quickly go to the basic steady
state and satisfy the convergence criteria at 7=1.53815,
7=1.59605, T=1.6704, 7=1.7892, and 7=1.93085, respec-
tively. Moreover, for Ra=1888, the solutions arrive at a
steady state and the program stops at r =1.159. For Ra=the
convection behaviour was very oscillated, and the access
to the basic steady state was impossible. The results of
Figure 11 explains that the stability behaviour is similar to
the stability behaviour of Figure 10, as we found that the
linear instability threshold is close to the actual thresh-
old. However, when Q is negative, it is clear that the actual
threshold is very close to the linear instability threshold,
whereas, for positive Q the actual threshold moves slightly
from linear instability threshold. This pattern of results is
similar to the behaviour of throughflow in a fluid layer
(see [26]).

8 Conclusions

In this article we have explored a convection in an ani-
sotropy and symmetry in porous media with a constant
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throughflow. Regions of very large subcritical instabili-
ties, i.e., where agreement between the linear instability
thresholds and nonlinear stability thresholds is poor, are
studied by solving for the full three-dimensional system.
Numerically, we find that the convection has three differ-
ent patterns. The first picture, where Ra between Ra,, and
Ra,, is that the solutions perturbations vanish, sending
the solution back to the steady state, before the linear
thresholds are reached. The required time to arrive at the
steady state increases as the value of Ra increases. The
second picture, where Ra is close to Ra, is that solutions
can tend to a steady state which is different to the basic
steady state v= (0, O, Tf). In the third picture, where Ra
is very close or Ra>Ra,, the solutions do not arrive at any
steady state and oscillate.
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