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Abstract: In this article, we discuss the flow and heat
transfer of nanofluids over a rotating porous disk with
velocity slip and temperature jump. Three types of nano-
particles — Cu, ALO,, and CuO - are considered with water
as the base fluid. The nonlinear governing equations are
reduced into ordinary differential equations by Von Kar-
man transformations and solved using homotopy analysis
method (HAM), which is verified in good agreement with
numerical ones. The effects of involved parameters such
as porous parametet, velocity slip, temperature jump, as
well as the types of nanofluids on velocity and tempera-
ture fields are presented graphically and analysed.
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1 Introduction

As one of the classical problems in fluid mechanics, the
fluid flow and heat transfer over a rotating disk have been
studied by many researchers in theoretical disciplines.
Because of numerous practical applications in many
important areas, such as computer storage devices, elec-
tronic devices, and rotating machinery, such flow is also
significant in the engineering processes. Von Karman [1]
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firstly investigated the hydrodynamic flow over an infi-
nite rotating disk in 1921. In his study, a famous similar-
ity transformation was proposed to reduce the governing
partial differential equations into ordinary differential
equations. Cochran [2] solved the steady hydrodynamic
problem formulated by Von Karman, and the asymptotic
solution was established. Benton [3] considered the non-
steady flow problem on the basis of Cochran’s research.
Various physical features were afterwards explored [4-6].
In recent years, Shevchuk [7] studied a series of prob-
lems of convective heat and mass transfer in rotating-disk
systems. Griffiths et al. [8] investigated the neutral curve
for stationary disturbances in rotating disk flow for power-
law fluids. Asghar et al. [9] considered the Lie group anal-
ysis of flow and heat transfer over a stretching rotating
disk. Turkyilmazoglu [10] investigated the Bodewadt flow
and heat transfer over a stretching stationary disk.

Attia [11] considered the steady flow and heat trans-
fer over a rotating disk in porous medium, the effects of
the porosity of the medium on velocity, and temperature
fields. Rashidi et al. [12] presented the approximate ana-
Iytical solutions by using the homotopy anaslysis method.

In practical applications of science and engineering,
partial slip between the fluid and the moving surface may
exist, for example, in the situation when the fluid is par-
ticulate such as with emulsions, suspensions, and rare-
fied gas. In these cases, the proper boundary condition is
the partial slip. At the same time, the presence of velocity
slip on the wall may cause temperature jump, which must
be taken into consideration in practical applications in
microscopic scale [13]. The linear slip boundary condition
was first proposed by Navier [14]. Recently, Rashidi et al.
[15] investigated the slip flow due to a rotating infinite
disk with variable properties of the fluid. Latif [16] consid-
ered the steady laminar flow and heat transfer generated
by two infinite parallel disks in the presence of velocity
slip and temperature jump. Turkyilmazoglu and Senel [17]
studied the traditional Von Karman swirling flow problem
where the rotating disk surface admits partial slip with a
uniform suction or injection.

The term “nanofluids” was introduced by Choi [18]
in 1995 at the ASME Winter Annual Meeting. A nanofluid
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is a colloidal mixture made by adding nanoparticles
(<100 nm) in a base fluid which can considerably improve
the heat transfer performance of the fluid. A list of review
papers on nanofluids are given in [19-23]. Sheikholeslami
[24-29] investigated a series of nanofluid flow and heat
transfer problems. Bachok et al. [30] studied the steady
flow of an incompressible viscous fluid over a rotating
disk in a nanofluid. Rashidi et al. [31] considered the elec-
trically conducting incompressible nanofluid flowing over
a porous rotating disk with an externally applied uniform
vertical magnetic field. Turkyilmazoglu [32] investigated
the flow and heat transfer characteristics due to a rotating
disk immersed in different nanofluids.

The homotopy analysis method (HAM) introduced by
Liao in 1992 [33-38], is an effective mathematical method
for solving nonlinear problems. Many studies have con-
firmed the effectiveness of this method. In this work, we
obtain the analytical solutions by using the HAM.

The study for the flow and heat transfer of a nanofluid
over a rotating porous disk, so far in our opinion, is inad-
equate. Especially, the partial velocity slip or temperature
jump on the wall may exist, as mentioned, which must
be taken into consideration in practical applications in
microscopic scale. In this article we investigate the flow
and heat transfer of a nanofluid over a rotating porous
disk with three types of nanoparticles: Cu, Cu0, and ALO..
The effects of porous parameter, velocity slip, temperature
jump, and the types of nanofluid on velocity and tempera-
ture fields are also analysed.

2 Formulation of the Problem

We consider here an incompressible, steady, and axially
symmetric nanofluid flow over a porous rotating disk. The
disk is placed at z=0 and rotates with an angular veloc-
ity Q through a porous medium, where the Darcy model
is assumed [39]. The physical model of the rotating disk
is shown in Figure 1 [30]. The governing equations of the
nanofluid motion and energy in cylindrical coordinates
are

du_ u. ow_ )
ar r odz
ou v du 10dp My(du 1ou u du
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Figure 1: Physical model of rotating disk.
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where o, is the tangential momentum accommodation
coefficient, o, is the thermal accommodation coefficient,
A, is the molecular mean free path, and § is the specific
heat ratio, T is the temperature of the nanofluid, and T
denotes the temperature of the ambient nanofluid, K is
the Darcy permeability, the pressure is P, and the pressure
of the ambient nanofluid is P_. Moreover, 7 and a, are
the dynamic viscosity and thermal diffusivity of the nano-
fluid, respectively, and p , is the density of the nanofluid.
These are defined as
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in which, the nanoparticle volume fraction is denoted by
¢, 1, is the viscosity of the fluid fraction, and p,and p are
the densities of the fluid and of the solid fractions, respec-
tively. The heat capacitance of the nanofluid is given by
(pCp)nf, and knf stands for the effective thermal conductiv-
ity of the nanofluid approximated by the model given by
Oztop and Abu-Nada [40], which is restricted to spheri-
cal nanoparticles only. The thermophysical properties of
water and different nanoparticles are given in Table 1 [40].

3 Nonlinear Boundary Value
Problem

In terms of the Von Karman’s transformations,
n:(Q/vf)l/zz, u=QrF(y), v=QrG(n), w:(Qvf)”zH(n),
p-p.=2up(n), 6(n) =(T-T_)/(T, —Tee).
)
Substituting (8) in (1)-(5) and using (9), we can obtain
the following ordinary differential equations:

H' +2F=0 (10)

— ! F”—HF' —F*+G*~ MF=0
(1-p)*(1=p+ep,/p,)

11

— ! G”-HG' -2FG-MG=0 (12)
(1-p)>(1-p+pp,/p,)

1 K,/K,

6” —HO' =0
Pr(pc,), /(pc,),

(13)

Table 1: Thermophysical properties of water and different nano-
particles [40].

Physical Pure Cu Cu0 ALO,
properties water

C,(/kgk) 4179 385 531.8 765
p (kg/m3) 997.1 8933 6320 3970
k (W/mk) 0.613 400 76.5 40
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The transformed boundary conditions become
F(0)=yF’(0), G(0) =1+yG’(0), H(0) =0, 6(0)
=1+06’(0)
F(oo) :G(oo) :9(00) :P(oo) =0

(14)

where  M=pu, /KQp,  is the

y=2—ou/ou/104/£2/ v, s the velocity slip parameter,

0=2-0,/0,(2B/B+1)4, /Pr,/Q/vf is the temperature
jump parameter and Pr is the Prandtl number.

The skin friction coefficient C,and the Nusselt number
Nu are physical quantities which are introduced as

2 2
_4/rwr+rw¢

T opan?’

porosity  parameter,

rq
Nu= W s
kf(Tw -T)

(15)

where 7 and 7, , are the radial and transversal shear
stress at the surface of the disk, respectively, and g is the
surface heat flux, which are defined as

1
Twrz[‘l'tnf(uz+w¢)]z:0’ Tw¢=|:'unf(vz+_w¢)} ’

"k (e)
qwz_knf(Tz)z:O'

Substituting (8) in (16) and using (15), we obtain

JF(0)>+G(0)? k
ReV?C =Y —~  — °  Re"’Nu=--2¢(0).

(17)
f ( 1— (p)z.s kf

Re=Qr}fv ,is the local Reynolds number.

4 HAM Solution

In this section, the HAM [33-38] is used for solving the
nonlinear boundary value (10)—(14). The initial approxi-
mations are selected as

E(7)=0,G,(n)=e"/(1+y) (18)

H (n7)=0,0,(n)=e"/(1+9) (19)

The auxiliary linear operators are chosen as follows,
respectively

¢ [H=H’, (,[FI=F"+F, (][G]=G"+G,

20
(,[0]=0"+¢ 20)
Satisfying the following properties
t,[c,]=0, ¢,[c,e"+c,]=0, ¢ [ce”+c.]=0,
t,lce"+c,1=0 (21
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where c, i=1-7, are the arbitrary constants. The nonlinear
operators are given by

oH(7;q)

N = +2F(n;q) (22)

o

2 .
szcf%:;m—F(n;q)2+G(77;q)2

AF(n: (23)
—H(n;q)%—MF(n;q)
"

9*G(n; JG(n;
N3:q%—ﬂnm)%—2F(77;q)G(77;q)
- MG(7;9) (24)

C, 0°0(1;9) 20(n;q)
N == 22D [(p,q) T
TR oy (n:9) an (25)

where ge [0, 1] is the embedding parameter. The zero-
order deformation equations are constructed as the fol-
lowing forms

(1-¢)¢,[H(n;q) - H,(n)] =qh,H, ()N, [F(n;q),

G(n;q), H(n;q)] (26)
(1-q)0,[F(n;q) - E,(n)] =qh.H,(n)N,[F(1;q),
G(n;q), H(n;q)] @n
(1-q)0,1G(n;q) - G,(n)] =qh H (n)N,[F(n;q),
G(n;q), H(n;q)] (28)
(1-q)¢,[6(n;q) —60,(n)] =qh,H ()N, [F(n;q),
G(n;9), H(n3q), 0(n;q)] 29)
with the boundary conditions
F(r;9)| :027% . Glpq)| :O=1+Vw
Z o0 7 n o0
H(n;q)\ﬂ:o=0, O(W;q)\n:o=l+y%7z;q) (30)
F(niq),__=0, 6(:q)| =0, G(msq) =0 (1)

where h,, h, h, and h, denote the auxiliary nonzero
parameters and H,(n), H ), H,(y), and H/(y) are the
auxiliary functions.

Expanding H(7:;q), F(;9), G(p;q), and 6(y;q) into
Taylor series at g=0, as

H(nsq)=H,(p)+ S H, ()", F(p:9)=F,(1)

m=1

- 32
+ Y F (n)q", 2
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Gns@) =G, () + .G, a", 00n:a) =6,()+ 3.0, ()a",

m=1 m=1

(33)
where
H ()= 0"H(1;q) F( )_ia'"F(n;q)
m | a m ’ m _m| a m ’
q q=0 q 7=0
(34)
1 9"G(1;q) 1 8 0(n;q)
G =22 0 =227
m(n) m! aqm o ( ) aqm 1o (35)

Now, we derive the high-order deformation equations

as
¢ [H, (n) =y, H,  (nl=hH(n)R, (n) (36)
LIE (n) =y, E, (Nl =hH, ()R, (1) (37)
0,16, (00 - x,G,_ (Ml =hH, (R, (1) (38)
0,10,(n)=x,0,_.(mMl=hH,(nR, (1) (39)
subject to the following boundary conditions
F (0)=yF/(0), G,(0)=yG(0),0, (0) =060 (0),
H,(0)=0 (40)
F ()=0,G, (>)=0,0 (>)=0 (41)
where
R,(n)=H,_ (n)+2F,_ (n) (42)

m-1

R, (m=C.E (n) =3 F(DE,_,_,(n)

k=0

£ 6.6, ()= S H(DE_, (1) ~MF,_(n)

(43)
R3m(77) CfG” {ZH (’7 m-1- k )
nei (44)
+2) ﬂ(")Gmlk(n)l—MGml(n)
R, ()= "9” () = ZH mo,_,_.(n) (45)
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_ 0 m<1
nTN1 m22 (46)
Finally, the auxiliary functions are chosen as
H.(n)=H,/(n)=e",H,(n)=H,(n)=1 (47)

5 Results and Discussion

The nonlinear ordinary differential Equations (10)—(13)
subjected to the boundary conditions (14) are solved ana-
lytically by HAM [33-38]. Liao [33-38] pointed out that the
convergence of the HAM solutions strongly depend upon
the auxiliary parameter h. By means of the h-curve, it is
straightforward to choose a proper value of h to ensure the
convergence of the solution series.

The h-curves of H”(0), F’(0), G’(0) and 6’(0) obtained
by 10% approximation are presented in Figure 2. More-
over, the reliability of analytical results are verified with
numerical ones obtained by finite difference technique
[41, 42] and the results published in literatures [31] and
[32], which are also shown in Table 2.

Figure 2: The h-curves of H”(0), F'(0), G’(0) and 6’(0) obtained by
the 10™-order approximation of the HAM solution for Cu-water nano-
fluid, with ¢=0.1,7=0,0=0, and M=1.

Table 2: Comparison of results for F(0), —G’(0), —H(eo) and -6’(0),
whenp=0,M=0,y=0,0=0and Pr=6.2.

Rashidi Turkyilmazoglu Present

etal. [31] [32]
F(0) 0.510186 0.51023262 0.51022941
-G'(0) 0.61589 0.61592201 0.61591990
—H(o0) 0.88447411 0.88446912
-6'(0) 0.93387794 0.93387285
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Figure 3: Effects of y on radial velocity profiles F(y) for Cu-water
nanofluid with ¢=0.1, Pr=6.2 and M=0.5.
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Figure 4: Effects of y on tangential velocity profiles G() for
Cu-water nanofluid with ¢ =0.1, Pr=6.2 and M=0.5.

o HAM solution
— Numerical solution

1 7=0,0.5,1,5

0.4 . . ; s

Figure 5: Effects of y on axial velocity profiles H(y) for Cu-water
nanofluid with ¢ =0.1, Pr=6.2 and M=0.5.
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5.1 Effects of Velocity Slip Parameter

Figure 3 shows the effects of velocity slip parameter y on
the radial velocity profiles distribution. It indicates that
the slip parameter has a significant effect on radial veloc-
ity distributions, there is a peak for the radial velocity pro-
files (maximum) which decrease rapidly and moves to the
disk as the slip parameter y increase.

Figures 4 and 5 present the variation of the tangential
and axial velocity, respectively. The results indicate that,
for different values of velocity slip parameter y, the tan-
gential velocity decreases but the axial velocity (negative)
increases with the increase in y.

In addition, Figures 3-5 present a comparison of the
analytical results obtained by homotopy analysis method
and the numerical solutions, the results are in a good
agreement.

s 6=0,0.5,1,1.5
0.4} -
0.2} ]
0.0k L L L
0 1 2 4 5 6

Figure 6: Effects of & on temperature profiles 6(;) for Cu-water
nanofluid, with ¢ =0.1, Pr=6.2 and M=0.5.

M=0,0.5,1,2

00sF |/

0.00

Figure 7: Effects of M on radial velocity profiles F(;y) for Cu-water
nanofluid, with ¢ =0.1, Pr=6.2 and y=0.

DE GRUYTER

5.2 Effects of Temperature Jump Parameter

The profiles of temperature distribution for various jump
parameter ¢ are shown in Figure 6, the results reveal that
the surface temperature and thickness of the thermal
boundary layer decrease with the increasing values of o.

The temperature jump parameter has also special
effects on the local Nusselt number, it can be seen from
Figure 12 that the local Nusselt number decreases with the
increase in temperature jump parameter J.

5.3 Effects of Porosity Parameter

Figures 7-10 demonstrate the effect of porosity parameter
M on the velocity components in radial, tangential, and
axial directions and temperature distribution. It is seen
that the velocity profiles in the radial, tangential, and
axial directions decrease with the increasing M, whereas
the increasing M increases the thermal boundary layer
thickness.

5.4 Effects of Types of Nanoparticles

The analytical results for the skin friction coefficient Re'”C,
and the local Nusselt number Re~"? Nu, for a wide range
of the nanoparticle volume fraction and three different
types of nanoparticles in the presence of velocity slip and
temperature jump are presented in Figures 11 and 12. It is
found that the values of the skin friction coefficient and
the local Nusselt number are both increase nearly linearly
with the nanoparticle volume fraction. The Cu-nanofluid
has the largest skin friction coefficient and heat transfer

0.8f I ]

0.6f o
=
© M=0,0.5,1,2
0.4r T 1
0.2} E
ool L
0 1 2 3 4 5 6
n

Figure 8: Effects of M on tangential velocity profiles G(y) for
Cu-water nanofluid, with ¢ =0.1, Pr=6.2 and y=0.
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Figure 9: Effects of M on axial velocity profiles H(y) for Cu-water
nanofluid, with ¢ =0.1, Pr=6.2 and y=0.

007)

Figure 10: Effects of M on temperature profiles 6() for Cu-water
nanofluid, with ¢=0.1, Pr=6.2 and 6 =0.

Re"Cf

0.0 0.1 0.2

Figure 11: Variation of the skin friction coefficient with ¢ for
different nanoparticles and velocity slip, with Pr=6.2 and M=0.5.
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Figure 12: Variation of the Nusselt number with ¢ for different
nanoparticles and temperature jump, with Pr=6.2 and M=0.5.

rate due to its largest thermal conductivity value. On the
contrary, ALO,-nanofluid has the lowest ones. Figure 11
indicates that the increase of velocity slip parameter y
leads to reduce the values of the skin friction coefficient.
It also can be seen from Figure 12 that the local Nusselt
number decreases with the increasing temperature jump
parameter o.

6 Conclusions

In this article we investigate the flow and heat transfer
of nanofluid over a rotating porous disk with three types
of nanoparticles: Cu, CuO, and ALO,. The nonlinear gov-
erning equations are transformed into ordinary differen-
tial equations by Von Karman transformations and then
solved by using the homotopy analysis method (HAM).
The effects of physical parameters such as porosity
parameter, velocity slip, temperature jump, and the types
of nanofluid on velocity and temperature fields transport
characteristics are analysed.
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