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Abstract: In this article, we discuss the flow and heat 
transfer of nanofluids over a rotating porous disk with 
velocity slip and temperature jump. Three types of nano-
particles – Cu, Al2O3, and CuO – are considered with water 
as the base fluid. The nonlinear governing equations are 
reduced into ordinary differential equations by Von Kar-
man transformations and solved using homotopy analysis 
method (HAM), which is verified in good agreement with 
numerical ones. The effects of involved parameters such 
as porous parameter, velocity slip, temperature jump, as 
well as the types of nanofluids on velocity and tempera-
ture fields are presented graphically and analysed.
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1  Introduction
As one of the classical problems in fluid mechanics, the 
fluid flow and heat transfer over a rotating disk have been 
studied by many researchers in theoretical disciplines. 
Because of numerous practical applications in many 
important areas, such as computer storage devices, elec-
tronic devices, and rotating machinery, such flow is also 
significant in the engineering processes. Von Karman [1] 

firstly investigated the hydrodynamic flow over an infi-
nite rotating disk in 1921. In his study, a famous similar-
ity transformation was proposed to reduce the governing 
partial differential equations into ordinary differential 
equations. Cochran [2] solved the steady hydrodynamic 
problem formulated by Von Karman, and the asymptotic 
solution was established. Benton [3] considered the non-
steady flow problem on the basis of Cochran’s research. 
Various physical features were afterwards explored [4–6]. 
In recent years, Shevchuk [7] studied a series of prob-
lems of convective heat and mass transfer in rotating-disk 
systems. Griffiths et al. [8] investigated the neutral curve 
for stationary disturbances in rotating disk flow for power-
law fluids. Asghar et al. [9] considered the Lie group anal-
ysis of flow and heat transfer over a stretching rotating 
disk. Turkyilmazoglu [10] investigated the Bödewadt flow 
and heat transfer over a stretching stationary disk.

Attia [11] considered the steady flow and heat trans-
fer over a rotating disk in porous medium, the effects of 
the porosity of the medium on velocity, and temperature 
fields. Rashidi et al. [12] presented the approximate ana-
lytical solutions by using the homotopy anaslysis method.

In practical applications of science and engineering, 
partial slip between the fluid and the moving surface may 
exist, for example, in the situation when the fluid is par-
ticulate such as with emulsions, suspensions, and rare-
fied gas. In these cases, the proper boundary condition is 
the partial slip. At the same time, the presence of velocity 
slip on the wall may cause temperature jump, which must 
be taken into consideration in practical applications in 
microscopic scale [13]. The linear slip boundary condition 
was first proposed by Navier [14]. Recently, Rashidi et al. 
[15] investigated the slip flow due to a rotating infinite 
disk with variable properties of the fluid. Latif [16] consid-
ered the steady laminar flow and heat transfer generated 
by two infinite parallel disks in the presence of velocity 
slip and temperature jump. Turkyilmazoglu and Senel [17] 
studied the traditional Von Karman swirling flow problem 
where the rotating disk surface admits partial slip with a 
uniform suction or injection.

The term “nanofluids” was introduced by Choi [18] 
in 1995 at the ASME Winter Annual Meeting. A nanofluid 
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is a colloidal mixture made by adding nanoparticles 
(<100 nm) in a base fluid which can considerably improve 
the heat transfer performance of the fluid. A list of review 
papers on nanofluids are given in [19–23]. Sheikholeslami 
[24–29] investigated a series of nanofluid flow and heat 
transfer problems. Bachok et  al. [30] studied the steady 
flow of an incompressible viscous fluid over a rotating 
disk in a nanofluid. Rashidi et al. [31] considered the elec-
trically conducting incompressible nanofluid flowing over 
a porous rotating disk with an externally applied uniform 
vertical magnetic field. Turkyilmazoglu [32] investigated 
the flow and heat transfer characteristics due to a rotating 
disk immersed in different nanofluids.

The homotopy analysis method (HAM) introduced by 
Liao in 1992 [33–38], is an effective mathematical method 
for solving nonlinear problems. Many studies have con-
firmed the effectiveness of this method. In this work, we 
obtain the analytical solutions by using the HAM.

The study for the flow and heat transfer of a nanofluid 
over a rotating porous disk, so far in our opinion, is inad-
equate. Especially, the partial velocity slip or temperature 
jump on the wall may exist, as mentioned, which must 
be taken into consideration in practical applications in 
microscopic scale. In this article we investigate the flow 
and heat transfer of a nanofluid over a rotating porous 
disk with three types of nanoparticles: Cu, CuO, and Al2O3. 
The effects of porous parameter, velocity slip, temperature 
jump, and the types of nanofluid on velocity and tempera-
ture fields are also analysed.

2  Formulation of the Problem
We consider here an incompressible, steady, and axially 
symmetric nanofluid flow over a porous rotating disk. The 
disk is placed at z = 0 and rotates with an angular veloc-
ity Ω through a porous medium, where the Darcy model 
is assumed [39]. The physical model of the rotating disk 
is shown in Figure 1 [30]. The governing equations of the 
nanofluid motion and energy in cylindrical coordinates 
are
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Figure 1: Physical model of rotating disk.
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The slip boundary conditions are given by
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where σu is the tangential momentum accommodation 
coefficient, σT is the thermal accommodation coefficient, 
λ0 is the molecular mean free path, and β is the specific 
heat ratio, T is the temperature of the nanofluid, and T

∞
 

denotes the temperature of the ambient nanofluid, K is 
the Darcy permeability, the pressure is P, and the pressure 
of the ambient nanofluid is P

∞
. Moreover, μnf and αnf are 

the dynamic viscosity and thermal diffusivity of the nano-
fluid, respectively, and ρnf is the density of the nanofluid. 
These are defined as
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in which, the nanoparticle volume fraction is denoted by 
ϕ, μf is the viscosity of the fluid fraction, and ρf and ρs are 
the densities of the fluid and of the solid fractions, respec-
tively. The heat capacitance of the nanofluid is given by 
(ρCp)nf, and knf stands for the effective thermal conductiv-
ity of the nanofluid approximated by the model given by 
Oztop and Abu-Nada [40], which is restricted to spheri-
cal nanoparticles only. The thermophysical properties of 
water and different nanoparticles are given in Table 1 [40].

3  �Nonlinear Boundary Value 
Problem

In terms of the Von Karman’s transformations,
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Substituting (8) in (1)–(5) and using (9), we can obtain 
the following ordinary differential equations:

	 2 0H F+ =′ � (10)

	

2 2
2.5

1 0
( 1 ) ( 1 / )s f

F HF F G MF
ϕ ϕ ϕρ ρ

 
− − + − =′′ ′ 

− − + 
� (11)

	
2.5

1 2 0
( 1 ) ( 1 / )s f

G HG FG MG
ϕ ϕ ϕρ ρ

 
− − − =′′ ′ 

− − +  �
(12)

	

/1 0
Pr ( ) /( )

nf f

p nf p f

K K
H

c c
θ θ

ρ ρ
− =′′ ′

�
(13)

Table 1: Thermophysical properties of water and different nano
particles [40].

Physical 
properties

  Pure 
water

  Cu   CuO   Al2O3

Cp (J/kg k)   4179   385   531.8   765
ρ (kg/m3)   997.1   8933   6320   3970
k (W/mk)   0.613   400   76.5   40

The transformed boundary conditions become
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where M = μnf/KΩρnf is the porosity parameter, 

02 / /u u fγ σ σ λ ν= − Ω  is the velocity slip parameter, 

02 / ( 2 / 1) / Pr /T T fδ σ σ β β λ ν= − + Ω  is the temperature 
jump parameter and Pr is the Prandtl number.

The skin friction coefficient Cf and the Nusselt number 
Nu are physical quantities which are introduced as
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where τwr and τwφ
 are the radial and transversal shear 

stress at the surface of the disk, respectively, and qw is the 
surface heat flux, which are defined as
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Substituting (8) in (16) and using (15), we obtain
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Re = Ωr2/υf is the local Reynolds number.

4  HAM Solution

In this section, the HAM [33–38] is used for solving the 
nonlinear boundary value (10)–(14). The initial approxi-
mations are selected as
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where ci, i = 1–7, are the arbitrary constants. The nonlinear 
operators are given by
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where q∈[0, 1] is the embedding parameter. The zero-
order deformation equations are constructed as the fol-
lowing forms
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where hH, hF, hG, and h
θ
 denote the auxiliary nonzero 

parameters and HH(η), HF(η), HG(η), and H
θ
(η) are the 

auxiliary functions.
Expanding H(η;q), F(η;q), G(η;q), and θ(η;q) into 

Taylor series at q = 0, as

	

0 0
1

1

( ; ) ( ) ( ) ,  ( ; ) ( )

( ) ,

m
m

m

m
m

m

H q H H q F q F

F q

η η η η η

η

∞

=
∞

=

= + =

+

∑

∑
�

(32)

0 0
1 1

( ; ) ( ) ) , ( ; ) ( ) ( ) ,m m
m m

m m
G q G G q q qη η η θ η θ η θ η

∞ ∞

= =

= + = +∑ ∑

� (33)
where

	 0 0

1 ( ; ) 1 ( ; )( ) , ( ) ,
! !

m m

m mm m
q q

H q F qH F
m mq q

η η
η η

= =

∂ ∂= =
∂ ∂

� (34)

	 0 0

1 ( ; ) 1 ( ; )( ) , ( ) .
! !

m m

m mm m
q q

G q qG
m mq q

η θ η
η θ η

= =

∂ ∂= =
∂ ∂

�
(35)

Now, we derive the high-order deformation equations 
as
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Finally, the auxiliary functions are chosen as
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5  Results and Discussion
The nonlinear ordinary differential Equations (10)–(13) 
subjected to the boundary conditions (14) are solved ana-
lytically by HAM [33–38]. Liao [33–38] pointed out that the 
convergence of the HAM solutions strongly depend upon 
the auxiliary parameter h. By means of the h-curve, it is 
straightforward to choose a proper value of h to ensure the 
convergence of the solution series.

The h-curves of H″(0), F ′(0), G′(0) and θ′(0) obtained 
by 10th approximation are presented in Figure 2. More
over, the reliability of analytical results are verified with 
numerical ones obtained by finite difference technique 
[41, 42] and the results published in literatures [31] and 
[32], which are also shown in Table 2.
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Figure 2: The h-curves of H″(0), F ′(0), G′(0) and θ′(0) obtained by 
the 10th-order approximation of the HAM solution for Cu-water nano-
fluid, with ϕ = 0.1, γ = 0, δ = 0, and M = 1.

Table 2: Comparison of results for F′(0), −G′(0), −H(∞) and −θ′(0), 
when ϕ = 0, M = 0, γ = 0, δ = 0 and Pr = 6.2.

  Rashidi 
et al. [31]

  Turkyilmazoglu 
[32]

  Present

F′(0)   0.510186   0.51023262   0.51022941
−G′(0)   0.61589   0.61592201   0.61591990
−H(∞)     0.88447411   0.88446912
−θ′(0)     0.93387794   0.93387285

Figure 3: Effects of γ on radial velocity profiles F (η) for Cu-water 
nanofluid with ϕ = 0.1, Pr = 6.2 and M = 0.5.

Figure 4: Effects of γ on tangential velocity profiles G(η) for  
Cu-water nanofluid with ϕ = 0.1, Pr = 6.2 and M = 0.5.

Figure 5: Effects of γ on axial velocity profiles H(η) for Cu-water 
nanofluid with ϕ = 0.1, Pr = 6.2 and M = 0.5.
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5.1  Effects of Velocity Slip Parameter

Figure 3 shows the effects of velocity slip parameter γ on 
the radial velocity profiles distribution. It indicates that 
the slip parameter has a significant effect on radial veloc-
ity distributions, there is a peak for the radial velocity pro-
files (maximum) which decrease rapidly and moves to the 
disk as the slip parameter γ increase.

Figures 4 and 5 present the variation of the tangential 
and axial velocity, respectively. The results indicate that, 
for different values of velocity slip parameter γ, the tan-
gential velocity decreases but the axial velocity (negative) 
increases with the increase in γ.

In addition, Figures 3–5 present a comparison of the 
analytical results obtained by homotopy analysis method 
and the numerical solutions, the results are in a good 
agreement.
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η

θ(
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Figure 6: Effects of δ on temperature profiles θ(η) for Cu-water 
nanofluid, with ϕ = 0.1, Pr = 6.2 and M = 0.5.
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Figure 8: Effects of M on tangential velocity profiles G(η) for 
Cu-water nanofluid, with ϕ = 0.1, Pr = 6.2 and γ = 0.
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Figure 7: Effects of M on radial velocity profiles F (η) for Cu-water 
nanofluid, with ϕ = 0.1, Pr = 6.2 and γ = 0.

5.2  Effects of Temperature Jump Parameter

The profiles of temperature distribution for various jump 
parameter δ are shown in Figure 6, the results reveal that 
the surface temperature and thickness of the thermal 
boundary layer decrease with the increasing values of δ.

The temperature jump parameter has also special 
effects on the local Nusselt number, it can be seen from 
Figure 12 that the local Nusselt number decreases with the 
increase in temperature jump parameter δ.

5.3  Effects of Porosity Parameter

Figures 7–10 demonstrate the effect of porosity parameter 
M on the velocity components in radial, tangential, and 
axial directions and temperature distribution. It is seen 
that the velocity profiles in the radial, tangential, and 
axial directions decrease with the increasing M, whereas 
the increasing M increases the thermal boundary layer 
thickness.

5.4  Effects of Types of Nanoparticles

The analytical results for the skin friction coefficient Re1/2Cf 
and the local Nusselt number Re−1/2 Nu, for a wide range 
of the nanoparticle volume fraction and three different 
types of nanoparticles in the presence of velocity slip and 
temperature jump are presented in Figures 11 and 12. It is 
found that the values of the skin friction coefficient and 
the local Nusselt number are both increase nearly linearly 
with the nanoparticle volume fraction. The Cu-nanofluid 
has the largest skin friction coefficient and heat transfer 
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Figure 10: Effects of M on temperature profiles θ(η) for Cu-water 
nanofluid, with ϕ = 0.1, Pr = 6.2 and δ = 0.
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Figure 9: Effects of M on axial velocity profiles H(η) for Cu-water 
nanofluid, with ϕ = 0.1, Pr = 6.2 and γ = 0.

Figure 11: Variation of the skin friction coefficient with ϕ for 
different nanoparticles and velocity slip, with Pr = 6.2 and M = 0.5.

Figure 12: Variation of the Nusselt number with ϕ for different 
nanoparticles and temperature jump, with Pr = 6.2 and M = 0.5.

rate due to its largest thermal conductivity value. On the 
contrary, Al2O3-nanofluid has the lowest ones. Figure 11 
indicates that the increase of velocity slip parameter γ 
leads to reduce the values of the skin friction coefficient. 
It also can be seen from Figure 12 that the local Nusselt 
number decreases with the increasing temperature jump 
parameter δ.

6  Conclusions
In this article we investigate the flow and heat transfer 
of nanofluid over a rotating porous disk with three types 
of nanoparticles: Cu, CuO, and Al2O3. The nonlinear gov-
erning equations are transformed into ordinary differen-
tial equations by Von Karman transformations and then 
solved by using the homotopy analysis method (HAM). 
The effects of physical parameters such as porosity 
parameter, velocity slip, temperature jump, and the types 
of nanofluid on velocity and temperature fields transport 
characteristics are analysed.
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