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Abstract: Two resistance-distance-based graph invariants,
namely, the Kirchhoff index and the additive degree-Kirch-
hoff index, are studied. A relation between them is estab-
lished, with inequalities for the additive degree-Kirchhoff
index arising via the Kirchhoff index along with minimum,
maximum, and average degrees. Bounds for the Kirchhoff
and additive degree-Kirchhoff indices are also determined,
and extremal graphs are characterised. In addition, an
upper bound for the additive degree-Kirchhoff index is
established to improve a previously known result.
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1 Introduction

Let G = (V, E) be a connected graph. For any two distinct
vertices i, je V, the resistance distance [1] between them,
denoted by Qi]., is defined as the net effective resistance
between nodesiand jin the electrical network constructed
from G when each edge is identified as a unit resistor.
Since the appearance of the concept of resistance dis-
tance, some resistance distance-based graph invariants
have been defined. Among these invariants, a famous one is
the Kirchhoff index R(G) [1] (or total effective resistance [2], or
effective graph resistance [3]), which is defined as the sum of
resistance distances between all pairs of vertices of G:

R(G)= 3 Q. 6

{ijlcv

Then, two modifications of the Kirchhoff index have been
made to take the degrees of vertices into account. The
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first one is the multiplicative degree-Kirchhoff index R*(G)
introduced by Chen and Zhang [4] as

= €2 2
R(G) m%vdid}szu, 0))
where d, is the degree (i.e., the number of neighbours) of
the vertex i. The second one is the additive degree-Kirch-
hoff introduced by Gutman et al. [5] as

R'(G)= Y, (d+d)Q,. 3)
{ijtcv

The Kirchhoff index has been widely studied, and
we refer the reader to recent papers [6-19] and references
therein. However, the study of the additive degree-Kirch-
hoff index is at an initial stage. In Ref. [5], Gutman et al.
characterised n-vertex unicyclic graphs having minimum
and second minimum additive degree-Kirchhoff indices.
Then, Palacios and his collaborators [20, 21] exhibited
various bounds for this index using elegant random
walks, majorization, and Schur-convexity techniques. In
Refs. [16, 18], the current authors obtained formulae for
these Kirchhoffian indices of the subdivision and triangu-
lation of a graph G, which neatly relates their Kirchhoffian
indices to that of the original graph G.

In this article, first of all, we establish a relation between
the Kirchhoff index and the additive degree-Kirchhoff index
by expressing the additive degree-Kirchhoff index in terms
of the Kirchhoff index and the Moore—Penrose inverse of
the Laplacian matrix of G, so as to yield inequalities for the
additive degree-Kirchhoff index via the Kirchhoff index,
minimum, maximum, and average degrees. Then, we deter-
mine bounds for the Kirchhoff and additive degree-Kirch-
hoff indices via maximum and minimum degrees, with
extremal graphs being characterised. Finally, we obtain
an upper bound for the additive degree-Kirchhoff index,
which improves the result obtained in Ref. [21].

2 A Relation between the
Kirchhoff Index and the Additive
Degree-Kirchhoff Index

Let G be a connected graph with n vertices. The adjacency
matrix A = (aij) of G is the matrix with a,=1if i and j are
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adjacent and O otherwise. Let D=diag{d,, d,, ..., d } be
the diagonal matrix of vertex degrees. Then, the Lapla-
cian matrix of G is defined as L=D - A. Because the sum
of each row and of each column is zero, L is singular and
does not admit an (ordinary) inverse.

Let M be an nxm matrix. Then, the Moore—Penrose
inverse of M, denoted by M*, is [22] an m x n matrix satisfy-
ing the equations:

MM*M=M,M*"MM*"=M",(MM*)" =MM*,(M"M)" =M"M,

where M denotes the conjugate transpose of M. It is well
known [22] that the Moore-Penrose inverse of a matrix
exists and is unique. Let L =(l;) be the Moore—-Penrose
inverse of L. It is shown that L* plays an essential role in
the computation of resistance distance and the Kirchhoff
index.

Theorem 1 [1] The resistance distance between vertices i
and j can be computed as

Q=L+ 2. )

Theorem 2 [23, 24] Let G be a connected graph with n ver-
tices. Then,

R(G)=nYL". 5)

Using Theorems 1 and 2, a formula for the additive
degree-Kirchhoff index is obtained.

Theorem 3 Let G be a connected graph with n vertices and
m edges. Then,

R'(G)= —R(G) +nzdlr (6)

iii
i=1

Proof. By the definition of the additive degree-Kirchhoff
index, we have

R (G)== ZZ(d +d)Q,

1111

=—22(d vd )L+ -20)

11;1

=—22[d,1; +dl +dl +dl -2dl +d )]

7 L)) vy
1 1j=1

= —22( ali +d o) +— 22( dli+dly)

11;1 1111

- 22( dli; +dl)

i=1j=1

_nZdF +zd 21* Yl +dl). @)

i=1j=1
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By the fact that 2:’:1‘11' =2m and nz:zll]; =R(G), it
follows that

zd 2 ) ®)

On the other hand, by the fact that L* is symmetric
and that the n—vector 1 with all entries equal to 1 is a
0-eigenvalue eigenvector of L*, that is, L*1=0, we have

EZ(dll; +d, l*) ZdiZl; + Zd}.Zl}Ti =0. 9)

i=1j=1 i=1 j=1 j=1 i=1

Then, (6) is obtained by substitution of (8) and (9) into
@).

Let 8, A, and d=(2m/n) denote the minimum,
maximum, and average degrees of G, respectively. Then,
from the definition of the additive degree-Kirchhoff index,
it is obvious that

20R(G) £R"(G) £2AR(G).

As a consequence of Theorem 3, bounds in the earlier
equation can be improved as follows.

Theorem 4 R*(G) and R(G) satisfy the following inequalities:

(0+d)R(G)<R'(G)<(A+d)R(G), (10)

with equality if and only if G is d-regular, that is, d=d=0=A.
Proof. Noting that d=(2m/n) and nZ =R(G), one

invokes the inequalities arising upon notlng that [ >0
(since L* is non-negative definite) and replacing d, in
Theorem 3 successively by either 6 or A. O

3 Bounds for the Kirchhoff and
Additive Degree-Kirchhoff
Indices via Maximum and
Minimum Degrees

We first consider the Kirchhoff index to give an upper
bound via the maximum degree as well as a lower bound
via the minimum degree. A natural way to bound the
Kirchhoff index is first to find the extremal graphs and
use their values as bounds. It turns out that T, , and
K:f as given in the following definitions are extremal
graphs.

Definition 1 [25] The broom graph T, , is a tree on n verti-
ces obtained by taking a path P and an edgeless graph

n-A+1
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Figure 1: Graphs T

10,4

(left) and K, (right).

K, |, and joining one end vertex of the path with every

vertex of this edgeless graph.

Definition 2 Let Kj be the graph obtained by taking a

complete graph K _ and an isolated vertex, and joining 6

vertices of K _ with the isolated vertex.

For example, graphs T, , and K 1"0 are shown in Figure 1.
Let G , be the set of all graphs with n vertices and

maximum degree A. In Refs. [25, 26], it is shown that

among all graphsin G, ,, the graph T, , has the maximum

n,A
Wiener index.

Theorem 5 For every graph Ge G, ,,
W(G)<W(T,,),

with equality if and only if G is isomorphic to T, ,.

Recall [1] that for any graph G, R(G) < W(G) with
equality if and only if G is a tree. Then, from Theorem 5,
for every graph Ge g, ,,

R(G)<W(G)<W(T,,)<R(T,,),

with equality if and only if G is isomorphicto T, ,.

Let G,, be the set of graphs with n vertices and
minimum degree §. Next, we characterise the extremal
graph in G, ; with the minimum Kirchhoff index. The fol-
lowing property, known as the non-increasing property of
the Kirchhoff index, is used.

Proposition 1[27] Let G be a connected graph, and let H be
a spanning subgraph of G. Then,
R(G)<R(H)
with equality if and only if G = H.
From Proposition 1, it is easily observed as follows.

Lemma 1 For every graph Ge G,

R(G)=R(K?),

with equality if and only if G is isomorphic to Kf.
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Now, we compute Kirchhoff indices for the two extre-
mal graphs T, , and K?. It is shown in Refs. [25, 26] that

RULJ=[n_$+2]+(A—D[n_f+2]+(A—n(A-zy

1)

To compute the Kirchhoff index of Kj, we first address
resistance distances in I(:. Given a graph G=(V, E), let
N@)={ie V : iue E} and N[u] =NQu){u}.

Lemma 2 [28] Let i and j be vertices of G such that they
have the same neighbourhood N in V-{i, j}. Then,

2

———, ifiand jare adjacent,

N[5 [iandjaread;

Q =
ij

2 .

—_, otherwise.

IN|

Lemma 3 [29] Let G=(V, E) be a connected graph. Then, for
any two vertices, a, be V (a # b),
daQab + z (Qia _Qib) =2
ieN(a)
Theorem 6 Let u be the exceptional vertex in K:, and let

N[u] =V —N[u]. Then, resistance distances in Kf are
given as

) i’jEN(u)s
Ls i’jEN[u]s
n-1
n+d6-1 . .

Q = , i=uandjeN(u),

i no
n+o . dic Nl
_— i=uand je N[u],
(n-10 J
2n6-06+1 N(w) and je N[u]
=15’ ie N(u) and je N u].
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Proof. If i, je N(u), then i and j are adjacent and have the
same neighbourhood N=V-{i, j} with |[N|=n - 2. Hence,
by Lemma 2, it follows that Qi}.:(z/n). If i,jeN[u], then
againiand jare adjacent and Lemma 2 yields Q, = 2/(n-1)).

Now, suppose that je N(u). To compute Q,, we apply
Lemma 3 to u and j, to obtain that

0Q,+ Y (Q,-9,)=2.
keN(u)
By symmetry, it is easily seen that for any ke N(u),
Q,,=Q . Thus, the preceding equation becomes

2
20Q, _Z—MEWQ}.k =2-(6-1,
which yields that Qui:((n + 0 — 1)/nd). The case for Q,
with jeN[u] could be obtained in the same way.
Finally, we consider Q, with ieN@u) and jeN[u].
Again by Lemma 3, we have

dQ, + Y (Q,-9)=2,

keN(j)

that is,

(n-2Q,+ ¥ (2,-2)+ Y (Q,-9,)=2

keN(u) keN[u]-j

By symmetry, the preceding equation becomes

(n-2)Q,+6Q,- > Q.+ Y Q -(n-2-0)Q,=2.

keN(u) keN[u]-j

Simple calculation leads to

2 2
20Q,=2+ Y Q.- > Qy=2+(0-1) " ~(n-0-2)-—

keN(u) keN[u]-j

_4n(5—26+2
~ n(n-1)

This gives Q= (2nd -0 +1)/(n(n - 1)95).

Thus, the proof is complete. O

As a corollary of Lemma 2, the Kirchhoff index of K:
is obtained.

Corollary 1
: o+1
RK)=n-1+1-272 (12)
" 0 n-1
Proof.
0 -1-0 +0-1
R(K%)= 2," 26
n 2n 2 n-1 no
(n-1-0) n+o S(n-1 6)2n6—6+1
+(n-1- + -1-0)——
" (n-1o " n(n—10
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(0-1) (n-1-0)(n-2-0) n+o-1
= + +

n n-1 n
(n+0)(n—-1-9) . (n-1-0)(2no-956+1)
(n-)6 n(n—1)
n Oo+1
0 n-1

Recalling the results in Theorem 5 and Lemma 1,
together with (11) and (12), the main result is obtained.

Theorem 7 Let G be a n-vertex connected graph with
minimum degree 6 and maximum degree A (A > 2). Then,

o+1 —A+2 —A+2
n-1+0 -2 ey <| T AT
0 n-1 3 2

+(A-D(A-2).

The first equality holds if and only if G = K:, and the second
holdsifand only if G=T, .

According to Theorems 4 and 7, bounds for the addi-
tive degree-Kirchhoff index follow directly.

Theorem 8 Let G be a connected graph with n vertices, m
edges, minimum degree 0, and maximum degree A (A = 2).
Then,

[6+2m](n—l+n—a+leR*(6)

n 0 n-1

<(A+zmj{[n_A+2]+(A—1)[n_A+2j+(A—1)(A—2)],
n 3 2

the first equality holds if and only if G is complete.

4 An Upper Bound for the Additive
Degree-Kirchhoff Index

In Ref. [21], it was shown that for any G,
R (G) S%(n" —-n®*—-n*+n).

In addition, it was conjectured that the maximum
of R*(G) over all graphs is attained by the (1/3,1/3,1/3)
barbell graph, which consists of two complete graphs on
n/3 vertices united by a path of length n/3 and for which
R*'(G)=(2/27)n". As given in the following result, we
improve the bound to =(1/8)n".

Theorem 9 Let G be a connected graph with n vertices. Then,

R'(G) sé(n—lf(m 14),
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with equality if and only if G = K,

Proof. Let di), denote the distance between i and j in G.
Then, by the definition of the additive degree-Kirchhoff
index, we have

RY(G)= Y, (d+d)Q,

tijlev
= Y (d+d)Q+ Y (d+d)Q+ 3 (d+d)Q,.
{i,jlcV {i,jlcV {i,jlcV
d;=2 d;23

d() =1
(13)
By the Foster formula [30], which states that the sum

of resistance distances between pairs of adjacent vertices
is equal to n — 1, we have

Y (d+d)Q,<2(n-1) Y Q =2(n-1)"
{ij}cv tijtcv
dij:I dijzl

(14)

Then, by the fact that Qg < dl.j, it follows that

> (d+d)Q,<2 Y (d+d)<2n-1+n-1) ) 1

{i,jlcV {i,jlcV {i,jlcV
d[.’:2 d”.:Z dl.].:Z
n
<4(n- 1){[ J—(n— 1)}.
2
(15)

For i, je V such that dij > 3, since i and j have no
common neighbours, it follows that

dij <n+1-(d, +dj),
which gives

(di+d}.)QU_S(di+d}_)di],g(di+d}_)[n_1_(di+dj)]S(n;l) .

Noting that pairs of vertices at distance 3 is less than
or equal to

-1 -2)(n-1
n(n )_(n_l):(n )(n )’
2 2
it follows that
n-1)>2 n-1°(n-2)(n-1
3 (di+d,»)9i;5( ) 3 1:( )*( )(n—1)
{i,jlcv {i,jlcv 4 2
;=3 ;>3
_(n-2)(n-1)’°
- . .

(16)

Substitution of (14)-(16) back into (13) yields the
desired result.

Equality in (14) holds only when the end vertices of

each edge of G are n — 1, which means G is n — 1 regular,
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in other words, G is a complete graph. On the other hand,
equality in (15) holds also requires that G has n — 1 edges,
which indicates G is a tree. Thus, equality in Theorem 9
holds only when G =K,, and it is easily verified that R*(K))
does attain the upper bound.

Acknowledgments: The authors acknowledge the sup-
port of the Welch Foundation of Houston, Texas, through
Grant BD-0894. Y. Yang acknowledges the support of the
National Science Foundation of China through Grant
11201404, China Postdoctoral Science Foundation through
Grants 2012M521318 and 2013T60662, and Yantai Univer-
sity Foundation through Grant SX14GG3.

References

[1] D.]J.Klein and M. Randié, ). Math. Chem. 12, 81 (1993).
[2] A. Ghosh, S. Boyd, and A. Saberi, SIAM Rev. 50, 37 (2008).
[3] W.Ellens, F. M. Spieksma, P. Van Mieghem, A. Jamakovic, and
R. E. Kooij, Linear Algebra Appl. 435, 2491 (2011).
[4] H.Chen and F. Zhang, Discrete Appl. Math. 155, 654 (2007).
[5] I. Gutman, L. Feng, and G. Yu, Trans. Comb. 1, 27 (2012).
[6] M. Bianchi, A. Cornaro, J. L. Palacios, and A. Torriero, ). Math.
Chem. 51, 569 (2013).
[7] N. Chair, Ann. Phys. 341, 56 (2014).
[8] K. C. Das, Z. Naturforsch. 68a, 531 (2013).
[9] Q.Dengand H. Chen, Linear Algebra Appl. 439, 167 (2013).
[10] Q. Dengand H. Chen, Linear Algebra Appl. 444, 89 (2014).
[11] R. Li, MATCH-Commun. Math. Co. 70, 163 (2013).
[12] ). Liu, ). Cao, X. Pan, and A. Elaiw, Discrete Dyn. Nat. Soc. 2013,
7 p. (2013), Article ID 543189.
J. Liu, X. Pan, Y. Wang, and ). Cao, Math. Probl. Eng. 2014, 9 p.
(2014), Article ID 380874.
A. Nikseresht and Z. Sepasdar, Electron ). Comb. 21, P1.25 (2014).
W. Wang, D. Yang, and Y. Luo, Discrete Appl. Math. 161, 3063
(2013).
Y. Yang, Discrete Appl. Math. 171, 153 (2014).
Y.Yang and D. J. Klein, Discrete Appl. Math. 175, 87 (2014).
Y. Yang and D. ). Klein, Discrete Appl. Math. 181, 260 (2015).
Z.Zhang, J. Stat. Mech. 2013, P10004 (2013).
M. Bianchi, A. Cornaro, J. L. Palacios, and A. Torriero, Croat.
Chem. Acta 86, 363 (2013).
J. L. Palacios, MATCH-Commun. Math. Co. 70, 651 (2013).
A. Ben-Israeland T. N. E. Greville, Generalized Inverses: Theory
and Applications, 2nd ed., Springer, New York 2003.
I. Gutman and B. Mohar, J. Chem. Inf. Comput. Sci. 36, 982
(1996).
[24] D. ). Klein, MATCH-Commun. Math. Co. 35, 7 (1997).
[25] D. Stevanovi¢, MATCH-Commun. Math. Co. 60, 71 (2008).
[26] A. llic, Linear Algebra Appl. 431, 2203 (2009).
[27] H.Zhang and Y. Yang, Int. ). Quantum Chem. 107, 330 (2007).
[28] Y.Yang and H. Zhang, ). Phys. A: Math. Theor. 41, 445203 (2008).
[29] H. Chen andF. Zhang, J. Math. Chem. 44, 405 (2008).
[30] R. M. Foster, The average impedance of an electrical network,
in: Contributions to Applied Mechanics (Ed. J. W. Edwards),
Edwards Brothers, Inc., Ann Arbor, M1 1949, pp. 333-340.

[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]



