Yujun Yang* and Douglas J. Klein*

A Note on the Kirchhoff and Additive Degree-Kirchhoff Indices of Graphs

Abstract: Two resistance-distance-based graph invariants, namely, the Kirchhoff index and the additive degree-Kirchhoff index, are studied. A relation between them is established, with inequalities for the additive degree-Kirchhoff index arising via the Kirchhoff index along with minimum, maximum, and average degrees. Bounds for the Kirchhoff and additive degree-Kirchhoff indices are also determined, and extremal graphs are characterised. In addition, an upper bound for the additive degree-Kirchhoff index is established to improve a previously known result.

Keywords: Additive Degree-Kirchhoff Index; Average Degree; Kirchhoff Index; Maximum Degree; Minimum Degree; Resistance Distance.

DOI 10.1515/zna-2014-0274 Received September 29, 2014; accepted April 8, 2015; previously published online May 15, 2015

1 Introduction

Let G = (V, E) be a connected graph. For any two distinct vertices $i, j \in V$, the *resistance distance* [1] between them, denoted by Ω_{ij} , is defined as the net effective resistance between nodes i and j in the electrical network constructed from G when each edge is identified as a unit resistor.

Since the appearance of the concept of resistance distance, some resistance distance-based graph invariants have been defined. Among these invariants, a famous one is the *Kirchhoff index R*(G) [1] (or *total effective resistance* [2], or *effective graph resistance* [3]), which is defined as the sum of resistance distances between all pairs of vertices of G:

$$R(G) = \sum_{\{i,j\} \subseteq V} \Omega_{ij}.$$
 (1)

Then, two modifications of the Kirchhoff index have been made to take the degrees of vertices into account. The first one is the *multiplicative degree-Kirchhoff index* $R^*(G)$ introduced by Chen and Zhang [4] as

$$R^*(G) = \sum_{\{i,j\} \subseteq V} d_i d_j \Omega_{ij}, \qquad (2)$$

where d_i is the degree (i.e., the number of neighbours) of the vertex i. The second one is the *additive degree-Kirchhoff* introduced by Gutman et al. [5] as

$$R^{+}(G) = \sum_{\{i,j\} \subseteq V} (d_i + d_j) \Omega_{ij}.$$
 (3)

The Kirchhoff index has been widely studied, and we refer the reader to recent papers [6–19] and references therein. However, the study of the additive degree-Kirchhoff index is at an initial stage. In Ref. [5], Gutman et al. characterised *n*-vertex unicyclic graphs having minimum and second minimum additive degree-Kirchhoff indices. Then, Palacios and his collaborators [20, 21] exhibited various bounds for this index using elegant random walks, majorization, and Schur-convexity techniques. In Refs. [16, 18], the current authors obtained formulae for these Kirchhoffian indices of the subdivision and triangulation of a graph *G*, which neatly relates their Kirchhoffian indices to that of the original graph *G*.

In this article, first of all, we establish a relation between the Kirchhoff index and the additive degree-Kirchhoff index by expressing the additive degree-Kirchhoff index in terms of the Kirchhoff index and the Moore-Penrose inverse of the Laplacian matrix of G, so as to yield inequalities for the additive degree-Kirchhoff index via the Kirchhoff index, minimum, maximum, and average degrees. Then, we determine bounds for the Kirchhoff and additive degree-Kirchhoff indices via maximum and minimum degrees, with extremal graphs being characterised. Finally, we obtain an upper bound for the additive degree-Kirchhoff index, which improves the result obtained in Ref. [21].

2 A Relation between the Kirchhoff Index and the Additive Degree-Kirchhoff Index

Let *G* be a connected graph with *n* vertices. The *adjacency matrix* $A = (a_{ij})$ of *G* is the matrix with $a_{ij} = 1$ if *i* and *j* are

^{*}Corresponding authors: Yujun Yang, School of Mathematics and Information Science, Yantai University, Yantai, Shandong 264005, P. R. China, E-mail: yangyj@yahoo.com; and Douglas J. Klein, Department of Marine Sciences, Texas A&M University at Galveston, Galveston, TX 77553-1675, USA, E-mail: kleind@tamug.edu

adjacent and 0 otherwise. Let $D = \text{diag}\{d_1, d_2, ..., d_n\}$ be the diagonal matrix of vertex degrees. Then, the Lapla*cian matrix* of *G* is defined as L = D - A. Because the sum of each row and of each column is zero, L is singular and does not admit an (ordinary) inverse.

Let *M* be an $n \times m$ matrix. Then, the *Moore–Penrose inverse* of M, denoted by M^+ , is [22] an $m \times n$ matrix satisfying the equations:

$$MM^{+}M = M$$
, $M^{+}MM^{+} = M^{+}$, $(MM^{+})^{H} = MM^{+}$, $(M^{+}M)^{H} = M^{+}M$,

where M^H denotes the conjugate transpose of M. It is well known [22] that the Moore-Penrose inverse of a matrix exists and is unique. Let $L^+ = (l_{ii}^+)$ be the Moore–Penrose inverse of L. It is shown that L^+ plays an essential role in the computation of resistance distance and the Kirchhoff index.

Theorem 1 [1] The resistance distance between vertices i and i can be computed as

$$\Omega_{ii} = l_{ii}^+ + l_{ii}^+ - 2l_{ii}^+. \tag{4}$$

Theorem 2 [23, 24] Let G be a connected graph with n vertices. Then,

$$R(G) = n \sum_{i=1}^{n} l_{ii}^{+}.$$
 (5)

Using Theorems 1 and 2, a formula for the additive degree-Kirchhoff index is obtained.

Theorem 3 *Let G be a connected graph with n vertices and* m edges. Then,

$$R^{+}(G) = \frac{2m}{n}R(G) + n\sum_{i=1}^{n}d_{i}l_{ii}^{+}$$
 (6)

Proof. By the definition of the additive degree-Kirchhoff index, we have

$$\begin{split} R^{+}(G) &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{i} + d_{j}) \Omega_{ij} \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{i} + d_{j}) (l_{ii}^{+} + l_{ji}^{+} - 2l_{ij}^{+}) \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} [d_{i}l_{ii}^{+} + d_{j}l_{jj}^{+} + d_{i}l_{jj}^{+} + d_{j}l_{ii}^{+} - 2(d_{i}l_{ij}^{+} + d_{j}l_{ij}^{+})] \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{i}l_{ii}^{+} + d_{j}l_{jj}^{+}) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{i}l_{ij}^{+} + d_{j}l_{ii}^{+}) \\ &- \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{i}l_{ij}^{+} + d_{j}l_{ij}^{+}) \\ &= n \sum_{i=1}^{n} d_{i}l_{ii}^{+} + \sum_{i=1}^{n} d_{i} \sum_{j=1}^{n} l_{ij}^{+} - \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{i}l_{ij}^{+} + d_{j}l_{ij}^{+}). \end{split}$$

By the fact that $\sum_{i=1}^n d_i = 2m$ and $n \sum_{j=1}^n l_{jj}^+ = R(G)$, it follows that

$$\sum_{i=1}^{n} d_{i} \sum_{j=1}^{n} l_{jj}^{+} = \frac{2m}{n} R(G).$$
 (8)

On the other hand, by the fact that L^+ is symmetric and that the n-vector **1** with all entries equal to 1 is a 0-eigenvalue eigenvector of L^+ , that is, $L^+\mathbf{1} = \mathbf{0}$, we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (d_{i}l_{ij}^{+} + d_{j}l_{ij}^{+}) = \sum_{i=1}^{n} d_{i} \sum_{j=1}^{n} l_{ij}^{+} + \sum_{j=1}^{n} d_{j} \sum_{i=1}^{n} l_{ji}^{+} = 0.$$
 (9)

Then, (6) is obtained by substitution of (8) and (9) into (7).

Let δ , Δ , and $\bar{d} = (2m/n)$ denote the minimum, maximum, and average degrees of G, respectively. Then, from the definition of the additive degree-Kirchhoff index, it is obvious that

$$2\delta R(G) \leq R^+(G) \leq 2\Delta R(G)$$
.

As a consequence of Theorem 3, bounds in the earlier equation can be improved as follows.

Theorem 4 $R^+(G)$ and R(G) satisfy the following inequalities:

$$(\delta + \overline{d})R(G) \le R^+(G) \le (\Delta + \overline{d})R(G), \tag{10}$$

with equality if and only if *G* is d-regular, that is, $d = \overline{d} = \delta = \Delta$. *Proof.* Noting that $\overline{d} = (2m/n)$ and $n \sum_{i=1}^{n} l_{ii}^{+} = R(G)$, one invokes the inequalities arising upon noting that $l_{ii}^+ \ge 0$ (since L^+ is non-negative definite) and replacing d_i in Theorem 3 successively by either δ or Δ .

3 Bounds for the Kirchhoff and **Additive Degree-Kirchhoff** Indices via Maximum and **Minimum Degrees**

We first consider the Kirchhoff index to give an upper bound via the maximum degree as well as a lower bound via the minimum degree. A natural way to bound the Kirchhoff index is first to find the extremal graphs and use their values as bounds. It turns out that $T_{n,\Delta}$ and K_n^{δ} as given in the following definitions are extremal

Definition 1 [25] The broom graph $T_{n,\Delta}$ is a tree on n vertices obtained by taking a path $P_{n-\Delta+1}$ and an edgeless graph

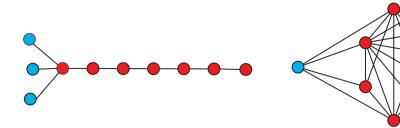


Figure 1: Graphs $T_{10.4}$ (left) and K_{10}^4 (right).

 $K_{\Lambda-1}$, and joining one end vertex of the path with every vertex of this edgeless graph.

Definition 2 Let K_n^{δ} be the graph obtained by taking a complete graph K_{n-1} and an isolated vertex, and joining δ vertices of K_{n-1} with the isolated vertex.

For example, graphs $T_{10.4}$ and K_{10}^4 are shown in Figure 1. Let $\mathcal{G}_{n, n}$ be the set of all graphs with *n* vertices and maximum degree Δ . In Refs. [25, 26], it is shown that among all graphs in $\mathcal{G}_{n,\Lambda}$, the graph $T_{n,\Delta}$ has the maximum Wiener index.

Theorem 5 For every graph $G \in \mathcal{G}_{n, n}$,

$$W(G) \leq W(T_{n,\Delta}),$$

with equality if and only if G is isomorphic to $T_{n, \Lambda}$.

Recall [1] that for any graph G, $R(G) \leq W(G)$ with equality if and only if *G* is a tree. Then, from Theorem 5, for every graph $G \in \mathcal{G}_{n,\Lambda}$,

$$R(G) \leq W(G) \leq W(T_{n,\Lambda}) \leq R(T_{n,\Lambda}),$$

with equality if and only if *G* is isomorphic to $T_{n,\Lambda}$.

Let $\mathbb{G}_{n,\delta}$ be the set of graphs with n vertices and minimum degree δ . Next, we characterise the extremal graph in $\mathbb{G}_{n\delta}$ with the minimum Kirchhoff index. The following property, known as the non-increasing property of the Kirchhoff index, is used.

Proposition 1 [27] *Let G be a connected graph, and let H be* a spanning subgraph of G. Then,

$$R(G) \leq R(H)$$

with equality if and only if $G \cong H$.

From Proposition 1, it is easily observed as follows.

Lemma 1 *For every graph* $G \in \mathbb{G}_{n,\delta}$,

$$R(G) \geq R(K_{\cdot,\cdot}^{\delta}),$$

with equality if and only if G is isomorphic to $K_{\cdot \cdot}^{\delta}$.

Now, we compute Kirchhoff indices for the two extremal graphs $T_{n,\lambda}$ and K_n^{δ} . It is shown in Refs. [25, 26] that

$$R(T_{n,\Delta}) = {n-\Delta+2 \choose 3} + (\Delta-1){n-\Delta+2 \choose 2} + (\Delta-1)(\Delta-2).$$
(11)

To compute the Kirchhoff index of K_n^{δ} , we first address resistance distances in K_n^{δ} . Given a graph G = (V, E), let $N(u) = \{i \in V : iu \in E\} \text{ and } N[u] = N(u) \cup \{u\}.$

Lemma 2 [28] Let i and j be vertices of G such that they have the same neighbourhood N in $V-\{i, j\}$. Then,

$$\Omega_{ij} = \begin{cases} \frac{2}{|N|+2}, & \text{if i and j are adjacent,} \\ \\ \frac{2}{|N|}, & \text{otherwise.} \end{cases}$$

Lemma 3 [29] Let G = (V, E) be a connected graph. Then, for any two vertices, $a, b \in V (a \neq b)$,

$$d_a \Omega_{ab} + \sum_{i \in N(a)} (\Omega_{ia} - \Omega_{ib}) = 2.$$

Theorem 6 Let u be the exceptional vertex in K_n^{δ} , and let N[u] = V - N[u]. Then, resistance distances in K_n^{δ} are given as

$$\Omega_{ij} = \begin{cases} \frac{2}{n}, & i, j \in N(u), \\ \frac{2}{n-1}, & i, j \in \overline{N[u]}, \\ \frac{n+\delta-1}{n\delta}, & i=u \ and \ j \in N(u), \\ \frac{n+\delta}{(n-1)\delta}, & i=u \ and \ j \in \overline{N[u]}, \\ \frac{2n\delta-\delta+1}{n(n-1)\delta}, & i \in N(u) \ and \ j \in \overline{N[u]}. \end{cases}$$

Proof. If $i, j \in N(u)$, then i and j are adjacent and have the same neighbourhood $N = V - \{i, j\}$ with |N| = n - 2. Hence, by Lemma 2, it follows that $\Omega_{ii} = (2/n)$. If $i,j \in N[u]$, then again *i* and *j* are adjacent and Lemma 2 yields $\Omega_{ii} = (2/(n-1))$.

Now, suppose that $j \in N(u)$. To compute Ω_{ij} , we apply Lemma 3 to u and j, to obtain that

$$\delta\Omega_{uj} + \sum_{k \in N(u)} (\Omega_{uk} - \Omega_{jk}) = 2.$$

By symmetry, it is easily seen that for any $k \in N(u)$, $\Omega_{nk} = \Omega_{nl}$. Thus, the preceding equation becomes

$$2\delta\Omega_{uj} = 2 - \sum_{k \in N(u)} \Omega_{jk} = 2 - (\delta - 1)\frac{2}{n},$$

which yields that $\Omega_{ui} = ((n + \delta - 1)/n\delta)$. The case for Ω_{ui} with $j \in N[u]$ could be obtained in the same way.

Finally, we consider Ω_{ii} with $i \in N(u)$ and $j \in N[u]$. Again by Lemma 3, we have

$$d_j \Omega_{ji} + \sum_{k \in N(j)} (\Omega_{kj} - \Omega_{ki}) = 2,$$

that is.

$$(n-2)\Omega_{ji} + \sum_{k \in N(u)} (\Omega_{kj} - \Omega_{ki}) + \sum_{k \in N[u]-j} (\Omega_{kj} - \Omega_{ki}) = 2.$$

By symmetry, the preceding equation becomes

$$(n-2)\Omega_{ji} + \delta\Omega_{ij} - \sum_{k \in N(u)} \Omega_{ki} + \sum_{k \in N(u) - j} \Omega_{kj} - (n-2-\delta)\Omega_{ij} = 2. \qquad \left(\delta + \frac{2m}{n}\right) \left(n-1 + \frac{n}{\delta} - \frac{\delta+1}{n-1}\right) \leq R^+(G)$$

Simple calculation leads to

$$2\delta\Omega_{ji} = 2 + \sum_{k \in N(u)} \Omega_{ki} - \sum_{k \in N[u] - j} \Omega_{kj} = 2 + (\delta - 1)\frac{2}{n} - (n - \delta - 2)\frac{2}{n - 1}$$
$$= \frac{4n\delta - 2\delta + 2}{n(n - 1)}.$$

This gives $\Omega_{ii} = (2n\delta - \delta + 1)/(n(n-1)\delta)$.

Thus, the proof is complete.

As a corollary of Lemma 2, the Kirchhoff index of K_n^{δ} is obtained.

Corollary 1

$$R(K_n^{\delta}) = n - 1 + \frac{n}{\delta} - \frac{\delta + 1}{n - 1}.$$
 (12)

Proof.

$$R(K_n^{\delta}) = {\delta \choose 2} \frac{2}{n} + {n-1-\delta \choose 2} \frac{2}{n-1} + \delta \frac{n+\delta-1}{n\delta} + (n-1-\delta) \frac{n+\delta}{(n-1)\delta} + \delta (n-1-\delta) \frac{2n\delta-\delta+1}{n(n-1)\delta}$$

$$= \frac{\delta(\delta - 1)}{n} + \frac{(n - 1 - \delta)(n - 2 - \delta)}{n - 1} + \frac{n + \delta - 1}{n} + \frac{(n + \delta)(n - 1 - \delta)}{n} + \frac{(n - 1)\delta}{(n - 1)\delta} + \frac{(n - 1 - \delta)(2n\delta - \delta + 1)}{n(n - 1)} + \frac{n - 1}{\delta} + \frac{n - 1}{\delta} + \frac{n - 1}{n - 1}.$$

Recalling the results in Theorem 5 and Lemma 1, together with (11) and (12), the main result is obtained.

Theorem 7 Let G be a n-vertex connected graph with minimum degree δ and maximum degree Δ ($\Delta \geq 2$). Then,

$$n-1+\frac{n}{\delta}-\frac{\delta+1}{n-1} \le R(G) \le \binom{n-\Delta+2}{3} + (\Delta-1)\binom{n-\Delta+2}{2} + (\Delta-1)(\Delta-2).$$

The first equality holds if and only if $G \cong K_n^{\delta}$, and the second holds if and only if $G \cong T_{n, \Lambda}$.

According to Theorems 4 and 7, bounds for the additive degree-Kirchhoff index follow directly.

Theorem 8 *Let G be a connected graph with n vertices, m* edges, minimum degree δ , and maximum degree Δ ($\Delta \geq 2$). Then,

$$\left(\delta + \frac{2m}{n}\right)\left(n - 1 + \frac{n}{\delta} - \frac{\delta + 1}{n - 1}\right) \le R^+(G)$$

$$< \left(\Delta + \frac{2m}{n}\right)\left[\binom{n - \Delta + 2}{3} + (\Delta - 1)\binom{n - \Delta + 2}{2} + (\Delta - 1)(\Delta - 2)\right],$$

the first equality holds if and only if G is complete.

4 An Upper Bound for the Additive **Degree-Kirchhoff Index**

In Ref. [21], it was shown that for any *G*,

$$R^+(G) \leq \frac{1}{3}(n^4 - n^3 - n^2 + n).$$

In addition, it was conjectured that the maximum of $R^+(G)$ over all graphs is attained by the (1/3,1/3,1/3)barbell graph, which consists of two complete graphs on n/3 vertices united by a path of length n/3 and for which $R^+(G) \ge (2/27)n^4$. As given in the following result, we improve the bound to $\geq (1/8)n^4$.

Theorem 9 Let G be a connected graph with n vertices. Then,

$$R^+(G) \leq \frac{1}{8}(n-1)^3(n+14),$$

with equality if and only if $G \cong K_2$.

Proof. Let d_{ij} denote the distance between i and j in G. Then, by the definition of the additive degree-Kirchhoff index, we have

$$\begin{split} R^+(G) &= \sum_{\substack{\{i,j\} \subset V \\ d_{ij} = 1}} (d_i + d_j) \Omega_{ij} \\ &= \sum_{\substack{\{i,j\} \subset V \\ d_{ij} = 1}} (d_i + d_j) \Omega_{ij} + \sum_{\substack{\{i,j\} \subset V \\ d_{ij} = 2}} (d_i + d_j) \Omega_{ij} + \sum_{\substack{\{i,j\} \subset V \\ d_{ij} \geq 3}} (d_i + d_j) \Omega_{ij}. \end{split}$$

By the Foster formula [30], which states that the sum of resistance distances between pairs of adjacent vertices is equal to n-1, we have

$$\sum_{\substack{\{i,j\} \subset V \\ d_{ij} = 1}} (d_i + d_j) \Omega_{ij} \le 2(n-1) \sum_{\substack{\{i,j\} \subset V \\ d_{ij} = 1}} \Omega_{i,j} = 2(n-1)^2.$$
(14)

Then, by the fact that $\Omega_{ii} \leq d_{ii}$, it follows that

$$\sum_{\substack{\{i,j\} \subset V \\ d_{ij} = 2}} (d_i + d_j) \Omega_{ij} \le 2 \sum_{\substack{\{i,j\} \subset V \\ d_{ij} = 2}} (d_i + d_j) \le 2(n - 1 + n - 1) \sum_{\substack{\{i,j\} \subset V \\ d_{ij} = 2}} 1 \\ \le 4(n - 1) \left[\binom{n}{2} - (n - 1) \right].$$

For $i, j \in V$ such that $d_{ij} \ge 3$, since i and j have no common neighbours, it follows that

$$d_{ii} \le n + 1 - (d_i + d_i),$$

which gives

$$(d_i + d_j)\Omega_{ij} \le (d_i + d_j)d_{ij} \le (d_i + d_j)[n - 1 - (d_i + d_j)] \le \frac{(n-1)^2}{4}.$$

Noting that pairs of vertices at distance 3 is less than or equal to

$$\frac{n(n-1)}{2}-(n-1)=\frac{(n-2)(n-1)}{2},$$

it follows that

$$\sum_{\substack{\{i,j\} \subset V \\ d_{ij} \geq 3}} (d_i + d_j) \Omega_{ij} \leq \frac{(n-1)^2}{4} \sum_{\substack{\{i,j\} \subset V \\ d_{ij} \geq 3}} 1 = \frac{(n-1)^2}{4} \frac{(n-2)(n-1)}{2}$$
$$= \frac{(n-2)(n-1)^3}{2}.$$

Substitution of (14)-(16) back into (13) yields the desired result.

Equality in (14) holds only when the end vertices of each edge of G are n-1, which means G is n-1 regular,

in other words, G is a complete graph. On the other hand, equality in (15) holds also requires that G has n-1 edges, which indicates G is a tree. Thus, equality in Theorem 9 holds only when $G \cong K_2$, and it is easily verified that $R^+(K_2)$ does attain the upper bound.

Acknowledgments: The authors acknowledge the support of the Welch Foundation of Houston, Texas, through Grant BD-0894. Y. Yang acknowledges the support of the National Science Foundation of China through Grant 11201404, China Postdoctoral Science Foundation through Grants 2012M521318 and 2013T60662, and Yantai University Foundation through Grant SX14GG3.

References

- [1] D. J. Klein and M. Randić, J. Math. Chem. 12, 81 (1993).
- [2] A. Ghosh, S. Boyd, and A. Saberi, SIAM Rev. 50, 37 (2008).
- [3] W. Ellens, F. M. Spieksma, P. Van Mieghem, A. Jamakovic, and R. E. Kooij, Linear Algebra Appl. 435, 2491 (2011).
- [4] H. Chen and F. Zhang, Discrete Appl. Math. 155, 654 (2007).
- [5] I. Gutman, L. Feng, and G. Yu, Trans. Comb. 1, 27 (2012).
- [6] M. Bianchi, A. Cornaro, J. L. Palacios, and A. Torriero, J. Math. Chem. 51, 569 (2013).
- [7] N. Chair, Ann. Phys. 341, 56 (2014).
- [8] K. C. Das, Z. Naturforsch. 68a, 531 (2013).
- [9] Q. Deng and H. Chen, Linear Algebra Appl. 439, 167 (2013).
- [10] Q. Deng and H. Chen, Linear Algebra Appl. 444, 89 (2014).
- [11] R. Li, MATCH-Commun. Math. Co. 70, 163 (2013).
- [12] J. Liu, J. Cao, X. Pan, and A. Elaiw, Discrete Dyn. Nat. Soc. 2013, 7 p. (2013), Article ID 543189.
- [13] J. Liu, X. Pan, Y. Wang, and J. Cao, Math. Probl. Eng. 2014, 9 p. (2014), Article ID 380874.
- [14] A. Nikseresht and Z. Sepasdar, Electron J. Comb. 21, P1.25 (2014).
- [15] W. Wang, D. Yang, and Y. Luo, Discrete Appl. Math. 161, 3063 (2013).
- [16] Y. Yang, Discrete Appl. Math. 171, 153 (2014).
- [17] Y. Yang and D. J. Klein, Discrete Appl. Math. 175, 87 (2014).
- [18] Y. Yang and D. I. Klein, Discrete Appl. Math. 181, 260 (2015).
- [19] Z. Zhang, J. Stat. Mech. 2013, P10004 (2013).
- [20] M. Bianchi, A. Cornaro, J. L. Palacios, and A. Torriero, Croat. Chem. Acta 86, 363 (2013).
- J. L. Palacios, MATCH-Commun. Math. Co. 70, 651 (2013).
- [22] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd ed., Springer, New York 2003.
- I. Gutman and B. Mohar, J. Chem. Inf. Comput. Sci. 36, 982 [23]
- [24] D. J. Klein, MATCH-Commun. Math. Co. 35, 7 (1997).
- [25] D. Stevanović, MATCH-Commun. Math. Co. 60, 71 (2008).
- [26] A. Ilic, Linear Algebra Appl. 431, 2203 (2009).
- [27] H. Zhang and Y. Yang, Int. J. Quantum Chem. 107, 330 (2007).
- [28] Y. Yang and H. Zhang, J. Phys. A: Math. Theor. 41, 445203 (2008).
- [29] H. Chen and F. Zhang, J. Math. Chem. 44, 405 (2008).
- [30] R. M. Foster, The average impedance of an electrical network, in: Contributions to Applied Mechanics (Ed. J. W. Edwards), Edwards Brothers, Inc., Ann Arbor, MI 1949, pp. 333-340.