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Abstract: Two resistance-distance-based graph invariants, 
namely, the Kirchhoff index and the additive degree-Kirch-
hoff index, are studied. A relation between them is estab-
lished, with inequalities for the additive degree-Kirchhoff 
index arising via the Kirchhoff index along with minimum, 
maximum, and average degrees. Bounds for the Kirchhoff 
and additive degree-Kirchhoff indices are also determined, 
and extremal graphs are characterised. In addition, an 
upper bound for the additive degree-Kirchhoff index is 
established to improve a previously known result.
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1  Introduction
Let G = (V, E) be a connected graph. For any two distinct 
vertices i, j∈V, the resistance distance [1] between them, 
denoted by Ωij, is defined as the net effective resistance 
between nodes i and j in the electrical network constructed 
from G when each edge is identified as a unit resistor.

Since the appearance of the concept of resistance dis-
tance, some resistance distance-based graph invariants 
have been defined. Among these invariants, a famous one is 
the Kirchhoff index R(G) [1] (or total effective resistance [2], or 
effective graph resistance [3]), which is defined as the sum of 
resistance distances between all pairs of vertices of G:
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Then, two modifications of the Kirchhoff index have been 
made to take the degrees of vertices into account. The 

first one is the multiplicative degree-Kirchhoff index R*(G) 
introduced by Chen and Zhang [4] as
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where di is the degree (i.e., the number of neighbours) of 
the vertex i. The second one is the additive degree-Kirch-
hoff introduced by Gutman et al. [5] as
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The Kirchhoff index has been widely studied, and 
we refer the reader to recent papers [6–19] and references 
therein. However, the study of the additive degree-Kirch-
hoff index is at an initial stage. In Ref. [5], Gutman et al. 
characterised n-vertex unicyclic graphs having minimum 
and second minimum additive degree-Kirchhoff indices. 
Then, Palacios and his collaborators [20, 21] exhibited 
various bounds for this index using elegant random 
walks, majorization, and Schur-convexity techniques. In 
Refs. [16, 18], the current authors obtained formulae for 
these Kirchhoffian indices of the subdivision and triangu-
lation of a graph G, which neatly relates their Kirchhoffian 
indices to that of the original graph G.

In this article, first of all, we establish a relation between 
the Kirchhoff index and the additive degree-Kirchhoff index 
by expressing the additive degree-Kirchhoff index in terms 
of the Kirchhoff index and the Moore–Penrose inverse of 
the Laplacian matrix of G, so as to yield inequalities for the 
additive degree-Kirchhoff index via the Kirchhoff index, 
minimum, maximum, and average degrees. Then, we deter-
mine bounds for the Kirchhoff and additive degree-Kirch-
hoff indices via maximum and minimum degrees, with 
extremal graphs being characterised. Finally, we obtain 
an upper bound for the additive degree-Kirchhoff index, 
which improves the result obtained in Ref. [21].

2  �A Relation between the  
Kirchhoff Index and the Additive 
Degree-Kirchhoff Index

Let G be a connected graph with n vertices. The adjacency 
matrix A = (aij) of G is the matrix with aij = 1 if i and j are 
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adjacent and 0 otherwise. Let D = diag{d1, d2, …, dn} be 
the diagonal matrix of vertex degrees. Then, the Lapla-
cian matrix of G is defined as L = D – A. Because the sum 
of each row and of each column is zero, L is singular and 
does not admit an (ordinary) inverse.

Let M be an n × m matrix. Then, the Moore–Penrose 
inverse of M, denoted by M+, is [22] an m × n matrix satisfy-
ing the equations:

, ,( ) ,( ) ,H HMM M M M MM M MM MM M M M M+ + + + + + + += = = =

where MH denotes the conjugate transpose of M. It is well 
known [22] that the Moore–Penrose inverse of a matrix 
exists and is unique. Let ( )ijL l+ +=  be the Moore–Penrose 
inverse of L. It is shown that L+ plays an essential role in 
the computation of resistance distance and the Kirchhoff 
index.

Theorem 1 [1] The resistance distance between vertices i 
and j can be computed as

	 2 .ij ii ii ijl l lΩ + + += + − � (4)

Theorem 2 [23, 24] Let G be a connected graph with n ver-
tices. Then,

	 1
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Using Theorems 1 and 2, a formula for the additive 
degree-Kirchhoff index is obtained.

Theorem 3 Let G be a connected graph with n vertices and 
m edges. Then,

	 1
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Proof. By the definition of the additive degree-Kirchhoff 
index, we have
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By the fact that 
1

2n
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=
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follows that
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On the other hand, by the fact that L+ is symmetric 
and that the n–vector 1 with all entries equal to 1 is a 
0-eigenvalue eigenvector of L+, that is, L+1 = 0, we have

	 1 1 1 1 1 1
( ) 0.
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Then, (6) is obtained by substitution of (8) and (9) into 
(7).

Let δ, Δ, and d̅ = (2m/n) denote the minimum, 
maximum, and average degrees of G, respectively. Then, 
from the definition of the additive degree-Kirchhoff index, 
it is obvious that

2 ( ) ( ) 2 ( ).R G R G R Gδ ∆+≤ ≤

As a consequence of Theorem 3, bounds in the earlier 
equation can be improved as follows.

Theorem 4 R+(G) and R(G) satisfy the following inequalities:

	 ( ) ( ) ( ) ( ) ( ),d R G R G d R Gδ ∆++ ≤ ≤ + � (10)

with equality if and only if G is d-regular, that is, d = d̅= δ = Δ.

Proof. Noting that d̅ = (2m/n) and 
1

( ),n

iii
n l R G+

=
=∑  one 

invokes the inequalities arising upon noting that 0iil+ ≥  
(since L+ is non-negative definite) and replacing di in 
Theorem 3 successively by either δ or Δ.� □

3  �Bounds for the Kirchhoff and 
Additive Degree-Kirchhoff 
Indices via Maximum and 
Minimum Degrees

We first consider the Kirchhoff index to give an upper 
bound via the maximum degree as well as a lower bound 
via the minimum degree. A natural way to bound the 
Kirchhoff index is first to find the extremal graphs and 
use their values as bounds. It turns out that Tn,Δ and 

nK δ  as given in the following definitions are extremal 
graphs.

Definition 1 [25] The broom graph Tn,Δ is a tree on n verti-
ces obtained by taking a path Pn-Δ + 1 and an edgeless graph 
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1 ,K
∆ −  and joining one end vertex of the path with every 

vertex of this edgeless graph.

Definition 2 Let nK δ  be the graph obtained by taking a 
complete graph Kn-1 and an isolated vertex, and joining δ 
vertices of Kn-1 with the isolated vertex.

For example, graphs T10,4 and 4
10K  are shown in Figure 1.

Let Gn,Δ be the set of all graphs with n vertices and 
maximum degree Δ. In Refs. [25, 26], it is shown that 
among all graphs in Gn,Δ, the graph Tn,Δ has the maximum 
Wiener index.

Theorem 5 For every graph G∈Gn,Δ,

,( ) ( ),nW G W T
∆

≤

with equality if and only if G is isomorphic to Tn,Δ.
Recall [1] that for any graph G, R(G)  ≤  W(G) with 

equality if and only if G is a tree. Then, from Theorem 5, 
for every graph G∈Gn,Δ,

, ,( ) ( ) ( ) ( ),n nR G W G W T R T
∆ ∆

≤ ≤ ≤

with equality if and only if G is isomorphic to Tn,Δ.
Let Gn,δ be the set of graphs with n vertices and 

minimum degree δ. Next, we characterise the extremal 
graph in Gn,δ with the minimum Kirchhoff index. The fol-
lowing property, known as the non-increasing property of 
the Kirchhoff index, is used.

Proposition 1 [27] Let G be a connected graph, and let H be 
a spanning subgraph of G. Then,

( ) ( )R G R H≤
with equality if and only if G ≅ H.

From Proposition 1, it is easily observed as follows.

Lemma 1 For every graph G∈Gn,δ,

( ) ( ),nR G R K δ≥

with equality if and only if G is isomorphic to .nK δ

Now, we compute Kirchhoff indices for the two extre-
mal graphs Tn,Δ and .nK δ  It is shown in Refs. [25, 26] that

	
,

2 2
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To compute the Kirchhoff index of ,nK δ  we first address 
resistance distances in .nK δ  Given a graph G = (V,  E), let 
N(u) = {i∈V : iu∈E} and N[u] = N(u)∪{u}.

Lemma 2 [28] Let i and j be vertices of G such that they 
have the same neighbourhood N in V–{i, j}. Then,

2 , ,
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| |

ij
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N
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N
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
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

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Lemma 3 [29] Let G = (V, E) be a connected graph. Then, for 
any two vertices, a, b∈V (a ≠ b),

( )
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+ − =∑

Theorem 6 Let u be the exceptional vertex in ,nK δ  and let 
[ ] [ ].N u V N u= −  Then, resistance distances in nK δ  are 

given as
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Figure 1: Graphs T10,4 (left) and 4
10K  (right).
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Proof. If i, j∈N(u), then i and j are adjacent and have the 
same neighbourhood N = V–{i, j} with |N| = n – 2. Hence, 
by Lemma 2, it follows that Ωij = (2/n). If , [ ] ,i j N u∈  then 
again i and j are adjacent and Lemma 2 yields Ωij = (2/(n – 1)).

Now, suppose that j∈N(u). To compute Ωuj, we apply 
Lemma 3 to u and j, to obtain that

( )
( ) 2.uj uk jk

k N u
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∈

+ − =∑
By symmetry, it is easily seen that for any k∈N(u), 

Ωuk = Ωuj. Thus, the preceding equation becomes

( )

22 2 2 ( 1) ,uj jk
k N u n

δΩ Ω δ
∈

= − = − −∑

which yields that Ωuj = ((n + δ – 1)/nδ). The case for Ωuj 
with [ ]j N u∈  could be obtained in the same way.

Finally, we consider Ωij with i∈N(u) and [ ].j N u∈  
Again by Lemma 3, we have
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By symmetry, the preceding equation becomes
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Simple calculation leads to
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n
n n

n
n n

This gives Ωji = (2nδ – δ + 1)/(n(n – 1)δ).
Thus, the proof is complete.� □
As a corollary of Lemma 2, the Kirchhoff index of nK δ 

is obtained.

Corollary 1
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Recalling the results in Theorem 5 and Lemma 1, 
together with (11) and (12), the main result is obtained.

Theorem 7 Let G be a n-vertex connected graph with 
minimum degree δ and maximum degree Δ (Δ  ≥  2). Then,

δ ∆ ∆
∆

δ

∆ ∆

   + − + − +
− + − ≤ ≤ + −   −    

+ − −

1 2 2
1 ( ) ( 1)

3 21
( 1)( 2).

n nnn R G
n

The first equality holds if and only if ,nG K δ≅  and the second 
holds if and only if G ≅ Tn,Δ.

According to Theorems 4 and 7, bounds for the addi-
tive degree-Kirchhoff index follow directly.

Theorem 8 Let G be a connected graph with n vertices, m 
edges, minimum degree δ, and maximum degree Δ (Δ  ≥  2). 
Then,

δ
δ

δ
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the first equality holds if and only if G is complete.

4  �An Upper Bound for the Additive 
Degree-Kirchhoff Index

In Ref. [21], it was shown that for any G,

4 3 21( ) ( ).
3

R G n n n n+ ≤ − − +

In addition, it was conjectured that the maximum 
of R+(G) over all graphs is attained by the (1/3,1/3,1/3) 
barbell graph, which consists of two complete graphs on 
n/3 vertices united by a path of length n/3 and for which 

4( ) ( 2 / 27 ) .R G n+ �  As given in the following result, we 
improve the bound to 4( 1/ 8 ) .n�

Theorem 9 Let G be a connected graph with n vertices. Then,

31( ) ( 1) ( 14),
8

R G n n+ ≤ − +
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with equality if and only if G ≅ K2.

Proof. Let dij denote the distance between i and j in G. 
Then, by the definition of the additive degree-Kirchhoff 
index, we have
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By the Foster formula [30], which states that the sum 

of resistance distances between pairs of adjacent vertices 
is equal to n – 1, we have
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Then, by the fact that Ωij  ≤  dij, it follows that
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For i, j∈V such that dij  ≥  3, since i and j have no 
common neighbours, it follows that

1 ( ),ij i jd n d d≤ + − +

which gives

Ω
−

+ ≤ + ≤ + − − + ≤
2( 1)
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Noting that pairs of vertices at distance 3 is less than 
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Substitution of (14)–(16) back into (13) yields the 

desired result.
Equality in (14) holds only when the end vertices of 

each edge of G are n – 1, which means G is n – 1 regular, 

in other words, G is a complete graph. On the other hand, 
equality in (15) holds also requires that G has n – 1 edges, 
which indicates G is a tree. Thus, equality in Theorem 9 
holds only when G ≅ K2, and it is easily verified that R+(K2) 
does attain the upper bound.
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