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The phenomenological affinity approach to chemical kinetics based on mass-action rate expression
is revised. It is shown that the reaction rate is not an unambiguous function of affinity and that in ideal
mixtures with only elementary reactions thermodynamic coupling, i.e. a positive reaction rate and
negative affinity of some reaction step at the same time, is not possible. Neither does thermodynamic
coupling occur in a non-ideal system of elementary reactions where the mass-action rate equation
is written with activities in place of concentrations. The non-ideality and/or non-equality of reaction
orders to stoichiometric coefficients lead to more complex affinity-rate relationships than commonly
given which puts no explicit restrictions on affinity and rate signs. Theoretical considerations are
completed with results of numerical modelling made on several simple mechanisms. Various combi-
nations of affinity and rate signs and complex affinity-rate profiles were obtained. Modelling results
support the idea that affinity is much more a result of the time evolution of a reacting system and

corresponding time profiles of concentrations than the actual cause of reaction rates.
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1. Introduction

Affinity is often addressed in works that attempt
to find a thermodynamic basis or even the thermody-
namic causes of chemical reaction rates [1-9]. Two
principal relations are used:

Ar >0, (1)

A=RTIn(7/¥), (2)

sometimes called the de Donder inequality and equa-
tion, respectively [10]. Here A is the affinity, 7 and ¥
are the forward and reverse reaction rate, respectively,
and r is the overall rate: » = 7 — ¥ . The rates are con-
sidered to be positive (negative overall rate means that
reaction is running in the opposite direction, in other
words, the reversed reaction rate is positive and just
this direction is considered). The second relation, (2),
is very often transformed in the vicinity of the equi-
librium to an equation claimed to express a linear re-
lationship between reaction rate and affinity close to
equilibrium:

- Z(l_ 7 /7)) =71 —exp(—A/RT)] 3)

Because the forward rate is generally not constant and
is directly related to the overall rate r, this is gener-
ally not a linear relationship. The last equation has also
motivated the declaration of the affinity as a “thermo-
dynamic driving force” for a chemical reaction, i. e. as
a force determining its rate.

The first relation, (1), is, in fact, a result of the en-
tropic inequality (the second law of thermodynamics)
and should be generally, for R reactions, formulated as
follows:

R
ZAjrj ZO (4)
j=1

Modern irreversible thermodynamics proves that in-
equality (4) should be valid, at least in simple material
models [11-13]. Condition (4) is frequently and (un-
warrantedly) extended to each individual reaction in a
system of reactions and “thermodynamic coupling” is
introduced. It is said that a reaction with negative affin-
ity, called non-spontaneous, may be coupled to another
reaction of positive affinity and may run with a positive
overall reaction rate. For example, reaction 1 which
with negative affinity and

Ar <0 5)
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is coupled with reaction 2 such that
Air; +Ayr > 0. (6)

Thus, some reactions can be forced in their non-
spontaneous direction by other ones. However, there is
no direct proof that each individual reaction from a sys-
tem should satisfy an equation like (1). The only ther-
modynamic requirement for a system of reactions is (4)
and all discussions on coupling against spontaneity are
in this sense superfluous. Spontaneity in a system of
reactions should mean just conforming overall to con-
dition (4) with no call for positive individual affinities.
In a system of reactions, inequalities like (5) are quite
natural, or “spontaneous”, providing condition (4) is
maintained. It will be shown here that yet more restric-
tive conditions on the “coupling” can be derived. Let
us also note that Boudart has given examples where
potential coupled reactions do not occur in reality [10].

The second relation, (2), is also a special result of
limited validity as will be shown below.

Affinity-rate relationships have been discussed for
decades but several important points still remain over-
looked. Previous work [14] analyzed published exper-
imental proofs of linear relationship between reaction
rate and affinity and of thermodynamic coupling and
showed that the proofs are really doubtful. In this work,
the theoretical background is analyzed. Phenomeno-
logical theory and relations like (1), (2), which are
mostly used in published works, are discussed and tra-
ditional derivations are revised and extended. The lim-
itations of (2) are stated and generalizations to non-
ideal systems and systems of non-elementary reactions
are derived. Computer modelling is used to illustrate
the impacts on affinity time profiles and on the devel-
opment of affinity-rate relationships during the course
of the reaction. Affinity-rate relationships need not be
monotonous, need not be a function in the mathemat-
ical sense and may include (in a system of reactions)
any combination of signs. Modelling supports the idea
that affinity is much more a result of the time evolu-
tion of a reacting system and corresponding time pro-
files of concentrations than the cause of reaction rates.
It should be noted that modern irreversible thermo-
dynamics treatments lead to more general results and
these are reviewed elsewhere [15].

2. Theory

First, the traditional derivation of (2) (in a system of
reactions) will be reviewed but made in a more precise
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way which will clearly show what was tacitly assumed.
A general chemical reaction j is supposed in a reacting
mixture with the total number of components (symbol-
ized by [i]) equal to n, and the first m are considered to
be reactants:

0= Zvij[i} (7
i=1

(v;; is the stoichiometric coefficient, negative for reac-
tants and positive for products). Reaction (7) may rep-
resent the overall stoichiometric equation or a single
step in a reaction mechanism or network. The affinity
of this reaction (A;) is defined as

n
Aj=—Y vijui,
i=1

where L; is the chemical potential of component i. Ad-
ditional assumptions are as follows:

I. The thermodynamic equilibrium constant (K;)
can be identified with the kinetic equilibrium con-
stant, which is given by the ratio of the forward ( k;)
and reverse ( k;) rate constants (supposed to be non-
negative):

K; = ¥/ k; ®)

II. The traditional mass-action law for forward ( 7;)
and reversed ( 7;) reaction rates, which are also sup-
posed to be non-negative, applies.

III. Reaction orders are equal to the (absolute val-
ues of) stoichiometric coefficients.

IV. Ideal system and unit standard concentration are
assumed.

Assumptions I and III mean that only elementary re-
actions are considered. Then the affinity definition can
be reformulated:

n
Aj= —Z Vijli
i=1

n n
=—Y viju? —RT Y v;jIn(c;/c°)
= i=1

n
=RTInK;—RT ) In(c;)"
i=1

= ©)
n
=RTIn anl/(ci)"ij‘|
i=1
?jﬁl(cl)‘_/’j
1=
=RTIh — — =RTIn(7;/ 7))
ki I (e)™
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Here, ¢; is the concentration of the component i, ¢° is
the standard concentration (= 1 mol/L) and V;; = |v;;|.
Thus, for the system under consideration only, i.e.
system satisfying assumptions I-1V, (2) is recovered
and valid for each reaction in this system of reactions.
Moreover, for any reaction in this system it is impossi-
ble to get a negative affinity and positive rate simulta-
neously:

ri>0& 7> Fi=A;>0, (10
compare (9), and the “thermodynamic coupling” is of
no justification in this system.

Summarizing, (2) is a special result valid in an ideal
system with elementary reactions and it excludes ther-
modynamic coupling. This was usually ignored in pre-
vious works on affinity-rate relationships and thermo-
dynamic coupling. Previous treatments stopped at this
equation, usually without stating clearly these four as-
sumptions. Surprisingly, no discussion of the conse-
quences of relaxing some of them can be found. A gen-
eral modification of the affinity definition is therefore
given here.

Chemical potentials and, consequently, affinities are
generally expressed in terms of activities; suppose fol-
lowing model for activity: a; = %c;/c°, where ¥ is
the activity coefficient of component i and standard
concentration now need not be equal to one (in rele-
vant units). Further, suppose the general mass-action

. . . - m P
rate equation for the reaction j, r; = k; [1(c;)"/ —
i=1

< n . .

kj TI (ci)"i, where n;; is the reaction order of the
i=m+1

component i. Finally, let us define equilibrium of the

Jj-th reaction as follows:

(Aj=0)A(rj=0&TF;=Tj). (11)
From the affinity definition then follows:
n
Aj =RTIn KjH 1/(’}’,‘6,’/60)v1j
i=1
- = L .. m . Vv
kjkj T1 (i)™ T1(ci)"i (Yici/ )"
=RTInK;— "= -
KK T TT (e (nei/e)™
i=1 i=m+1
- . m 7
kjri [ (ci)" (ic /C )Vii
=RTInK;— -
ki7; T1 (ci)"i(vici/co)vi

1
3
JF
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(ci)" ™ (/)
! - — (12)
(ci)"s % (pei )™

where K; now refers to the true thermodynamic equi-
librium constant, i. e. no identification (8) is supposed.
Equilibrium conditions (11) lead to the following iden-
tity:

i=m+1

n

— -,H l(civeq)nij
Kij=ki/ k=20 =Kenj, (13)
.H (Cieq)"™

i=1

where “eq” stands for the equilibrium value. Alterna-
tively, the relationship between thermodynamic (K;)
and concentration-kinetic equilibrium constants (Kk, s
Ken, j) can be expressed from (12) as follows

—
Kij= kj/ kj

I (Cieq)"s ™" (feq /c)"
_ (I/K )l m+1
_H(Ci,eq)n” (Yl eq/c )v”
=, (14)

[T (Cieq)"s*
(K%]/K )l =m+1 -
H (Cieq)"s Vi
i=1
= Ky,chn.chv.j/Kjv

where

) I1 (Yi,eq/co)\_/ij
—’:’Zf‘ EH Yrea/ )V, (15)
I1(% eq/co) =1

i=1

Kyj=

n -

[T (Cieq)"
i=m+1

m v .

[T (cieq)™”

i=1

Kev = (16)

The general relation between reaction affinity and
rate (12) can also be written in the following shortened
way:

7KKy,
71QQenj’

introducing the thermodynamic reaction quotient Q; =

A;j=RTIn (17)

n
[T (a;)", and concentration-kinetic reaction quotient
i=1
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(an, j), similar to the corresponding concentration-
kinetic equilibrium constant (13).

Equations (12) or (17) are the most general relation-
ships between reaction affinity and rate for the activ-
ity model used and concentration mass-action kinetic
law. From these equations no direct simple statements
on the relationship between affinity and rate and their
signs can be made, and the occurrence of a reaction
with positive rate and negative affinity cannot be di-
rectly excluded. Moreover, (12) and (17) show that
affinity is in general a rather complicated function of
concentrations.

It should be also stressed that (17) is written to see
the relationship between the reaction affinity and rate
explicitly. Because the affinity definition can be rewrit-
ten as A; = RT In(K;/Q);) it follows from (17) that, in
fact, ¥;K j/(7jQcn,j) = 1 as can be easily checked.

To obtain a consistent thermodynamic and kinetic
description of the above defined equilibrium, rate con-
stants should be determined for the known equilibrium
composition and known thermodynamic equilibrium
constant from (14). In other words, there is no iden-
tification of the thermodynamic equilibrium constant
with the ratio of forward and backward rate constants.

General procedure of deriving the relationship (12)
can be simplified for ideal systems and reaction orders
equal to the absolute values of stoichiometric coeffi-
cients:

n
Aj :RTlnHKj/(c,-/co)"ij
i=

H( i/ )i

L
T
+

(18)

~.
Raps

(cifc® )
(efe0)"

05 = [1()" = ()F.

i=1

19)

Equilibrium conditions (11) give:

K/ kj=K;08 20)

M. Pekar - Affinity and Reaction Rates

and finally the same equation as (9) is obtained, i. e. no
negative affinity values for positive overall rate.

If reaction orders are equal to the absolute values
of stoichiometric coefficients in non-ideal systems the
situation is more complex:

n
Aj:RTlnHKj/(}/,-c,-/co)v"-/

i=1

K% T1 (e /)

=RTInK; ——— -
kjkj (Yiei/ )Y
i= m+1
—
k; 7, H(%/c )i

[ (v i/ )i

—_

::

1)

=RTInK;

k?

§:=

and equilibrium condition leads to the following equa-
tion:

n —
-« —H 1(Cleq) !
ki k="t v (22)
[T (ci, eq) Y
i=1
Thus:
A;j=RTIn Tk (23)
’”/ cv;Qy
where
n
Oy =[] (24)

i=1

Clearly, non-ideality and/or non-equality of reaction
orders and stoichiometric coefficients destroy the sim-
plicity of equations like (2) and do not a priori exclude
possibility of having some reactions with positive rate
and negative affinity in a system of reactions.

So far we have discussed the most common mass-
action law written in concentrations regardless thermo-
dynamic ideality or non-ideality. It is an easy task to
show that writing the mass-action law in activities with
reaction orders equal to the absolute values of stoichio-
metric coefficients and identifying kinetic and thermo-
dynamic equilibrium constants also lead to (9) or (2),
i. e. no thermodynamic coupling. Activity mass-action
rate equations are sometime used with success [16—
19]; however, they are not of “better generality” than
concentration based equations [20 —22]. Moreover, the



M. Pekar - Affinity and Reaction Rates

simple replacement of concentrations with activities in
mass-action rate equations for ion reactions in solution
does not work at all [23]. In this case, the Bronsted-
Bjerrum approach [23, 24], which can be supported by
the transition-state theory [24], may be used. Eckert
and Boudart indicated [24] that the same procedure
may be applied to non-ideal gas systems. For the re-
versible reactions this approach leads to some prob-
lems discussed elsewhere [15]. If we ignore them the
reaction rate is expressed as

g o P — Vs
rj= ki [T@)" vz = k; T ()" /7,2

i=1 i=m+1

where ;. is the activity coefficient of the activated
complex (transition state) of j-th elementary step. This
rate equation combined with equilibrium conditions
(11) also leads to (9) or (7), i.e. no thermodynamic
coupling. The problems mentioned above can be re-
solved by supposing different transition state activity
coefficients in forward and backward directions [15];
then the following equation is obtained:
k7T

Aj=RTInK; -5~ 25

! kT =
To be consistent with the common equilibrium hypoth-
esis of the transition-state theory both activity coeffi-
cients should equal in reaction equilibrium [15]. It is
an easy task to verify that this supposition and equilib-
rium conditions (11) lead to (9) or (7) once more. If we
relax this supposition the result is:

7 Vit Yiteq
T ¥i# Viteq

and no a priori statement on affinity and rate signs can
be given and thermodynamic coupling is not excluded.

At the end of this section one problem should be
noted. Thermodynamic equations and relations are
systematically expressed in terms of activities. Even an
ideal system does not in general mean that activity is
equal to concentration, but only that the activity coef-
ficient is equal to one and activity is then equal to the
ratio of the concentration and standard concentration.
Activity cannot be equal to concentration, because it
is a non-dimensional quantity whereas concentration
has dimensions and units. Therefore, even introducing
unity standard concentration in an ideal system does
not lead to identifying activity with concentration, but
at most to their identical numerical values (if proper

A;=RTIn (26)
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concentration units are selected). Furthermore, activ-
ity as well as many other thermodynamic quantities,
including the equilibrium constant, refer to some stan-
dard state and may have different values for different
standard states. On the contrary, mass-action rate equa-
tions do not refer to any standard state and are usu-
ally formulated in concentrations, and reaction rates
are not measured (or determined from measured con-
centration data) relative to some standard state. Dis-
cussing relations between kinetics and thermodynam-
ics, we have to check carefully if the selected standard
state is consistent with our kinetic data. If we formu-
late mass-action rate equation in terms of activities, we
should state the selected standard state and be aware
of its effect on the values of the reaction rate. Perhaps
it would be better to formulate the mass-action kinetic
law in ratios of concentration and standard concentra-
tion instead of in concentrations. Then, all rate con-
stants would have the same dimensions and units as
the reaction rate and, of course, will refer to the se-
lected standard state.

We have therefore systematically retained standard
concentrations in the development given above, ex-
cept for (9), which is just a reproduction of the tra-
ditional approach and, consequently, is valid relative
to the standard state of unit molar concentration only.
In some equations, we have combined expressions for
affinity as a function of activities and reaction rate as
a function of concentrations. Although in our deduc-
tions it is a matter of formal notation only, it causes no
problem generally, because activity itself is a function
of concentration.

We are ready to sum up our theoretical development.
In fact, we have not introduced any new theories or hy-
potheses. What we have done was to go several steps
further in the derivation of commonly used equations.
Extracting as much information as possible from clas-
sical relations, it was revealed that in many systems a
reaction cannot have positive rate and negative affin-
ity in the same time. In other words, “thermodynamic
coupling” is not possible in such systems. In some sys-
tems, namely non-ideal or with reaction orders differ-
ent from the absolute values of stoichiometric coeffi-
cients (i. e. in a system of non-elementary reactions), a
positive reaction rate and negative affinity at the same
time cannot be a priori excluded. Even here it is rather
improper to say that such a reaction is driven by some
other against its “spontaneous” direction. Thermody-
namics only gives an overall summary statement on the
sign of the product of the affinity and reaction rate for
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a system of reactions, compare (4), and does not pro-
vide a “spontaneity” criterion for individual reactions
in the system. The “spontaneity” of an isolated reaction
is something other than the “spontaneity” of a system
of reactions.

3. Modelling Method

Relationships between reaction affinity and rate
were studied using computer simulation of simple re-
action models and batch reacting system. All simula-
tions were made with the Maple 6.02a package (Water-
loo Maple, Inc., Canada). The following three models
were used:

Model M1 :
A+BSC+D

Model M2:

1. A+BSC+D
2. C+BSE+D

Model M3:
1. A+B&SC
2. C+BsSD

The standard state of unit concentration was supposed.

Model M1 can be solved analytically and was used
as an ideal system with reaction orders equal to the ab-
solute values of stoichiometric coefficients, i.e. with
the thermodynamic equilibrium constant equal to the
ratio of rate constants. Batch reactor differential bal-
ance equations for models M2 and M3 were solved
numerically using the Gear multistep method embed-
ded in the Maple software. These models were used
in the same way as model M1, and also with reaction
orders not equal to the absolute values of stoichiomet-
ric coefficients (in ideal system). In the latter, the fol-
lowing procedure was employed to ensure a consistent
thermodynamic and kinetic description of equilibrium.
For selected values of the initial concentrations and
thermodynamic equilibrium constants of both reaction
steps, the equilibrium concentrations were calculated
from the expressions for the thermodynamic equilib-
rium constants. Due to the overall material stoichio-
metric balance, the concentrations of only two species
needed to be calculated directly; the remaining ones
were calculated from the former. Calculated equilib-
rium concentrations were introduced into equilibrium
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rate equations (i. e. rate equations with zero overall rate
of each step) together with _§ele_gted values of reaction
orders and rate constants ki, k». <Ihe resulting equa-
tions were used to calculate ki, k».

Parameters used in the simulations are given in Ta-
bles 1-5. Affinities were calculated from the reaction
isotherm A; = RTIn(K;/Q;) for 298.15 K, using the
thermodynamic equilibrium constant and reaction quo-
tient. Units of most variables are purely formal in this
general modelling study and are therefore not given
throughout the following text. However, the formula
used to calculate the affinity gives its values in J-mol !,
and numbers in affinity figures are presented after di-
vision by 1000 and can be thus understood as given in
kJ-mol~!.

4. Modelling Results; Discussion

Reaction model M1 in fact qualitatively represents
many simple chemical reactions, even with numbers of
reactants or products other than two. Parameter values
used in simulations are given in Table 1.

The first example in Fig. 1 can be considered as
“classical” or expected. The affinity monotonously de-
creases during the reaction run (Figure 1a). Time pro-
files of forward and overall reaction rates resemble that
of affinity (data not shown). It has been shown [15] that
a linear relationship between reaction rate and affinity
can be obtained when the sum of the forward and re-
versed reaction rate is constant. The sum of forward
and backward rates achieves essentially constant value
at the time about 140. The backward reaction rate con-
tinuously increases up to the equilibrium value. The
almost linear dependence between the overall reaction
rate and affinity (Fig. 1b) falls well within the interval
of the almost constant sum of the forward and back-
ward rates.

Increasing the value of equilibrium constant (param-
eter set 2 in Table 1) did not change the shape of the
affinity profile whereas rate-affinity relation became
sigmoidal. The rate of the backward reaction was at
least three orders of magnitude lower (in spite of con-
tinuous increase) than any of the other two rates that
had very similar time profiles resembling that of affin-
ity. Close to equilibrium, the rate-affinity relationship
became almost linear; it is the region where the rate
changed by less than a factor of two — as can be eas-
ily checked, the logarithm is well approximated by a
straight line in any interval of twofold increase or de-
crease of its argument.
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Table 1. Parameters used in model M1 calculations (reac-
tion orders equal to the absolute values of stoichiometric
coefficients)?.

Set a b ¢ d % *
1 0.5 0.5 0 0 1072 1072
2 0.5 0.5 0 0 1072 1073
3 0.5 0.5 0.1 10 1072 1072

% a, b, ¢, d denote the initial concentration of A, B, C, D, resp.

(a)

154

10

100 200 t 300 400 500

(b)
0.0025

0.002 1

0.0015 1

0.001

0.0005 1

0 . .
0 5 10

A 15 20 25
Fig. 1. Affinity time profile (a) and reaction rate-affinity re-

lationship (b) in time interval (1; 500) for model M1 and pa-
rameter set 1 (see Table 1).

Preparing the initial mixture with sufficient amounts
of “products” (species C and D) the course of reaction
can be reversed. The affinity approaches equilibrium
from the negative side as Fig. 2 shows and also the
overall rate is everywhere negative (data not shown).
Here, the relation between the rate and affinity was al-
most linear over the whole run, again due to the nu-
meric properties of logarithm.

Model M2 combines the two reactions of model
M1 into one mechanism. The two steps have common
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Table 2. Parameters used in model M2 calculations with re-
action orders equei to thj absolute values of stoichiomet-
ric coefficients?; ky = k = 1072, Kj = K, = 107! and
ki/ ki =K;.

Set a b c d e
1 0.5 0.5 0.5 0 0
2 0.5 0.5 0 0 0
3 10 0.5 0 0 0.5

%a, b, ¢, d, e denote the initial concentration of A, B, C, D, E, resp.

0

-1

10 20 3';: 40 50 60

Fig. 2. Affinity time profile for model M1 and parameter set 3
(see Table 1).

components, and therefore time profiles of their affini-
ties may be different from those obtained when study-
ing each step individually as above. Parameter values
are given in Table 2.

Figure 3a shows only the affinity change from pos-
itive to negative values during the course of the reac-
tion (for the first reaction). In accordance with the the-
oretical development, the overall reaction rate crosses
the time axis at the same time, see Figure 3b. On the
rate-affinity curve, a “turning point” occurs — Fig. 3c,
which corresponds to the minima of rate and affinity.
Figure 3b also shows time profiles of the rates in both
directions as well as of the sum of the forward and re-
versed reaction rates. Comparison of Figures 3b and 3¢
supports findings on the linear rate-affinity relationship
within interval of the almost constant sum of the for-
ward and reverse reaction rates. Figure 3c also clearly
illustrates that the reaction rate cannot be viewed as a
(mathematical) function of affinity because there can
be found two rate values for one value of affinity. The
rates of both steps decrease in the beginning, and de-
crease of the first reaction rate is more rapid because
its reactant (B) is consumed in the second reaction also,
and it supplies another reactant (C) for the second step,
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(a)

200

e ————

-0.001 T T T
150 200

(©)

-0.0005 -

-0.0006
r

-0.0007 7

-0.0008

08 07 06 05

Fig. 3. (a) Affinity time profiles, A; (solid), A> (dashed);
(b) reaction rate time profiles for the first reaction, r; (solid),
71 (dotted), 7| (dashed), (7, + ¥7) (dash-doted); (c) reac-
tion rate-affinity relationship for the first reaction in time in-
terval (20; 80). Model M2 and parameter set 1 (see Table 2).

producing the common product (D). Finally, the con-
centrations of species C and D are so high that the first

reaction is reversed.
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200

(®

0.0002

0.00015

r

0.0001 4

5e-05-

0 . . T
0 10

(©)

0.0006 -

200

Fig. 4. (a) Affinity time profiles, A; (solid), A, (dashed);
(b) reaction rate-affinity realtionship for the second reaction
in time interval (0.1; 300); (c) reaction rate time profiles
for the second reaction r» (solid), 7> (dotted), ¥» (dashed),
(75 + ¥2) (dash-doted) (c). Model M2 and parameter set 2

(see Table 2).

The example in Fig. 4a shows simple affinity pro-
files — both are monotonously decreasing as expected.
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Table 3. Parameters used in model M2 calculations with re-
action orders (nx;) not equal to the absolute values of stoi-

chiometric coefficients?; ;1 = E =107, K =K, =101

Set ab,c de 05 1 L5 i s
nB2,1C2,

105 0 ncinpr n‘;infz nannp 01339 1072

2 05 0 nponm ';’;'I’ZBDII’ nganca 1072 0.2626

*a, b, c, d, e denote initial concentration of A, B, C, D, E, resp.

o_

-0.002 7

-0.004 1

-0.006 1

-0.008 1

4 -5 4 A S -2 -1

Fig. 5. Reaction rate-affinity relationship for the second re-
action from model M2 and parameter set 3 (see Table 2) in
time interval (0.1; 80).

0.0005

I
-0.0005 -

-0.001 7

o1 0 01 3{2 03 04 05

Fig. 6. Reaction rate-affinity relationship for the first reaction
from model M2 and parameter set 1 (see Table 3) in time
interval (5; 300).

However, the rate-affinity relationship of the second re-
action, is not monotonous, see Figure 4b. Once more,
the rate profile has little to do with the affinity profile
and is not determined by it. Quite different rate pro-
files can be obtained for similar affinity profiles. The
cause of the extreme in Figure 4b is the extreme in the
overall reaction rate itself; see Figure 4c. The second
reaction rate is zero at time zero, because of the lack of
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0.002
0.00151
.
0.0011
0.0005
o_ T T T T T T
015 ©01 005 O 005 0.1
A

Fig. 7. Reaction rate-affinity relationship for the second re-
action from model M2 and parameter set 2 (see Table 3) in
time interval (12; 200).

one of its reactants (C), and continuously increasing as
this reactant is formed. However, the other reactant (B)
is still consumed by the first reaction as well. Conse-
quently, its supply starts to be so small that the second
reaction rate starts to decrease.

The effect of the initial mixture composition on re-
versing (second) reaction is shown in Figure 5. The
affinity of this step is negative throughout the whole
run as well as its overall rate, both having minima at
time about 10. Again, two values of the reaction rate
can be found for one value of affinity.

As indicated in the theoretical part, by manipulation
of the reaction orders we can independently change the
signs (and magnitudes) of the affinity and reaction rate.
The corresponding examples, which now follow, are
based on set 2 from Table 2, whereas actual parameter
values are given in Table 3.

The first example, Fig. 6, shows that the rate of the
first reaction can become negative (and reaction re-
versed) while the affinity still retains a positive sign.
The second example, Fig. 7, shows a case where neg-
ative affinity is combined with a positive reaction rate
(of the second reaction).

The last two examples should not be viewed as pure
mathematical manipulations and merely formal results.
They may represent a real situation when measured
concentration profiles (simulated in the examples by
computer) are used together with the true thermody-
namic equilibrium constant to calculate affinity. The
non-correspondence between the signs of the affin-
ity and the rate may then occur when the sensitiv-
ity of the reaction rate to the concentrations of re-
acting species, determined by reaction orders, differs
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Table 4. Parameters used in model M3 calculations with re-
action orders equeg to tff absolute values of stoichiomet-
ric coefficients®; k1 = ky = 1072, K; = 103,K; = 1 and
ki/ ki = K;.

Set a b c d
1 1.5 0.5 0 0
2 1.5 0.5 0.2 0.2

*a, b, ¢, d denote initial concentration of A, B, C, D, resp.

0.0004

0.0003

0.0002 -

0.0001

o_

00001 - T T
0 2

A 4 6
Fig. 8. Reaction rate-affinity relationship for the second re-

action from model M3 and parameter set 1 (see Table 4) in
time interval (8; 1000).

from what is expected from the stoichiometric equation
(determined by stoichiometric coefficients). In other
words, when the actual mechanism is different than
what was used in the reaction quotient to calculate
affinity. The sensitivity is manifested in concentration
profiles.

The last model mechanism (M3) is a simpler ver-
sion of mechanism M2 with a reduced potential of the
second reaction to reverse the first one. For parameter
values, see Table 4.

First example has two extremes in the rate-affinity
curve of the second reaction; see Figure 8. The maxi-
mum corresponds to the maximum in its overall rate,
which then decreases to negative values and achieves a
minimum (data not shown) that is reflected as the min-
imum in the curve in Figure 8.

The last two examples show a stranger relation be-
tween the rate and affinity of the second reaction; see
Figure 9. The curve in Fig. 9a is a result of the multiple
extremes found in both individual time profiles. Figure
9b shows effect of reaction orders different than the
absolute values of stoichiometric coefficients (for pa-
rameters, see Table 5) — for the second reaction from
the reaction set M3, a positive overall reaction rate for
a negative affinity can be achieved.
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Table 5. Parameters used in model M3 calculations with re-
action orders (nx;) not equal to the absolute values of stoi-

chiometric coefficients?; E = E =107, K =K, =101

nB1,nCl - -
dn n k k
Al peo,npy B2 1 2

1.5 1.99 0.308 0 0.7 1 1.2 2.304x 1073 1.380 x 1072
% a, b, ¢, d denote initial concentration of A, B, C, D, resp.

a b c

(a)

0.0002 ]
0.0004 ]
" 5.0006 ]

-0.0008

-0.001 -
0.8

(b)

0.002

0.0015 7
I

0.001

0.0005

04 02 A 0 02 0.4

Fig. 9. Reaction rate-affinity relationship for the second re-
action from model M3 and parameter set 2 (see Table 4) in
time interval (0.1; 500) (a) and parameter set given in Table
5 in time interval (70; 3000) (b).

In conclusion it should be noted that in all exam-
ples (4) was fulfilled, and simulation results were thus
consistent with the thermodynamic requirements, i. e.
positive entropy production.

5. Conclusions

Affinity is much more a result of the time evolution
of a reacting system and corresponding time profiles
of concentrations than the genuine cause of the reac-
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tion rate. Affinity itself does not control the reaction
rate. Affinity is determined by the actual concentra-
tions, which in turn are result of the actual reaction
rate. Affinity is a specific and useful way of describ-
ing a reacting system and its time evolution.

Even from (3) it can be seen that the overall reaction
rate is not an unambiguous function of affinity. This
was lucidly proved by Samohyl within the framework
of rational thermodynamics [12, 13] and reviewed with
illustrative example and discussion in [15]. It was
shown that the overall reaction rate (of independent re-
actions) can be expressed as a function of affinity and a
quantity tentatively called constitutive affinity [15]. In-
terestingly, these findings are consequences of the al-
gebraic properties of reaction stoichiometry revealed
and analyzed by Bowen [25]. Other treatments within
the theory of continuum thermodynamics have shown
that rate-affinity relationships may be more complex
and rich and that even in equilibrium affinity and rate
need not vanish at the same time [26,27].

A linear relationship between the reaction rate and
its affinity, which is sometimes revealed, is a conse-
quence of specific behaviour of the logarithm function
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