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Liquid-state NMR experiments including edited-pulse angles are widely used to distinguish pro-
tonated and deuterated carbonyl groups in complex molecules. One of them is maximum quantum
correlation NMR spectroscopy (MAXY NMR), which is very suitable to separate CHn groups. The
product operator theory is used for the analytical description of these experiments for weakly coupled
spin systems. In this study, the MAXY NMR experiment is applied for weakly coupled ISn (I = 1/2;
S = 1; n = 1, 2, 3) spin systems using the product operator theory. A theoretical discussion and ex-
perimental suggestions for sub-spectral editing of CDn groups are also presented.
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1. Introduction

In complex molecules, liquid-state NMR experi-
ments including edited-pulse angles are widely used to
distinguish protonated and deuterated carbonyl groups.
These experiments can be classified into two sub-
groups as 13C and 1H NMR experiments. 13C NMR
experiments are based on polarization transfer from a
high natural abundance nucleus to a low natural abun-
dance nucleus to increase the sensitive enhancement of
the NMR spectra such as DEPT [1], INEPT [2] , SE-
MUT [3, 4] and POMMIE [5]. 1H NMR experiments
are more useful because of the high natural abun-
dance of the 1H nucleus such as MAXY [6], DEPT-
HMQC [7], RINEPT [8] and reverse-POMMIE [9].
2H NMR spectroscopy became a powerful technique
for different applications such as structure elucida-
tion and deuterium labeling [10, 11]. 13C and 2H are
the most useful stable isotopes for NMR-detected
metabolic labeling experiments [11, 12].

The product operator theory, as a simple quantum
mechanical method, has been developed for the ana-
lytical description of multiple-pulse NMR experiments
on weakly coupled spin systems in liquids [13 – 21]. In
this method, the spin operators themselves and their
direct products called product operators, are used. For
example, product operator description of 2D DEPT J-
resolved and SEMUT NMR spectroscopy for weakly
coupled ISn (I = 1/2; S = 1; n = 1, 2, 3) spin sys-
tems are reported elsewhere [22, 23]. A complete prod-
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uct operator theory for the IS (I = 1/2; S = 1) spin
system and application to the DEPT-HMQC NMR
experiment was recently presented in our previous
study [24].

In the POMMIE experiment the first maximum
quantum excitation was made for edited detection of
CHn groups [5]. Then, Bulsing et al. have generated
the pulse sequence, called reverse-POMMIE, to ob-
serve protons [9]. After some modifications, this tech-
nique has been edited and named as maximum quan-
tum correlation (MAXY) NMR spectroscopy by Liu
et al. [6]. By using the product operator theory, the-
oretical and experimental studies of some NMR ex-
periments related to MAXY NMR were performed for
CHn groups [6, 25 – 31].

In the present study, the MAXY NMR experiment
is applied for weakly coupled ISn (I = 1/2; S = 1;
n = 1, 2, 3) spin systems using the product operator
theory. Then, a theoretical discussion and experimen-
tal suggestions for sub-spectral editing of CDn groups
are presented. To the best of our knowledge, this will
be the first application of product operator theory to
MAXY NMR spectroscopy for CDn groups.

2. Theory

The product operator formalism is the expansion of
the density matrix operator in terms of matrix rep-
resentation of angular momentum operators for indi-
vidual spins. For the IS (I = 1/2; S = 1) spin system,
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four Cartesian spin angular momentum operators for
I = 1/2; EI , Ix, Iy, Iz, and nine Cartesian spin angu-
lar momentum operators for S = 1; ES, Sx, Sy, Sz, S2

z ,
[Sx,Sz]+, [Sy,Sz]+, [Sx,Sy]+, (S2

x − S2
y), can be easily

found [32]. So, 4× 9 = 36 product operators are ob-
tained with direct products of these angular momen-
tum operators for the IS (I = 1/2; S = 1) spin system.
Depending on the pulse experiment, the Cartesian spin
operator (S2

x −S2
y) is separated into two spin operators

of S2
x and S2

y . In this case there exist 40 product opera-
tors.

Time dependency of the density matrix is given
by [17]

σ(t) = exp(−iHt)σ(0)exp(iHt), (1)

where H is the total Hamiltonian, which consists of a
radio frequency (r. f.) pulse, chemical shift and spin-
spin coupling Hamiltonians, and σ(0) is the density
matrix at t = 0. After employing the Hausdorff for-
mula [17]

exp(−iHt)Aexp(iHt) = A− (it)[H,A]

+
(it)2

2!
[H, [H,A]]− (it)3

3!
[H, [H, [H,A]]]+ . . . ,

(2)

evolutions of product operators under the r. f. pulse,
chemical shift and spin-spin coupling Hamiltonians
can be easily obtained [13, 17, 19]. For a weakly cou-
pled spin system the spin-spin coupling Hamiltonian,
which is the secular part of scalar coupling, is HJ =
2πJIzSz. For example, the evolution of the IxS2

x prod-
uct operator under the spin-spin coupling Hamiltonian
is obtained as

IxS2
x

2πJIzSzt−−−−→
exp(−2iπJIzSzt)IxS2

x exp(−2iπJIzSzt)

= IxS2
x − (i2πJt)A(1)+

(i2πJt)2

2!
A(2)

− (i2πJt)3

3!
A(3)+ . . . ,

(3)

where

A(1) = [IzSz, IxS2
x ], (4)

A(2) = [IzSz,A(1)], (5)

A(3) = [IzSz,A(2)]. (6)

Table 1. Evolutions of 16 product operators under the spin-
spin coupling Hamiltonian (2πJIzSz) for the IS (I = 1/2;
S = 1) spin system [17 – 19, 23]. cnJ = cos(nπJt) and snJ =
sin(nπJt).

Product Evolution under the
operator spin-spin coupling Hamiltonian
Ix IySzs2J + Ix(1+S2

z (c2J −1))
Iy −IxSzs2J + Iy(1+S2

z (c2J −1))
Sx SxcJ +2IzSysJ

Sy SycJ −2IzSxsJ

IxSz IxSzc2J + IyS2
z s2J

IySz IySzc2J − IxS2
z s2J

IzSx IzSxcJ + 1
2 SysJ

IzSy IzSycJ − 1
2 SxsJ

IxSx IxSxcJ + Iy[Sx,Sz]+sJ

IxSy IxSycJ + Iy[Sy,Sz]+sJ

IySx IySxcJ − Ix[Sx,Sz]+sJ

IySy IySycJ − Ix[Sy,Sz]+sJ

IxS2
z IxS2

z c2J + IySzs2J

IyS2
z IyS2

z c2J − IxSzs2J

IxS2
y IxS2

y + 1
2 IxS2

z (c2J −1)+ 1
2 IySzs2J

IyS2
y IyS2

y + 1
2 IyS2

z (c2J −1)− 1
2 IxSzs2J

Using the commutation relations,

IxS2
x

2πJIzSzt−−−−→ IxS2
x − (i2πJt)

i
2

IySz

+
(i2πJt)2

2!
1
2

IxS2
z −

(i2πJt)3

3!
i
2

IySz + . . .

(7)

is obtained. In order to get the generalized form for the
evolution of the IxS2

x product operator under the spin-
spin coupling Hamiltonian, some addition and subtrac-
tion can be made as follows:

IxS2
x

2πJIzSzt−−−−→ IxS2
x − (i2πJt)

i
2

IySz

+
(i2πJt)2

2!
1
2

IxS2
z −

(i2πJt)3

3!
i
2

IySz + . . .

+
1
2

IxS2
z −

1
2

IxS2
z .

(8)

Then, using sine and cosine series,

IxS2
x

2πJIzSzt−−−−→ IxS2
x +

1
2

IxS2
z (c2J −1)+

1
2

IySzs2J (9)

is obtained, where c2J = cos(2πJt) and s2J =
sin(2πJt).

Evolutions of 16 product operators under the spin-
spin coupling Hamiltonian for the IS (I = 1/2; S = 1)
spin system are known and can be found in the liter-
ature [13, 17 – 19, 23]. They are presented in Table 1.
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Fig. 1. Pulse sequence of MAXY
NMR experiment.

Table 2. Evolutions of 18 product operators under the spin-
spin coupling Hamiltonian (2πJIzSz) for the weakly coupled
IS (I = 1/2; S = 1) spin system [24]. cnJ = cos(nπJt) and
snJ = sin(nπJt).
Product Evolution under the
operator spin-spin coupling Hamiltonian
S2

x
1
2 S2

x (c2J +1)− 1
2 S2

y (c2J −1)+ Iz[Sy,Sx]+s2J

S2
y

1
2 S2

y (c2J +1)− 1
2 S2

x (c2J −1)− Iz[Sy,Sx]+s2J

IzS2
x

1
2 IzS2

x (c2J +1)− 1
2 IzS2

y (c2J −1)+ 1
4 [Sy,Sx]+s2J

IzS2
y

1
2 IzS2

y (c2J +1)− 1
2 IzS2

x (c2J −1)− 1
4 [Sy,Sx]+s2J

Ix[Sx,Sz]+ Ix[Sx,Sz ]+cJ + IySxsJ

Ix[Sy,Sz ]+ Ix[Sy,Sz]+cJ + IySysJ

Iy[Sx,Sz ]+ Iy[Sx,Sz]+cJ − IxSxsJ

Iy[Sy,Sz ]+ Iy[Sy,Sz]+cJ − IxSysJ

[Sx,Sz]+ [Sx,Sz ]+cJ +2Iz[Sy,Sz ]+sJ

[Sy,Sz]+ [Sy,Sz ]+cJ −2Iz[Sx,Sz ]+sJ

[Sx,Sy]+ [Sx,Sy]+c2J +2Iz(S2
y −S2

x)s2J

Iz[Sx,Sz]+ Iz[Sx,Sz ]+cJ + 1
2 [Sy,Sz]+sJ

Iz[Sy,Sz]+ Iz[Sy,Sz]+cJ − 1
2 [Sx,Sz]+sJ

Iz[Sx,Sy]+ Iz[Sx,Sy]+c2J + 1
2 (S2

y −S2
x )s2J

IxS2
x IxS2

x + 1
2 IxS2

z (c2J −1)+ 1
2 IySzs2J

IyS2
x IyS2

x + 1
2 IyS2

z (c2J −1)− 1
2 IxSzs2J

Ix[Sx,Sy]+ Ix[Sx,Sy]+
Iy[Sx,Sy ]+ Iy[Sx,Sy]+

Table 3. Evolutions of nine angular momentum operators un-
der the chemical shift Hamiltonian (ΩSSz) for S = 1 [24].
cns = cos(nΩ st) and sns = sin(nΩ st).
Angular momentum Evolution under the
operator chemical shift Hamiltonian
Sx SxcS +SysS

Sy SycS −SxsS

Sz Sz

[Sx,Sy]+ [Sx,Sy]+c2S +(S2
y −S2

x)s2S

[Sx,Sz]+ [Sx,Sz]+cS +[Sy,Sz ]+sS

[Sy,Sz]+ [Sy,Sz ]+cS − [Sx,Sz ]+sS

S2
x

1
2 S2

x (c2S +1)− 1
2 S2

y (c2S −1)+ 1
2 [Sx,Sy]+s2S

S2
y

1
2 S2

y (c2S +1)− 1
2 S2

x (c2S −1)− 1
2 [Sx,Sy]+s2S

S2
z S2

z

The E , Iz, IzSz, Sz, S2
z and IzS2

z product operators do not
change under the spin-spin coupling Hamiltonian for

Table 4. Evolutions of nine angular momentum operators un-
der the r. f. pulse Hamiltonian (θSx) at axes of x for S =
1 [24]. cnθ = cos(nθ ) and snθ = sin(nθ ).
Angular momentum Evolution under the
operator r. f. pulse Hamiltonian
Sx Sx
Sy Sycθ +Szsθ
Sz Szcθ −Sysθ
[Sx,Sy]+ [Sx,Sy]+cθ +[Sx,Sz]+sθ
[Sx,Sz ]+ [Sx,Sz]+cθ − [Sx,Sy]+sθ
[Sy,Sz]+ [Sy,Sz]+c2θ − (S2

y −S2
z )s2θ

S2
x S2

x

S2
y

1
2 S2

y(c2θ +1)− 1
2 S2

z (c2θ −1)+ 1
2 [Sy,Sz]+s2θ

S2
z

1
2 S2

z (c2θ +1)− 1
2 S2

y (c2θ −1)− 1
2 [Sy,Sz]+s2θ

the IS (I = 1/2; S = 1) spin system. Evolutions for the
rest 18 product operators are obtained in our previous
work [24]. They are presented in Table 2. For S = 1,
evolutions of nine angular momentum operators under
the chemical shift and the r. f. pulse Hamiltonians are
given in Tables 3 and 4, respectively [24].

At any time during the experiment, the ensemble av-
eraged expectation value of the spin angular momen-
tum, e. g. for Iy, is

〈Iy〉 = Tr[Iyσ(t)], (10)

where σ(t) is the density matrix operator calculated
from (2) at any time. As 〈Iy〉 is proportional to the mag-
nitude of the y-magnetization, it represents the signal
detected on the y-axis. In order to estimate the free in-
duction decay (FID) signal of a multiple-pulse NMR
experiment, the density matrix operator should be ob-
tained at the end of the experiment.

3. Results

For the product operator description of the MAXY
NMR experiment, the pulse sequence illustrated in
Fig. 1 is used [6], where the density matrix operator at
each stage of the experiment is labeled with numbers,
and 13C is treated as spin I and 2H (D) as spin S. In
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Spin system Product operators (O) ∑n
i=1 Tr[SiyO]

IS Sy 4
IS2 S1y +S2y 24

S1yS2
2 j +S2

1 jS2y 16
S1yS2

2 j −S2
1 jS2y 0

IS3 S1y +S2y +S3y 108
S1yS2

2 j +S1yS2
3 j +S2

1 jS2y +S2yS2
3 j +S2

2 jS3y +S2
1 jS3y 144

(S1yS2
2 j +S1yS2

3 j +S2yS2
3 j)− (S2

1 jS2y +S2
1 jS3y +S2

2 jS3y) 0
S1yS2

2 jS
2
3k +S2

1 jS2yS2
3k +S2

1 jS
2
2kS3y 48

(S1yS2
2 jS

2
3k +S2

1 jS2yS2
3k +S2

1 jS
2
2kS3y)− (S1yS2

2 jS
2
3k +S2

1 jS2yS2
3k +S2

1 jS
2
2k) 0

Table 5. Results of ∑n
i=1 Tr[SiyO]

calculations for some of the ob-
servable product operators for
the ISn (I = 1/2; S = 1; n = 1,
2, 3) spin systems ( j = x,y and
k = x,y).

the pulse sequence, ∆ is the coupling evolution delay,
∆′ is a short compensation delay and t is the acquisi-
tion time. The optimum value of ∆ is 1/(2JIS) for this
experiment. Starting from the density matrix operator
at thermal equilibrium, one should apply the required
Hamiltonians during the pulse sequence and obtain the
density matrix operator at the end of the experiment.
For multi-spin systems, to follow these processes by
hand becomes too difficult. In order to overcome this
problem, a computer program written in Mathematica
is used. Thus, the density matrix operators at the end of
the experiment are obtained for different spin systems
such as IS, IS2 and IS3 (I = 1/2; S = 1).

3.1. IS Spin System

For the IS spin system,

σ1 = Sz (11)

is the density matrix operator at thermal equilibrium,
and then we obtain

σ2 = −Sy, (12)

σ3 = −2IzSx, (13)

σ4 = 2IySx, (14)

σ5 = −2Ix[Sx,Sz]+, (15)

σ6 = 2Ix[Sx,Sy]+. (16)

At this point all spins are excited to their possible high-
est heteronuclear multiple-quantum level. Then,

σ10 = 2Ix[Sx,Sy]+cθ + 2Ix[Sx,Sz]+sθ , (17)

σ13 = −2Ix[Sx,Sy]+cθ + Sysθ , (18)

σ14 = −2Ix[Sx,Sy]+cθ c2S + Sysθ cS −Sxsθ sS

+ 2IxS2
xcθ s2S −2IxS2

ycθ s2S
(19)

are obtained. In the last density matrix operator, only
the second term contributes to the signals, as acquisi-
tion is taken along y-axes for spin S. Now, it is nec-
essary to obtain the ∑n

i=1 Tr[SiyO] values of observable
product operators indicated by O. For the ISn (I = 1/2;
S = 1; n = 1, 2, 3) spin systems, ∑n

i=1 Tr[SiyO] values
of all observable product operators are calculated by
a computer program in Mathematica. The results are
given in Table 5. Using Table 5,

My(t) ∝ 〈Sy〉 = Tr[Syσ14] = 4sθ cS (20)

is obtained. In the above and following equations,
snθ = sin(nθ ), cnθ = cos(nθ ), cnS = cos(nΩSt) and
snS = sin(nΩSt).

3.2. IS2 Spin System

For the IS2 spin system, σ1 is the density matrix op-
erator at thermal equilibrium:

σ1 = S1z + S2z. (21)

22 observable terms are obtained at the end of the ex-
periment:

σ14 =
1
2
(2S1y + 2S2y−S1yS2

2x −S2
1xS2y

−S1yS2
2y −S2

1yS2y)sθ cS

− 1
2
(S1yS2

2x + S2
1xS2y + S1yS2

2y + S2
1yS2y)c2θ sθ cS

− 1
2
(S1yS2

2x −S2
1xS2y + S1yS2

2y −S2
1yS2y)sθ c2ScS

− 1
2
(S1yS2

2x −S2
1xS2y + S1yS2

2y −S2
1yS2y)

· c2θ sθ cSc2S
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Fig. 2. Relative signal intensity of
MAXY NMR for CD, CD2 and
CD3 groups as function of the pulse
angle θ .

− 1
2
(S1yS2

2x −S2
1xS2y + S1yS

2
2y −S2

1yS2y)

· cθ s2θ sSs2S. (22)

Using the trace values for the observable terms given
in Table 5,

My(t) ∝ 〈S1y〉+〈S2y〉= Tr[S1yσ14]+Tr[S2yσ14], (23)

〈S1y〉+ 〈S2y〉 = 8(sθ cS −2c2θ sθ cS) (24)

is obtained.

3.3. IS3 Spin System

For the IS3 spin system, applying the same proce-
dure, 188 observable terms are obtained at the end of
the experiment by using the computer program. Using
the trace values in Table 5,

〈S1y〉+ 〈S2y〉+ 〈S3y〉
= 12(sθ cS −4c2θsθ cS + 4c2

2θ sθ cS)
(25)

is found.

4. Discussion

The ∑n
i=1 Tr[Siyσ14] values obtained in the preced-

ing section for IS, IS2 and IS3 spin systems represent
the FID signals of MAXY NMR for CD, CD2 and
CD3 groups, respectively. The ∑n

i=1 Tr[Siyσ14] values

for the ISn (I = 1/2; S = 1; n = 1, 2, 3) spin systems
can be generalized as

n

∑
i=1

Tr[Siyσ14](CDn) = 4n(1−2c2θ)n−1sθ cS. (26)

The ∑n
i=1 Tr[Siyσ14] values can be normalized by mul-

tiplication with 6/(4nTr(E)). Here E is the unity prod-
uct operator for the corresponding spin system. Then,
normalized values become as follows:

Tr[Syσ14](CD) = sθ cS, (27)

2

∑
i=1

Tr[Siyσ14](CD2) =
1
3
(1−2c2θ)sθ cS, (28)

3

∑
i=1

Tr[Siyσ14](CD3) =
1
9
(1−2c2θ)2sθ cS. (29)

Normalized ∑n
i=1 Tr[Siyσ14] values can be written in a

generalized form of

n

∑
i=1

Tr[Siyσ14](CDn) =
1

3n−1 (1−2c2θ)n−1sθ cS. (30)

The plots of these generalized functions are presented
in Figure 2. As seen in this figure, the relative signal in-
tensities of CD, CD2 and CD3 groups vary as functions
of θ . In the MAXY NMR experiment of CDn groups,
the real relative signal intensities found from (26) are
given in Table 6. As seen in Table 6 and Fig. 2, when
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Table 6. Real relative signal intensities of MAXY NMR ex-
periment of CDn groups for several pulse angles θ .

Spin system θ = 30◦ and 150◦ θ = 45◦ and 135◦ θ = 90◦

IS(CD) 1
2 0.707 1

IS2(CD2) 0 1.414 6
IS3(CD3) 0 2.121 27

the experiment is performed for the angle of 30◦, only
CD groups will be observed, giving a positive sig-
nal. For the angle 90◦, all CD, CD2 and CD3 groups
will give positive signals with the real relative signal
intensities of 1 : 6 : 27. When the pulse angle is 45◦,
real relative signal intensities of the CD, CD2 and
CD3 groups will be 0.707 : 1.414 : 2.121. By compar-
ing their relative signal intensities obtained for the an-
gles of 90◦ and 45◦, one can easily identify CD2 and
CD3 groups from each other. As a result, the MAXY
NMR experiment can be used for sub-spectral edit-
ing of CDn groups. In deuterium labeling it is of in-

terest to determine whether the methyl group is trans-
ferred as a whole, leading to 13CD3-containing com-
pounds, or leading to 13CD2H- or 13CDH2-containing
compounds [11, 33]. MAXY NMR of CDn groups can
be also used for this purpose.

5. Conclusions

The product operator formalism became a use-
ful technique for the analytical description of mul-
tiple-pulse and edited-pulse NMR experiments for
weakly coupled spin systems including spin-1/2 and
spin-1 [6, 13 – 24]. In this study, by using the prod-
uct operator theory, an analytical description of the
MAXY NMR experiment is presented for ISn (I = 1/2;
S = 1; n = 1, 2, 3) spin systems. Then, theoretical dis-
cussion and experimental suggestions are presented in
order to distinguish CD, CD2 and CD3 groups from
each other.
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