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The critical behaviour of the ferromagnetic spin- 3
2 Blume-Emery-Griffiths model with repulsive

biquadratic coupling in the absence and presence of an external magnetic field is studied by using
the lowest approximation of the cluster variation method, which is identical with the mean-field
approximation. Thermal variations of the order parameters are investigated for different values of the
interaction parameters and the external magnetic field. The complete phase diagrams of the system
are calculated in the (kT/J,K/J), (kT/J,D/J) and (kT/J,H/J) planes. Five new phase diagram
topologies are obtained, which are either absent from previous approaches or have gone unnoticed.
A detailed discussion and comparison of the phase diagrams is made.
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1. Introduction

The spin- 3
2 Ising model Hamiltonian with bilin-

ear (J) and biquadratic (K) nearest-neighbour pair in-
teractions and a single-ion potential or crystal-field in-
teraction (D) is known as the spin- 3

2 Blume-Emery-
Griffiths (BEG) model and is probably the simplest
extension of the spin-1 BEG model, which presents
a rich variety of critical and multicritical phenomena.
The spin- 3

2 BEG model is defined by the Hamiltonian

H = −J ∑
〈i j〉

SiS j −K ∑
〈i j〉

S2
iS2

j + D(∑
i

S2
i), (1)

where each Si can take the values ±3/2 and ±1/2
and 〈i j〉 indicates summation over all pairs of nearest-
neighbour sites.

The spin- 3
2 BEG model, with J and K interactions,

was initially introduced [1] in connection with ex-
perimental results on magnetic and crystallographic
phase transitions in some rare-earth compounds such
as DyVO4 [2], and its phase diagram was determined
within the mean-field approximation (MFA). A mod-
ified version of the spin- 3

2 Ising model was later in-
troduced [3] to describe tricritical properties in ternary
fluid mixtures and was also solved within the MFA.
The results were compared with experimental obser-
vations on the system ethanol/water/carbon dioxide.
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The spin- 3
2 BEG model is the most general spin- 3

2
Ising model. The spin- 3

2 Ising model Hamiltonian with
only J and D interactions is known the spin- 3

2 Blume-
Capel (BC) model and the spin- 3

2 Ising model Hamil-
tonian with only J and K interactions is known as
isotropic spin- 3

2 BEG model.
The critical properties of the ferromagnetic spin-

3
2 BEG model for K/J > 0 have been studied, and
its phase diagrams have been presented by a vari-
ety of methods, such as renormalization-group (RG)
methods [4], the effective field theory (EFT) [5], the
Monte Carlo (MC) simulations and a density-matrix
RG method [6]. An exact formulation of the model on
a Bethe lattice was studied by using the exact recursion
equations [7].

On the other hand, the ferromagnetic spin- 3
2

BEG model with repulsive biquadratic coupling, i. e.
K/J < 0 has also been studied. An early attempt to
study the spin- 3

2 BEG model with K/J < 0 was made
by Sâ Barretto and De Alcamtara Bonfim [8], and
Bakkali et al. [9] within the MFA and also the MC
calculation, and the EFT, respectively. Sâ Barretto
and De Alcamtara Bonfim [8] calculated only the
phase diagrams for the ferromagnetic isotropic spin-
3
2 BEG model and Bakkali et al. [9] also presented
two phase diagrams: one for the ferromagnetic spin- 3

2
BC model and the other for the ferromagnetic isotropic
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spin- 3
2 BEG model. Tucker [10] studied the ferro-

magnetic spin- 3
2 BEG model with K/J < 0 by us-

ing the cluster variation method in pair approximation
(CVMPA) and only presented the phase diagrams of
the spin- 3

2 BC model and isotropic spin- 3
2 BEG model

for several values of the coordination number. Back-
hich and El Bouziani [11] calculated the phase dia-
gram of the model in the (kT/J,D/J) plane for only
the two different values of K/J within an approxi-
mate renormalization-group approach of the Migdal-
Kadanoff type. Hence, in these studies [9 – 11], only
some portions of the global phase diagrams of the
ferromagnetic spin- 3

2 BEG model in a zero external
magnetic field have been considered. Recently, Ekiz
et al. [12] investigated the ferromagnetic spin- 3

2 BEG
model in a Bethe lattice using the exact recursion
equations and presented the phase diagrams in the
(kT/J,K/J) plane for several values of D/J and in the
(kT/J,D/J) plane for several values of K/J in the ab-
sence of an external magnetic field, H. Ekiz [13] ex-
tended the previous work for the presence of an ex-
ternal magnetic field [12]. He presented one phase dia-
gram in the (kT/J,H/J) plane and for K/J =−0.5 and
D/J = 1.0 and one phase diagram in the (kT/J,K/J)
plane for H/J = 2.0 and D/J = 0.5 for the coordina-
tion numbers q = 3, 4, 6 and 8.

The purpose of the present paper is to study the tem-
perature dependence of order parameters of the two-
sublattice ferromagnetic spin- 3

2 BEG model for dif-
ferent values of interaction parameters and an exter-
nal magnetic field, to calculate the global phase dia-
grams of the spin- 3

2 BEG model in the absence and
presence of the external magnetic field in detail, and to
compare the results with the approximate methods [8 –
11] and the exact results on the Bethe lattice [12, 13].
These calculations have been carried out by using the
lowest approximation of the cluster variation method
(LACVM) [14], which is identical with the MFA. Our
recent works [15 – 17] display that the LACVM, in
spite of its simplicity and limitations such as the cor-
relations of spin fluctuations have not been considered,
is an adequate starting point in which, within this theo-
retical framework, it is easy to determine the complete
phase diagrams. It also predicts the existence of mul-
ticritical points and it gives phase diagrams, that were
obtained by exact and more sophisticated methods.

Finally, we should also mention that recently
many researches have investigated the antiferromag-
netic spin- 3

2 BC [15] and spin- 3
2 BEG [16] mod-

els and found very rich phase diagram topologies.

Moreover, random spin- 3
2 antiferromagnetic Heisen-

berg chains [18] and the random quantum antiferro-
magnetic spin- 3

2 chain [19] have been studied using the
RG calculations.

The remainder of this work is organized as fol-
lows. In Section 2, we define the model briefly and
obtain its solutions at equilibrium within the LACVM.
Thermal variations of the order parameters are inves-
tigated in Section 3. In Section 4, transition tempera-
tures are calculated precisely, and the phase diagrams
are presented in the (kT/J,K/J), (kT/J,D/J) and
(kT/J,H/J) planes. Section 5 contains the summary
and discussion.

2. Model and Method

The spin- 3
2 BEG model is defined as a two-

sublattice model with spin variables Si = ± 3
2 , ± 1

2 and
S j = ± 3

2 , ± 1
2 on sites of sublattices A and B, respec-

tively. The average value of each of the spin states or
states probability will be denoted by XA

1 , XA
2 , XA

3 and
XA

4 on the sites of sublattice A and XB
1 , XB

2 , XB
3 and XB

4
on the sites of sublattice B, which are also called in-
ternal or the state or point variables. XA

1 , XB
1 ; XA

2 , XB
2 ;

XA
3 , XB

3 ; XA
4 , XB

4 are the fractions of the spin values
+ 3

2 , + 1
2 , − 1

2 and − 3
2 on A, B sublattices, respectively.

These variables obey the following two normalization
relations for A and B sublattices:

4

∑
i=1

XA
i = 1 and

4

∑
j=1

XB
j = 1. (2)

In order to account for the possible two-sublattice
structure we need six long-range order parameters,
which are introduced as follows: MA ≡ 〈SA

i 〉, QA ≡
〈(SA

i )2〉, RA ≡ 〈(SA
i )3〉, MB ≡ 〈SB

j 〉, QB ≡ 〈(SB
j )

2〉,
RB ≡ 〈(SB

j )
3〉, for A and B lattices, respectively. 〈. . .〉

denotes the thermal average MA and MB are the aver-
age magnetizations which are the excess of one orien-
tation over the other orientation, called magnetizations.
QA and QB are the quadrupolar moments which are the
average squared magnetizations, and RA and RB are the
octupolar order parameters for A and B sublattices, re-
spectively.

The sublattice order parameters can be expressed in
terms of the internal variables and are given by

MA ≡ 〈SA
i 〉 =

3
2
(XA

1 −XA
4 )+

1
2
(XA

2 −XA
3 ),

MB ≡ 〈SB
j 〉 =

3
2
(XB

1 −XB
4 )+

1
2
(XB

2 −XB
3 ),
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QA ≡ 〈(SA
i )2〉 =

9
4

XA
1 +

1
4

XA
2 +

1
4

XA
3 +

9
4

XA
4 ,

QB ≡ 〈(SB
j )

2〉 =
9
4

XB
1 +

1
4

XB
2 +

1
4

XB
3 +

9
4

XB
4 ,

RA ≡ 〈(SA
i )3〉 =

27
8

(XA
1 −XA

4 )+
1
8
(XA

2 −XA
3 ),

RB ≡ 〈(SB
j )

3〉 =
27
8

(XB
1 −XB

4 )+
1
8
(XB

2 −XB
3 ). (3)

Using (2) and (3), the internal variables can be ex-
pressed as linear combinations of the order parameters:

XA
1 =

1
4

(
QA − 1

4

)
+

1
6

(
RA − MA

4

)
,

XB
1 =

1
4

(
QB − 1

4

)
+

1
6

(
RB − MB

4

)
,

XA
2 =

1
4

(
9
4
−QA

)
+

1
2

(
9
4

MA −RA

)
,

XB
2 =

1
4

(
9
4
−QB

)
+

1
2

(
9
4

MB −RB

)
,

XA
3 =

1
4

(
9
4
−QA

)
+

1
2

(
RA − 9

4
MA

)
,

XB
3 =

1
4

(
9
4
−QB

)
+

1
2

(
RB − 9

4
MB

)
,

XA
4 =

1
4

(
QA − 1

4

)
+

1
6

(
1
4

MA −RA

)
,

XB
4 =

1
4

(
QB − 1

4

)
+

1
6

(
1
4

MB −RB

)
.

(4)

The Hamiltonian of such a two-lattice ferromagnetic
spin- 3

2 BEG model in an external magnetic field is

H = −J ∑
〈i j〉

SiS j −K ∑
〈i j〉

S2
i S2

j

+ D

(
∑

i
S2

i +∑
j

S2
j

)
−H

(
∑

i
Si +∑

j
S j

)
,

(5)

where J, K, D and H describe the bilinear interaction,
biquadratic interaction, the single-ion anisotropy and
an effect of an external magnetic field, respectively.
The Hamiltonian and phase diagrams are invariant un-
der the transformation H →−H and S →−S. The bi-
linear and biquadratic interactions are restricted to the z
nearest neighbour pair of spin, which is absorbed in J
and K.

The equilibrium properties of the system are de-
termined by the LACVM [14], which is identical to
the MFA. The method consists of the following three
steps: (i) consider a collection of weakly interacting
systems and define the internal variables; (ii) obtain
the weight factor in terms of the internal variables; and
(iii) find the free energy expression and minimize it
with respect to internal variables.

The weight factors W A and W B, which are the num-
ber of ways the internal variables can be arranged over
the sites, can be expressed in terms of the internal vari-
ables for the A and B sublattices, respectively, as

W A =
NA!

4
∏
i=1

(XA
i NA)!

and W B =
NB!

4
∏
j=1

(XB
j NB)!

, (6)

where NA and NB are the number of lattice points
on the A and B sublattices, respectively. On the other
hand, a simple expression for the internal energy of the
system is found by working out (5) in the LACVM.
This leads to

E
N

= −JMAMB −KQAQB

+ D(QA + QB)−H(MA + MB),
(7)

where N (N = NA + NB) is the number of total lattice
points. Substituting (3) into (7), the internal energy per
site can be written as

E
N

= −J
[

3
2
(XA

1 −XA
4 )+

1
2
(XA

2 −XA
3 )
][

3
2
(XB

1 −XB
4 )+

1
2
(XB

2 −XB
3 )
]

−K
[

9
4
(XA

1 + XA
4 )+

1
4
(XA

2 + XA
3 )
][

9
4
(XB

1 + XB
4 )+

1
4
(XB

2 + XB
3 )
]

+ D
[

9
4
(XA

1 + XA
4 )+

1
4
(XA

2 + XA
3 )+

9
4
(XB

1 + XB
4 )+

1
4
(XB

2 + XB
3 )
]

−H
[

3
2
(XA

1 −XA
4 )+

1
2
(XA

2 −XA
3 )+

3
2
(XB

1 −XB
4 )+

1
2
(XB

2 −XB
3 )
]
.

(8)
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Fig. 1. Thermal variations of the sublattice order parameters, MA, MB, QA and QB. TC and Tt are the second- and first-order
phase transition temperatures for the sublattice order parameters. TCM and TCQ represent the critical or the second-order
phase transition temperatures for only the sublattice magnetization and quadrupolar order parameters, respectively. (a) Two
second-order phase transitions, one from the f3/2 phase to d phase for K/J = 0.25 and D/J = 0.5 (thick solid lines) and the
other one from the f1/2 phase to d phase for K/J = −0.5 and D/J = 0.5 (thin solid lines). (b) First-order phase transition
from the f3/2 phase to the d phase. K/J = 1.25 and D/J = 1.5. (c) Two successive phase transitions in which the first one is
a first-order phase transition from the f3/2 phase to the f1/2 phase and the second one is a second-order phase transition from
the f1/2 phase to the d phase. K/J = −0.01 and D/J = 0.5. (d) Two successive second-order phase transitions in which the
first one is from the i phase to the a phase and the second one is from the a phase to the d phase. K/J =−2.0 and D/J =−2.5.
(e) Three successive second-order phase transitions. The first one is from the f1/2 phase to the i phase, the second one is from
the i phase to the f1/2 phase and the third is from the f1/2 phase to the d phase. The first two second-order transitions imply
that the system exhibits a reentrant behaviour. K/J = −1.0 and D/J = 0.05. −→

Using the definition of the entropy S (S = k lnW , k is the Boltzmann factor) and making use of the Stirling
approximation, the free energy f (F = E −TS) per site can be written as

f =
F
N

= −JMAMB −KQAQB + D(QA + QB)−H(MA + MB)+
1
β

{
4

∑
i=1

XA
i lnXA

i +
4

∑
j=1

XB
j lnXB

j

}

+ β λ A

{
1−

4

∑
i=1

XA
i

}
+ β λ B

{
1−

4

∑
j=1

XB
j

}
,

(9)

where λ A and λ B are introduced to maintain the normalization conditions, β = 1
kT , T is the absolute temperature.

Thus, the self-consistent equation for four long-range order parameters, namely, MA, QA, MB and QB are
therefore obtained by

∂ f
∂XA

i
= 0 (i = 1,2,3,4) and

∂ f
∂XB

j
= 0 ( j = 1,2,3,4). (10)

Using (3), (9), and (10), the self-consistent equations are found to be

MA =
3e

9
4 β (KQB−D) sinh

[ 3
2 β (JMB + H)

]
+ e

1
4 β (KQB−D) sinh

[ 1
2 β (JMB + H)

]
2e

9
4 β (KQB−D) cosh

[ 3
2 β (JMB + H)

]
+ 2e

1
4 β (KQB−D) cosh

[ 1
2 β (JMB + H)

] ,
MB =

3e
9
4 β (KQA−D) sinh

[ 3
2 β (JMA + H)

]
+ e

1
4 β (KQA−D) sinh

[ 1
2 β (JMA + H)

]
2e

9
4 β (KQA−D) cosh

[ 3
2 β (JMA + H)

]
+ 2e

1
4 β (KQA−D) cosh

[ 1
2 β (JMA + H)

] ,
QA =

9e
9
4 β (KQB−D) cosh

[ 3
2 β (JMB + H)

]
+ e

1
4 β (KQB−D) cosh

[ 1
2 β (JMB + H)

]
4e

9
4 β (KQB−D) cosh

[ 3
2 β (JMB + H)

]
+ 4e

1
4 β (KQB−D) cosh

[ 1
2 β (JMB + H)

] ,
QB =

9e
9
4 β (KQA−D) cosh

[ 3
2 β (JMA + H)

]
+ e

1
4 β (KQA−D) cosh

[ 1
2 β (JMA + H)

]
4e

9
4 β (KQA−D) cosh

[ 3
2 β (JMA + H)

]
+ 4e

1
4 β (KQA−D) cosh

[ 1
2 β (JMA + H)

] .

(11)

We should mention that, since the behaviour of RA
and RB is similar to MA and MB, we have not written
RA and RB and investigated their behaviour, as many
researchers have made. We are now able to examine
the behaviour of the order parameters of the ferromag-
netic spin- 3

2 BEG model in an external magnetic field
by solving the self-consistent equations, i. e. (11), nu-

merically. In the following section, we shall examine
the thermal variation of the systems.

It is worthwhile to mention that the values of these
sublattice order parameters define five different phases
with different symmetry as follows:

(i) Disordered phase (d): MA = MB = 0, QA =
QB 	= 0.
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Fig. 2. Same as Fig. 1, but (a) K/J = −3.0,
D/J = 0.0 and H/J = 3.0; (b) K/J =−3.0,
D/J = 0.0 and H/J = 12.75.

(ii) Ferromagnetic-3/2 phase (f3/2): MA = MB =
3/2, QA 	= QB 	= 0.

(iii) Ferromagnetic phase-1/2 (f1/2): MA = MB =
1/2, QA 	= QB 	= 0.

(iv) Ferrimagnetic phase (i): MA 	= MB 	= 0, QA 	=
QB 	= 0.

(v) Antiquadrupolar phase or staggered quadrupo-
lar phase (a): MA = MB = 0 or QA 	= QB 	= 0.

3. Thermal Variations

In this section we shall study the temperature de-
pendency of the order parameters in the absence and

presence of an external magnetic field by solving the
system of transcendental equations, namely the set of
self-consistent equations, i. e. (11), numerically. These
equations are solved by using the Newton-Raphson
method and the thermal variations of MA, MB, QA and
QB for several of coupling parameters, D/J, K/J and
H/J. They are plotted in Figs. 1 and 2. In the figures,
TC and Tt, are the critical or the second-order phase
transition temperatures and the first-order phase transi-
tion temperatures, respectively. TCM and TCQ represent
the critical or the second-order phase transition tem-
peratures for only the sublattice magnetizations and
quadrupolar order parameters, respectively. First, we
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Fig. 3. Phase diagrams of the ferromagnetic spin- 3
2 BEG model in the (kT/J,K/J) plane. The disordered (d), ferromagnetic-

3/2 (f3/2) and ferromagnetic-1/2 (f1/2), ferrimagnetic (i) and antiquadrupolar (a) phases are found. Dotted and solid lines
indicate, respectively, first- and second-order phase transitions. The special points are the tricritical (T), multicritical (A),
double critical (D) and zero-temperature critical point (Z). (a) D/J = −0.5; (b) D/J = 0.0; (c) D/J = 0.5; (d) D/J = 1.0.

will investigate the thermal variations of the sublat-
tice magnetizations and quadrupolar order parameters
in the absence of an external magnetic field. In this
case, the behaviour of the temperature dependence of
order parameters depends on K/J and D/J values, and
following five main topological different types of be-
haviours are found by investigating these behaviours.
They are plotted in Figure 1.

(a) Type 1: For K/J = 0.25 and D/J = 0.5, MA =
MB = 3/2, QA = QB = 2.25 at zero temperature (thick
solid lines) and for K/J = −0.5 and D/J = 0.5,
MA = MB = 1/2, QA = QB = 0.25 at zero temper-
ature (thin solid lines). For both lines, MA and MB
decrease to zero continuously as the reduced tem-

perature (kT/J) increases therefore the system ex-
hibits a second-order phase transition, and the tran-
sition is from the ferromagnetic-3/2 phase (f3/2) to
the disordered (d) phase for the thick solid line and
the ferromagnetic-1/2 phase (f1/2) to the disordered
(d) phase for the thin solid line. QA and QB make a
cusp at TC1 and TC2, as seen in Figure 1a.

(b) Type 2: For K/J = 1.25 and D/J = 1.5, MA =
MB = 3/2 and QA = QB = 2.25 at zero tempera-
ture. The sublattice order parameters decrease to zero
discontinuously as the reduced temperature increases;
hence the system undergoes a first-order phase transi-
tion as seen in Figure 1b. The transition is also from
the f3/2 phase to the d phase.
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Fig. 4. Phase diagrams of the ferromagnetic spin- 3
2 BEG

model in the (kT/J,D/J) plane. The disordered (d),
ferromagnetic-3/2 (f3/2), ferromagnetic-1/2 (f1/2), ferrimag-
netic (i) and antiquadrupol (a) phases are found. Dotted
and solid lines indicate, respectively, first- and second-order
phase transitions. The special points are the multicritical (A),
tricritical (T), double critical (D) and zero-temperature crit-
ical point (Z). (a) K/J = −2.0; (b) K/J = −1.0; (c) K/J =
−0.68; (d) K/J = 0.0; (e) K/J = 1.25.

(c) Type 3: For K/J = −0.01 and D/J = 0.5,
MA = MB = 3/2 and QA = QB = 2.25 at zero tem-
perature. The system undergoes two successive phase

transitions, the first one is a first-order one from the f3/2
phase to the f1/2 phase and the second one is a second-
order one, from the f1/2 phase the d phase as seen in
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Fig. 5. Phase diagrams of the ferromagnetic spin-
3
2 BEG model in the (kT/J,H/J) plane. The
solid line denotes the second-order phase tran-
sition line. The disorder (d), ferrimagnetic (i)
phases are found. The special point is the zero-
temperature critical point (Z). (a) K/J = −0.75
and D/J = 0.0; (b) K/J = −3.0 and D/J = 0.0.

Figure 1c. This fact is seen in the phase diagram of
Fig. 3c explicitly. Compare Fig. 1c with Figure 3c.

(d) Type 4: For K/J = −2.0 and D/J = −2.5,
MA = 3/2, MB = 1/2 and QA = 2.25, QB = 0.25 at
zero temperature. The system undergoes two succes-
sive phase transitions, the first one is of second-order
one from the i phase to the a phase, and the second
one is also of second-order, from the a phase to the
d phase as seen in Figure 1d. This fact is seen in the
phase diagram of Fig. 4a explicitly. Compare Fig. 1d
with Figure 4a.

(e) Type 5: For K/J = −1.0 and D/J = 0.05,
MA = MB = 1/2 and QA = QB = 0.25 at zero tem-

perature. In this type, the system undergoes three suc-
cessive second-order phase transitions as seen in Fig-
ure 1e. The first two are second-order transitions, the
first one is from the f1/2 phase to the i phase and the
second one is from the i phase to the f1/2 phase; this
implies that the system exhibits a reentrant behaviour.
The third one implies that the transition is from the
f1/2 phase to the d phase. This fact is seen in the phase
diagram of Fig. 4b explicitly. Compare Fig. 1e with
Figure 4b.

On the other hand, Fig. 2 illustrates the tempera-
ture dependence of the sublattice order parameters in
the presence of an external magnetic field, and the be-
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haviour depends on D/J, K/J and H/J. The following
two fundamental types of behaviour are found:

(a) Type 1: For K/J =−3.0, D/J = 0.0 and H/J =
3.0, MA = 3/2, MB = 1/2 and QA = 2.25, QB = 0.25
at zero temperature. The system undergoes a second-
order phase transition from the i phase to the d phase,
illustrated in Figure 2a. This fact is seen in the phase
diagram of Fig. 5b explicitly. Compare Fig. 2a with
Figure 5b.

(b) Type 2: For K/J =−3.0, D/J = 0.0 and H/J =
12.75, MA = MB = 3/2 and QA = QB = 2.25 at zero
temperature. As the temperature increases, the sublat-
tice order parameters undergo two successive second-
order phase transitions at two different temperatures
as seen in Figure 2b. This implies that the system ex-
hibits a reentrant behaviour. This fact is seen explicitly
in Figure 5b.

Finally we should mention that besides the stable
solution order parameters metastable and unstable so-
lution order parameters appear in the system. This clas-
sification is done by comparing the free energy val-
ues of these solutions with the lowest values of the
free energy surfaces. The stable states or solutions cor-
respond to the lowest minimum, metastable solutions
correspond to a secondary or local minimum, and un-
stable solutions correspond to the local maxima (the
peaks) or saddle points of the free energy surfaces. We
have only considered the stable states or solutions of
the order parameters.

4. Phase Diagrams

In this section, we present the phase diagram of the
ferromagnetic spin- 3

2 BEG model in the absence and
the presence of an external magnetic field. The criti-
cal or second-order phase transition temperatures for
the sublattice order parameters in the case of a second-
order phase transition are calculated numerically, i. e.,
the investigation of the behaviour of the order parame-
ters as functions of the temperature in which the sublat-
tice order parameters become equal as the temperature
is lowered and the temperature where the sublattice or-
der parameters become equal is the critical or second-
order phase transition temperature or the sublattice or-
der parameters decrease to zero continuously as the
reduced temperature increases; the temperature where
MA = MB = 0 is the second-order phase transition tem-
perature. QA and QB make a cusp at this temperature.
On the other hand, the first-order phase transition tem-
peratures for the sublattice order parameters are found

by matching the values of the two branches of the free
energy followed, while increasing and decreasing the
temperature. The temperature at which the free energy
values equal is the first-order phase transition temper-
ature (Tt) for the sublattice order parameters.

The calculated phase diagrams are presented in Fig-
ures 3 – 6. In the phase diagrams, the solid line rep-
resents the second-order phase transition line, and the
dotted line is the first-order phase transition line. A, T,
D and Z are special points which denote the multi-
critical, tricritical, double critical and zero-temperature
critical points, respectively. Figure 3 shows the phase
diagram of the model in the absence of an external
magnetic field in the (kT/J,K/J) plane for various
values of D/J. Four different diagram topologies have
been found in this plane, the topology depending on
D/J values.

(a) For D/J = −0.5, besides the disordered
phase (d), the ferromagnetic-3/2 (f3/2) and the
ferromagnetic-1/2 (f1/2), ferrimagnetic (i) and anti-
quadrupolar phase (a) also exist in the phase diagram
of Figure 3a. All the phase boundaries among these
phases are second-order lines. The phase diagrams also
exhibit two multicritical (A), and two zero-temperature
critical (Z) points. We should also mention that the sys-
tem exhibits a reentrant behaviour, e. g., as the temper-
ature is lowered, there are transitions from the d phase
to the a phase, from the a phase to the i phase and from
the i phase to the f1/2 phase. This is a new phase di-
agram topology, which is either absent from previous
approaches or has gone unnoticed.

(b) For D/J = 0.0, the phase diagram presents
the d, f3/2, f1/2 and i phases, and it exhibits only two
special Z points, illustrated in Figure 3b. The i phase
lies at low temperatures, and the phase boundaries
among three phases are all second-order lines. One
should also notice a pronounced reentrance occurring
in this diagram. A similar phase diagram has been ob-
tained in the ferromagnetic spin- 3

2 BEG model within
the MFA [8], the EFT [9] and the CVMPA for the co-
ordination number q < 6 [10], as well as the exact for-
mulation of the model on the Bethe lattice by using the
exact recursion equations [12, 13] for q < 6, but only
differs in that the reentrant behaviour does not exist in
these two works. However, the exactly similar phase
diagram was obtained for q > 6 in [10] and [13].

(c) For D/J = 0.5, the phase diagram is similar to
Fig. 1b, except for the i phase and as well as two
zero-temperature critical points disappear as seen in
Figure 1c. The phase boundary between the f3/2 and
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Fig. 6. Phase diagrams of the ferromag-
netic spin- 3

2 BEG model for H/J 	= 0 in the
(kT/J,K/J) plane. The solid line denotes the
second-order phase transition line. The dis-
ordered (d) and ferrimagnetic (i) phases are
found. H/J = 1.0 and D/J = 0.0.

the f1/2 phase is a first-order line that starts from zero
temperature and terminates a double critical (D) point,
where two different critical systems coexist. This is
also a new phase diagram topology in this plane, which
is either absent from previous approaches or has gone
unnoticed. We should also mention that a similar phase
diagram, except for the first-order phase line, has been
obtained in a ferromagnetic spin- 3

2 BEG model within
the CVMPA [10] and the exact formulation of the
model on the Bethe lattice by using the exact recursion
equations [12].

(d) For D/J = 1.0, the diagrams contain first-order
and second-order phase transition lines as seen in Fig-
ure 3d. The phase boundary between the f3/2 and d
phase for very high values of the reduced tempera-
tures (kT/J) and the boundary between the f1/2 and
d phases for very low values of kT/J are second-order
phase lines. Between these very high and low values
of kT/J, the first-order phase line occurs, and it sep-
arates the f3/2 phase from the d phase. Therefore, two
tricritical points exist in the phase diagram. This is also
a new phase diagram topology, which is either absent
from previous approaches or has gone unnoticed.

Figure 4 illustrates the phase diagram of the model
in the absence of an external magnetic field in the
(kT/J,D/J) plane for various values of K/J. Study of
the phase diagram in the (kT/J,D/J) plane yields five
typical situations depending on the value of K/J.

(a) For K/J = −2.0, in this phase diagram besides
the disordered phase (d), the ferromagnetic-3/2 (f3/2)
and the ferromagnetic-1/2 (f1/2), ferrimagnetic (i) and

antiquadrupolar phase (a) also exist and all the phase
boundaries among these phases are second-order lines
as seen in Figure 4a. The phase diagrams also exhibit
two multicritical (A) and two zero-temperature criti-
cal points (Z). We should also mention that the reen-
trance also occurs for the second-order phase transi-
tion line, which separates the i phase from the f3/2
phase. A similar phase diagram topology has been ob-
tained in the ferromagnetic spin- 3

2 BEG model on the
Bethe lattice by using the exact recursion equations by
Ekiz et al. [12], except for the following differences:
(1) the reentrant behaviour has not been observed for
the second-order phase transition line which separates
the i phase from the f3/2 phase; (2) the phase bound-
ary between the a and d phases is a first-order phase
line.

(b) For K/J = −1.0, this phase diagram is similar
to the phase diagram of Fig. 4a, except that the a phase
disappears, hence only one multicritical point exist,
presented in Figure 4b. This phase diagram agrees very
well with the work of Ekiz et al. [12].

(c) For K/J = −0.68, this phase diagram is illus-
trated in Figure 4c. It agrees very well with previous
works [11, 12], but differs from these previous works
in that the reentrant behaviour does not occur for the
second-order phase transition line which separates the
i phase from the f3/2 and f1/2 phases.

(d) For K/J = 0.0, the topology of this phase dia-
gram is very similar to the phase diagram of Fig. 3c,
except for the one obtained in the (kT/J,D/J) plane
as seen in Figure 4d. This phase diagram agrees very
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well with the works [8, 9, 12], except for the first-order
phase transition line.

(e) For K/J = 1.25, the topology of this phase di-
agram is also very similar to the phase diagram of
Fig. 3d, except for the one obtained in the (kT/J,D/J)
plane as seen in Figure 4e. Thus, the phase boundary
between the f3/2 and d phase for very high values of
the reduced temperatures (kT/J) and the boundary be-
tween the f1/2 and d phases for very low values kT/J
are second-order phase lines. Between these very high
and low values of kT/J, the first-order phase line oc-
curs and it separates the f3/2 phase from the d phase.
Therefore, two tricritical points exist in the phase di-
agram. This is also a new phase diagram topology,
which is either absent from previous approaches or has
gone unnoticed.

We have also presented the phase diagrams of the
model in the presence of an external magnetic field in
the (kT/J,H/J) and (kT/J,K/J) planes. We have two
different phase diagram topologies in the (kT/J,H/J)
plane, presented in Figs. 5a and b, in which one of
them, Fig. 5a shows a similar phase diagram topology
as recently obtained by Ekiz [13] for q > 6, q is the co-
ordination number. The other phase diagram, Fig. 5b,
is a new phase diagram topology, which is either ab-
sent from previous approach, namely [13] or has gone
unnoticed. Figure 6 presents the phase diagram for
D/J = 0.0 and H/J = 1.0 in the (kT/J,K/J) plane.
The topology of this phase diagram is very similar
to the phase diagram of Fig. 5b, except for the one
obtained in (kT/J,K/J) plane seen in Figure 6. This
phase diagram also agrees very well with the recent
work for q > 6 [13]. Moreover, these three phase dia-
grams exhibit a reentrant behaviour.

5. Summary and Discussion

In this work, first we have investigated the ther-
mal variations of the ferromagnetic spin- 3

2 BEG model
in the presence and absence of an external magnetic
field by using the LACVM in detail. Figure 1 shows
the behaviours of the temperature dependence of the
sublattice order parameters in the absence of an ex-
ternal magnetic field. These behaviours depend on K,
D and J > 0 values, and five main different topo-
logical types are found by investigating these be-
haviours. Figure 2 illustrates the thermal variations
of the sublattice order parameters for the presence
of an external magnetic field, in which these be-
haviours depend on K, D, H and J > 0 values, and

two different topologies are found by investigating
these behaviours. Then, we have presented the global
phase diagrams of the system in the (kT/J,K/J) and
(kT/J,D/J) planes for the absence of an external
magnetic field. For the (kT/J,K/J) plane, we found
that the behaviour of the system strongly depends on
the values of D/J, and four different phase diagram
topologies were found as seen in Figure 3. In this case
we have obtained three new phase diagram topolo-
gies with careful and painstaking calculations that
were not obtained in previous works [8 – 13], which
are either absent from previous approaches or have
gone unnoticed. For the (kT/J,D/J) plane, we found
that the behaviour of the system strongly depends on
the values of K/J, and five different phase diagram
topologies were found, illustrated in Figure 4. In this
case, we have also obtained only one new phase di-
agram topology by careful calculations, that was not
obtained in previous works [8 – 13], which is either
absent from previous approaches or has gone unno-
ticed. We have also presented the phase diagram of
the model in the presence of an external magnetic
field in the (kT/J,H/J) and (kT/J,K/J) planes. We
have two different phase diagram topologies in the
(kT/J,H/J) plane, in which one is a similar phase di-
agram topology as obtained in the work of Ekiz [13]
recently for q > 6, q is the coordination number and
the other is a new phase diagram topology, which is ei-
ther absent in [13] or has gone unnoticed. Only one
phase diagram topology in the (kT/J,K/J) plane is
found, and it agrees very well with the recent work
for q > 6 [13].

We should also mention that, although we have ob-
tained five new phase diagram topologies, we could not
find one of the phase diagram topologies which was
obtained in the (kT/J,D/J) plane within an approxi-
mate renormalization-group approach of the Migdal-
Kadanoff type [11] and an exact formulation of the
model on the Bethe lattice [12]. Moreover, we could
not obtain two topologies of phase diagrams in the
(kT/J,K/J) plane, which were presented in [12].
These are the shortcoming of this simple, but impor-
tant and effective method. Hence, we have concluded
that the mean-field type calculation, in spite of its sim-
plicity and limitations such as the correlation of spin
fluctuations have not been considered, is still an ad-
equate starting point, in which within this theoretical
framework it is easy to determine the complete phase
diagrams. It also predicts the existence of multicriti-
cal points in simple, such as spin- 1

2 Ising model [18]



M. A. Pınar et al. · The Ferromagnetic Spin- 3
2 Blume-Emery-Griffiths Model 139

and complex, e. g., the spin-1 Ising [17, 20, 21], and
the spin- 3

2 Ising system [15, 16]. Finally, we should
also point out the following fact. It is well known that
mean-field-like approximations as the one we used in
the present analysis may even be qualitatively wrong
for low-dimensional systems. Therefore, there is a pos-
sibility that some of the phase lines and multicritical
points seen in the phase diagrams are artifacts of the

approximation. Hence, it would be worthwhile to fur-
ther study it with more sophisticated techniques, such
as renormalization-group calculations or Monte Carlo
simulations.
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