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Using symbolic and algebra computation, the extended tanh-function method (ETM) based on
the mapping method is further extended. New variable separation solutions of the (2+1)-dimensional
generalized Broer-Kaup (GBK) system are derived. From the periodic wave solution and by selecting
appropriate functions, the evolutional behaviours of dromions in the background of Jacobian elliptic
wave and their interaction behaviours are investigated.
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1. Introduction

Solitons are a manifestation of a balance between
inertial and dispersive forces with soliton-supporting
equations typically obtained via weakly nonlinear per-
turbation schemes. However, in higher spatial dimen-
sions these procedures yield equations which typi-
cally are not only nonintegrable but, more importantly,
rarely support localized patterns. This, strange at first,
phenomenon has a simple explanation: whereas non-
linearity due to inertia plays the same role irrespec-
tively of spatial dimension, the increase in degrees
of freedom with dimension enhances the dispersive
spread and thus tilts the balance. Thus a well bal-
anced model in one dimensional may be less so in
higher dimensions. For a genuinely localized structure
to emerge in N-D naturally rather than as an exception,
the dispersive-inertial balance has to be kept irrespec-
tively of spatial dimension. This may be accomplished
either by properly enhancing the inertia, or, as we shall
do here, by a proper weakening of the dispersion.

In linear physics, it is generally recognized that
the variable separation approach (VSA) is one of the
most universal and powerful means for the study of
linear partial differential equations (PDEs). The ex-
tension of the variable separation approach to non-
linear field has been a highlight. The so-called mul-
tilinear variable separation approach (MLVSA) has
also been established for various (2+1)-dimensional
models [1]. Recently, along with the linear variable
separation idea and using the extended tanh-function

0932–0784 / 07 / 1200–0677 $ 06.00 c© 2007 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

method (ETM) based on the mapping method, Zheng
and some other authors realized the possibility to use
the variable separation for some (2+1)-dimensional
systems, such as the Broer-Kaup-Kupershmidt (BKK)
system [2], the Kortweg-de Vries (KdV) equation [3]
and the asymmetric Nizhnik-Novikov-Veselov (NNV)
system [4]. Moreover, some authors [5, 6] successfully
generalized the ETM to the (1+1)-dimensional and
(3+1)-dimensional nonlinear physical models. How-
ever, in fact, various solutions including solitary wave
solutions, periodic wave solutions and rational func-
tion solutions derived by the ETM in [2 – 6], which
seem independent, depend on each other. This view-
point has been proven in [7]. Then, by the nonstan-
dard truncated expansion, Fang and his groups also
generalized the ETM and obtained various so-called
new symmetrical variable separation solutions for the
(2+1)-dimensional BKK [8], Boiti-Leon-Pempinelli
(BLP) [9] and NNV [10] systems. However, similarly
to our report in [7], we have also proven in [11] that
these so-called new solutions in [8 – 10] also depend on
each other and the effective solution is identical to the
universal formula in [1], which has been given in [7].

More recently, a mapping method [12] is used to re-
alize the variable separation of the (2+1)-dimensional
dispersive long wave equation (DLWE). We have also
successfully generalized the projective Riccati equa-
tion method (PREM) to derive variable separation
solutions for some (2+1)-dimensional systems [13].
Moreover, with the help of q-deformed hyperbolic
functions, we have also successfully obtained a new
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variable separation solution for the (2+1)-dimensional
KdV equation [14]. Now a natural and important is-
sue is whether we can derive new variable separation
solutions via other direct methods. Motivated by this
question, we further extend the mapping method and
obtain new variable separation solutions of the gener-
alized Broer-Kaup (GBK) system

ht − hxx + 2hhx + ux + Au + Bg = 0,

gt + 2(gh)x + gxx + 4A(gx − hxy)
+ 4B(gy − hyy) + C(g − 2hy) = 0,

uy − gx = 0,

(1)

where A, B, C are arbitrary constants. The GBK sys-
tem has recently been derived from a typical (1+1)-
dimensional Broer-Kaup (BK) system [15], by means
of the Painlevé analysis [16]. When A = B =
C = 0, the GBK system will degenerate to the
celebrated (2+1)-dimensional BK system [17], which
can be derived from an inner parameter-dependent
symmetry constraint of the Kadomtsev-Petviashvili
model [18]. Recently, we also investigated new types
of the V-shaped soliton fusion and Y-shaped soliton fis-
sion of this system [19].

Shallow water waves and a host of long wave phe-
nomena are commonly investigated by various mod-
els of nonlinear evolution equations. Examples include
the Korteweg – de Vries, the Camassa-Holm, and the
Whitham-Broer-Kaup (WBK) equations. The problem
of computing finite amplitude waves on the free sur-
face of an otherwise irrotational fluid has attracted
tremendous attention over the years. For the regime of
weak nonlinearity and weak dispersion, the Korteweg –
de Vries and Boussinesq models have been developed.
This paper focuses on a particular form of the higher-
order Boussinesq equation, known as the generalized
Broer-Kaup equation. The GBK equation is actually
an extension of the WBK system using Painlevé anal-
ysis [16]. The WBK system is a valuable model for
long waves by incorporating or mimicking convective,
dispersive and viscous effects. To our knowledge, the
evolutional behavior of solitary wave structures in the
background of Jacobian elliptic waves is still an open
question. In this paper, we will present the evolutional
behavior of dromions on the background of a Jacobian
elliptic wave. These discussions may help us to com-
prehend the dynamic problem of spoondrifts in the wa-
ter waves.

The paper is organized as follows. In Section 2,
the ETM is reviewed, and the l-deformed functions

are introduced. The variable separation solutions of
the (2+1)-dimensional generalized Nizhnik-Novikov-
Veselov (GNNV) system are obtained in Section 3. In
Section 4, dromions on the background of a Jacobian
elliptic wave are discussed, and their interaction behav-
ior is investigated. A brief discussion and summary are
given in the last section.

2. Further Extended tanh-Function Method

In the following we would like to outline the main
steps of our method:

Given a nonlinear partial differential equation
(NPDE), with independent variables x = (x0 =
t, x1, x2, . . . , xm) and a dependent variable u,

L(u, ut, uxi, uxixj , · · · ) = 0, (2)

where L is in general a polynomial function of its ar-
guments, and the subscripts denote the partial deriva-
tives. One assumes that (2) possesses solutions ob-
tained from the ansatz

u = a0(x) +
n∑

j=1

{
aj(x)φ[R(x)]j

+ bj(x)φ[R(x)]j−1
√

l1 + l2φ[R(x)]2
}
,

(3)

with the Riccati equation

dφ

dR
= l1 + l2φ

2, (4)

where a0(x), aj(x), bj(x) and R(x) are arbitrary func-
tions of x = (x0 = t, x1, x2, . . . , xm) to be de-
termined, l1 and l2 are two real constants, and n is
fixed by balancing the linear term of the highest-
order derivative with the highest-order nonlinear term
in (2). To determine u explicitly, one may substitute (3)
and (4) into the given NPDE, collect the coefficients
of the polynomials in φ and

√
l1 + l2φ[R(x)]2, then

eliminate each coefficient to derive a set of partial dif-
ferential equations for a0(x), aj(x), bj(x) and R(x),
solve this system of partial differential equations to
obtain a0(x), aj(x), bj(x) and R(x). Finally, (4) pos-
sesses the general solutions (without loss of generality,
here we only consider the case of l1 > 0):

(i) when l1l2 = −1,

φ1 = l1 tanhl1(R), (5)

φ2 = l1 cothl1(R); (6)
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(ii) when l1l2 = 1,

φ3 = l1 tanl1(R), (7)

φ4 = l1 cotl1(R); (8)

(iii) when l1 = 0,

φ5 = − 1
l2R

. (9)

Moreover, (4) has combined solutions:
(iv) when l1 = −l2 = 1

2 ,

φ6 = tanh(R) ± isech(R), (10)

φ7 = coth(R) ± csch(R); (11)

(v) when l1 = l2 = ± 1
2 ,

φ8 = tan(R) ± sec(R), (12)

φ9 = cot(R) ± csc(R). (13)

One substitutes a0(x), aj(x), bj(x), R(x) and (5) –
(13) into (3), and obtains exact solutions of the given
NPDE in concern.

The functions in (5) – (8) are l-deformed func-
tions [20], whose properties will be recalled:

sinhl(R) =
eR − le−R

2
, coshl(R) =

eR + le−R

2
,

tanhl(R) =
sinhl(R)
coshl(R)

, sechl(R) =
1

coshl(R)
,

R ∈ C.

(14)

It is straightforward to see that the following formulas
hold:

(sinhl(R))′ = coshl(R), (coshl(R))′ = sinhl (R),

cosh2
l (R) − sinh2

l (R) = l, (tanhl(R))′ = lsech2
l (R),

(sechl(R))′ = − tanhl(R)sechl(R),

tanh2
l (R) = 1 − lsech2

l (R). (15)

Correspondingly, we can define l-deformed trigono-
metric functions as follows:

sinl(R) =
eiR − le−iR

2i
, cosl(R) =

eiR + le−iR

2
,

tanl(R) =
sinl(R)
cosl(R)

, secl(R) =
1

cosl(R)
. (16)

They satisfy the following formulas

(sinl(R))′ = cosl(R), (cosl(R))′ = − sinl(R),

(tanl(R))′= lsec2
l (R), secl(R))′= tanl(R) secl(R),

cos2l (R) + sin2
l (R) = l, 1 + tan2

l (R) = lsec2
l (R).

(17)

Remark 1: In [2 – 7], the authors assume that the
ansatz of (2) has the form

u = a0(x) +
n∑

j=1

aj(x)φ(R(x))j ,

which merely is a special case of our ansatz (3), when
bj(x) = 0. Therefore, we can obtain more new exact
solutions of NPDEs by the ansatz (3) in the present
paper.

Remark 2: The similar ansatz as (3) has been in-
troduced by Li et al. in [21], however, they merely
obtained the travelling solutions by this ansatz. Ob-
viously, our ansatz (3) has a more universal form
due to the arbitrary function R of x = (x0 =
t, x1, x2, . . . , xm). Moreover, the Ricatti equation in
this paper has a more universal form than the one
in [21].

3. Variable Separation Solutions for the
(2+1)-Dimensional GBK System

Now we apply the improved mapping method from
section 2 to the (2+1)-dimensional GBK system (1).
First, differentiate the first one of (1) with respect to
variable y once and substitute the third one into the
first one of (1). Then we consider the transformation

g = 2hy, u = 2hx + α(x, t), (18)

where α(x, t) is an arbitrary integrable function
of {x, t}. Equation (1) is reduced to another but equiv-
alent NPDE:

hty +hxxy +2Ahxy +2Bhyy +2(hhx)y = 0. (19)

By the balancing procedure applied to (19),
ansatz (3) becomes

h = a0 + a1φ(R) + b1

√
l1 + l2φ(R)2, (20)
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where R ≡ R(x, y, t), ai ≡ ai(x, y, t) (i = 0, 1), b1 ≡
b1(x, y, t), and φ satisfies (4). Inserting (20) with (4)
into (19), choosing the variable separation ansatz

R = p(x, t) + q(y − 2Bt), (21)

and eliminating all coefficients of the polynomials of φ
and

√
l1 + l2φ(R)2, one gets a set of PDEs for {ai ≡

ai (i = 0, 1), b1, p, q}, from which one can obtain

a0 = −pxx + pt + 2Apx

2px
,

a1 = − l2
2

px, b1 = −
√

l2
2

px,

(22)

where p is an arbitrary function of {x, t}.
From these results, the variable separation solutions

of (19) possess the following form:
Family 1. For l1l2 = −1,

h1 = −pxx + pt + 2Apx

2px
+

px

2
tanhl1(p + q)

+
l1
2

√
l2pxsechl1(p + q),

(23)

h2 = −pxx + pt + 2Apx

2px
+

px

2
cothl1(p + q)

+ i
l1
2

√
l2pxcschl1(p + q).

(24)

Family 2. For l1l2 = 1,

h3 = −pxx + pt + 2Apx

2px
− px

2
tanl1(p + q)

+
l1
2

√
l2pxsecl1(p + q),

(25)

h4 = −pxx + pt + 2Apx

2px
− px

2
cotl1(p + q)

+
l1
2

√
l2pxcscl1(p + q).

(26)

Family 3. For l1 = 0,

h5 = −pxx + pt + 2Apx

2px
+

px

p + q
. (27)

In addition, if we let l1 = −l2 = 1
2 or l1 = l2 =

± 1
2 , we will obtain the combined solutions of (19).

Here, we omit these cases for convenience. From (5) –
(13), we can obtain rich solutions of the GBK system
by the selection of different parameters l1 and l2.

From (23) – (27) and (18), we can obtain variable
separation solutions of the (2+1)-dimensional GBK
system. Especially we are interested in the structure of
the periodic wave solution for the field g which has the
final form

g3 = 2h3y = −l1pxqy[secl1(p + q)2

−
√

l2 secl1(p + q) tanl1(p + q)],
(28)

where p and q are arbitrary functions of {x, t} and
{y − 2Bt}, respectively.

Remark 3: It is necessary to point out that all the
exact solutions of the (2+1)-dimensional GBK sys-
tem constructed in this paper have been checked by
Maple software. Because of the mapping equation (4),
we can’t only get new l-deformed hyperbolic func-
tion solutions and l-deformed trigonometric function
solutions, but also get the combined exact solutions
of a class of NPDEs. To our knowledge, these solu-
tions (23) – (26) have not been reported in other lit-
erature before. All the solutions [namely (23) – (28)]
of the (2+1)-dimensional GBK system obtained in
this paper include two independent variables p(x, t)
and q(y − 2Bt). In these solutions the arbitrary func-
tions imply that (1) has abundant local physical struc-
tures.

Remark 4: Although the functions sec and tan have
singularities, the arbitrary functions p and q are cho-
sen appropriately to avoid the singularities for g. This
property can be found from the discussion of localized
structures in the next section. Compared with the so-
lutions in [22], the solutions obtained here have more
universal form because of the existence of the com-
bined form. When b1 = 0 in ansatz (20) with l2 = 1,
the solutions here degenerate into the solutions in [22].

4. Novel Solitary Wave Structures on the
Background of a Jacobian Elliptic Wave

All rich localized coherent structures, such as non-
propagating solitons, dromions, peakons, compactons,
foldons, instantons, ghostons, ring solitons, and the in-
teractions between these solitons, can be derived by the
quantity g expressed by the solitary wave solutions of
Family 1 and the variable separation solutions of Fam-
ily 3. These abundant localized coherent structures are
omitted in the present paper since some similar situa-
tions have been reported in previous literature [1 – 14].
The case of the periodic wave solution of Family 2
is not discussed in detail, because we expect that the
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(a) (b)

(c) (d)

Fig.1. Evolution graph of a dromion combined on the background of a Jacobian elliptic wave at times: (a) t = −5; (b) t = −1;
(c) t = 1; (d) t = 15. The corresponding values for the abscissa of the peak position are: (a) x = −10; (b) x = −2; (c) x = 2;
(d) x = 30.

periodic wave solution will not yield important local-
ized excitations. However, this conjecture may be in-
correct. In the following part, without loss of gener-
ality, we will discuss some significant localized excita-
tions derived from the periodic wave solution (28) with
the special choice l1 = l2 = 1, B = 0.5, i. e.,

g = g3 = −pxqy[sec(p+q)2−sec(p+q) tan(p+q)],
(29)

where p and q are arbitrary functions of {x, t} and
{y − t}, respectively.

4.1. Dromions on the Background of a Jacobian
Elliptic Wave

Here we focus on this localized structure on the
background of a Jacobian elliptic wave, which can be
constructed by the choice of p and q as

p = −2 − 0.003cn(0.8x, 0.3)
− 0.015 tanh(0.5x − t)

(30)

and

q = 2 + 0.003cn[−0.8(y − t) + 0.7, 0.3]

+ 0.015 tanh[0.5(y − t) + 1],
(31)

where cn(·, ·) is the Jacobian elliptic cn function with
the modulus 0.3.

Figure 1 displays a dromion on the background of a
Jacobian elliptic wave which travels along the x-axis.
From Fig. 1, we see that the wave amplitude of the
dromion changes due to the combination of solitary
wave and Jacobian elliptic wave as the background;
however, there is no change of velocity. This case is
similar to many real physical processes, such as soli-
tons on the water waves.

4.2. Interactions between Dromions on the
Background of Jacobian Elliptic Waves

The interaction between solitons can be elastic or in-
elastic. It is called elastic, if the amplitude, velocity and
wave shape of solitons do not change after their inter-
action. Otherwise, the interaction between solitons is
inelastic (incomplete elastic and completely inelastic).
Like the collisions between two classical particles, a
collision in which the solitons stick together is some-
times called completely inelastic, which is discussed
in [8, 19].

We can also investigate the interaction behavior be-
tween two dromions on the background of Jacobian el-
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(a) (b)

(c) (d)

(e)

Fig. 2. Interaction evolution graph of two combined
dromions on the background of Jacobian elliptic waves at
times: (a) t = −15; (b) t = −2; (c) t = 0; (d) t =
2; (e) t = 15. The corresponding peak abscissa values
are: (a) and (e) 0.00012, 0.0002; (b) 0.00019, 0.00025;
(c) 0.00035; (d) 0.00014, 0.00016.

liptic waves. When p and q are chosen as

p = −2 − 0.003cn(0.8x, 0.3)
−0.015 tanh[0.8(x + 2t)] − 0.015 tanh[0.8(x − t)]

(32)

and

q = 2 + 0.003cn[0.8(y − t), 0.3]
+ 0.015 tanh[0.8(y − t)],

(33)

two dromions on the background of Jacobian elliptic
waves are obtained, see Figure 2. From Fig. 2, we can
see that the interaction between the two dromions is not
completely elastic. After interaction, two dromions ex-
change their shapes completely and preserve their ve-
locities.

More concretely, to see the completely elastic in-
teraction property between two dromions, we cut and
move the left ring dromion of Fig. 2e from the center

([x = −2c1t0 + δ1, y = δ2] with t0 = 15 and c1,
δ1 and δ2 being some suitable constants related to the
possible changes of the velocity and the phase shift) to
the center of the left dormion of Fig. 2a (before inter-
action) [x = −t0, y = t]. The resulting single dromion
may be described by

G1 ≡
{

g(t = t0), x ≤ 0
0, x > 0

}
x → x − (2c1 − 1)t0 + δ1,
y → y − t + δ2

,

(34)
where g(t = t0) is defined by (29) with (30), (31)
and t = t0 > 0. Similarly, we cut and move the right
dromion of Fig. 2e from [x = c2t0 +δ3, y = δ4] to the
center of the right dromion of Fig. 2a [x = 2t0, y = t]
and the result can be expressed as

G2 ≡
{

0, x ≤ 0
g(t = t0), x > 0

}
x → x − (2 − c2)t0 + δ1,
y → y − t + δ2

.

(35)
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Now choosing the constants c1, c2 and δ1 ∼ δ4 ap-
propriately to minimize the quantity

v ≡ |G1 + G2 − g(t = t0)|, (36)

we can find

v ≈ 0 (37)

for

c1 = c2 = 1 (38)

and

δ1 = δ2 = δ3 = δ4 = 0. (39)

The result (37) denotes that the dromions exchange
their shapes totally after collision. Equation (38) shows
that the dromions preserve their velocities after inter-
action, and (39) means that there are no phase shifts at
all for the head on collision between two dromions.

5. Summary and Discussion

In short, the extended tanh-function method has
been improved to obtain variable separation solutions
of the (2+1)-dimensional GBK system. Some lower-
dimensional arbitrary functions are included in the ex-
act solutions. From the periodic wave solution (28) and
by choosing appropriate functions, dromions on the
background of Jacobian elliptic waves are discussed,
and their interaction behaviours are investigated. We

think that the discussions here about solitary waves on
the background of Jacobian elliptic waves in higher-
dimensional systems are significant and interesting. Of
course, there are some pending issues to be further
studied. What happens in limiting cases of these new
solutions? How to quantify the notion of complete or
incomplete elasticity more suitably? What is the mea-
sure for the deviation of a solution from elasticity?
What is the general equation for the distribution of the
energy and momentum for these exotic interactions?
How can we use the dromions on the background of
Jacobian elliptic waves of integrable models to inves-
tigate practically observed solitary wave phenomena
in experiments, such as in water waves? Actually, our
present short paper is merely the beginning of more ex-
tended work. We can obtain even richer exact solutions
by a more general ansatz of the NPDE (2), which reads

u = a0(x) +
n∑

j=1

{
aj(x)φ[R(x)]j +

bj(x)
φ[R(x)]j

+ cj(x)φ[R(x)]j−1
√

l1 + l2φ[R(x)]2

+
dj(x)

φ[R(x)]j−1
√

l1 + l2φ[R(x)]2

}
.

(40)
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