Ionic Dynamics in the Ionic Plastic Crystal NH₄NO₂

Hisashi Honda

Graduate School of Integrated Science, Yokohama City University, Kanazawa-ku, Yokohama, 236-0027, Japan

Reprint requests to Dr. H. H.; Fax: 81-45-787-2314; E-mail: hhonda@yokohama-cu.ac.jp

Z. Naturforsch. **62a**, 633 – 638 (2007); received April 13, 2007

Using ^1H NMR T_1 and $T_{1\rho}$ measurements self-diffusion of NH₄ $^+$ with an activation energy of (80 \pm 10) kJ mol $^{-1}$ was detected in the highest-temperature phase of NH₄NO₂ crystals. Narrow ^{15}N NMR spectra of $^{15}\text{NH}_4\text{NO}_2$ and NH₄ $^{15}\text{NO}_2$ revealed that the isotropic reorientation rates of NH₄ $^+$ and NO₂ $^-$ ions are rapid in the high-temperature solid phase. These results suggest that the high-temperature phase of NH₄NO₂ crystals forms an ionic plastic phase.

Key words: Plastic Crystal; ¹H NMR; ¹⁵N NMR.

1. Introduction

Crystals of metal nitrites MNO₂ [M = K, Rb, Cs, Tl(I)] have been found to exhibit ionic plastic properties [1-29]. These compounds undergo a phase transition into a plastic phase in which isotropic reorientation of NO₂⁻ ions and self-diffusion of M⁺ and NO₂⁻ ions are detected by metal and ¹⁵N NMR spectroscopy [20-25]. In the low-temperature phase just below the plastic phase, NMR and dielectric studies have revealed the onset of two-site jump motion of NO₂⁻ ions [12-25]. Calorimetric measurements show molar entropy changes of $17.3-35.9 \text{ J}\text{ K}^{-1}\text{ mol}^{-1}$ at the transition from the low-temperature phase to the plastic phase; these values are larger than those obtained at the melting point $(14.0-17.8 \text{ J K}^{-1} \text{ mol}^{-1})$. Molar heat capacity measurements display an anomalous long tail on the low-temperature side extending over 100 K [10 – 15].

In contrast, NaNO₂ and LiNO₂ crystals have no plastic phase. The former has been reported to show two order-disorder phase transitions with a small entropy change of 5.3 JK⁻¹ mol⁻¹. In the highest-temperature solid phase, two-site jump motion of NO₂⁻ was detected [30–35]. The middle phase is incommensurate antiferroelectric with a sinusoidal modulation of the long-range order, and the low-temperature phase is ferroelectric with all nitrite ions aligned in parallel. In LiNO₂ crystals, no phase transition occurs within a temperature range of 80 K–473 K (melting point) [11]. The entropy change of

 $36.2~\mathrm{J~K^{-1}~mol^{-1}}$ at the melting point is much larger than those of the ionic plastic crystals of MNO₂, and is comparable to that of NaNO₂ (29.6 J K⁻¹ mol⁻¹) [36]. ⁷Li and ¹⁵N NMR measurements [37] revealed that two-site jump motion of NO₂⁻ ions occurs by excitation in LiNO₂ crystals; the activation energies (42–44 kJ mol⁻¹) are much larger than those of plastic crystals of MNO₂ (8.7–18.8 kJ mol⁻¹), and similar to that of NaNO₂ (27 kJ mol⁻¹).

From the above facts, it may be deduced that there are certain conditions which must be fulfilled in a crystal so that an ionic plastic phase is formed; one is small melting entropy (less than $20 \text{ JK}^{-1} \text{ mol}^{-1}$) and another is small activation energy for two-site jump motion in the low-temperature phase. The former condition has been reported by Timmermans [38-40] for organic plastic crystals. The other has been recently proposed for ionic plastic crystals based on previous studies [25, 37]. Pre-isotropic reorientation motions, such as two-site jump motion, make space for NO₂isotropic reorientation against the Coulomb force in crystals. If energies of pre-isotropic and isotropic reorientation are comparable with the lattice force, orientational disorder among NO₂⁻ ions can occur with retention of the crystal lattice. Since the activation energies of the NO₂⁻ two-site jump in LiNO₂ and NaNO₂ are larger than those of MNO₂ (M = K, Rb, Cs, Tl), it can be assumed that the ionic radius is a key parameter for plasticity. In this study, ¹H and ¹⁵N NMR measurements of NH₄NO₂ were carried out to study the contribution of the ionic radius. The reported spherical

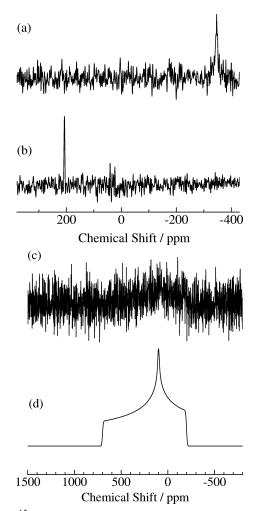


Fig. 1. ¹⁵N NMR spectra observed at 30.42 MHz (a) at 160 K (Phase III) of ¹⁵NH₄NO₂, and (b) at 298 K (Phase I) and (c) at 260 K of NH₄¹⁵NO₂. (d) Calculated line shape with three differential chemical shift principal values, where a reported line width of ca. 900 pm is employed [22 – 25, 37]. ¹⁵N-enriched ¹⁵NH₄NO₃ in 3 M hydrochloric acid was employed as an external reference for the chemical shift.

radius of an NH_4^+ ion (148 pm) is similar to that of Rb^+ (152 pm).

It has been reported that NH_4NO_2 crystals undergo two phase transitions, at 181 and 276 K, and violent decomposition at 346 K [41,42]. The reported decomposition entropy of ca. 20 J K⁻¹ mol⁻¹ is similar to the fusion entropies of MNO_2 -type plastic crystals: 14.0 (M = K), 16.0 (Rb), 17.8 (Cs), and 15.0 J K⁻¹ mol⁻¹ (Tl), and smaller than melting entropies of normal crystals: 36.2 (LiNO₂) and 29.6 J K⁻¹ mol⁻¹ (NaNO₂). The molar heat capac-

ity of NH_4NO_2 shows an anomalous long tail on the low-temperature side of 276 K. Since the observed frequency dependences of the dielectric permittivity are reported to be around 276 K [42], orientational disorder of NO_2^- ions is predicted in the high-temperature phase. However, activation parameters and crystal structures of high-temperature solid phases have not been reported due to sample decomposition.

2. Experimental

NH₄NO₂ and NH₄¹⁵NO₂ were prepared from NaNO₂ (Wako Pure Chemical Industries Ltd.) and Na¹⁵NO₂ (99 wt% ¹⁵N, ICON Inc.), respectively, by use of the cation exchange resin Diaion SK-1 (Mitsubishi Kasei Corp.). ¹⁵NH₄NO₂ was obtained by passing a ¹⁵NH₄NO₃ solution through a column packed with the anion exchange resin Dowex 1-X8 (Dow Chemical Company). The resulting hygroscopic crystals were dried in a desiccator. Since NH₄NO₂ crystals easily decompose to N₂ and H₂O, the crystals were kept in a freezer.

The ^1H spin-lattice relaxation time, T_1 , and T_1 in a rotating frame, $T_{1\rho}$, were measured using a Bruker SXP spectrometer. The inversion recovery method was employed for the determination of T_1 . A radio frequency field amplitude of 0.3 mT was used for the $T_{1\rho}$ measurement. ^{15}N (I=1/2) NMR spectra were recorded at 30.42 MHz using a Bruker MSL-300 spectrometer by the solid echo method with a recycle time of 500 s. Powdered NH₄NO₂ crystals were sealed in a sample glass tube. The ^{15}N chemical shift was estimated based on an external reference of $^{15}\text{NH}_4$ + ($\delta_8=-354$ ppm) in a 4.5 M solution of $^{15}\text{NH}_4$ NO₃ in 3 M HCl.

3. Result and Discussion

The ¹⁵N NMR spectrum obtained at 160 K (Phase III) of ¹⁵NH₄NO₂ is displayed in Figure 1a. The narrowed peak at -355 ppm, whose value is consistent with the reported ¹⁵N NMR chemical shift of ¹⁵NH₄NO₃ [43], suggests that the isotropic reorientation rate of NH₄⁺ ions is sufficiently rapid for the nuclear relaxation rate in Phase III. On the other hand, a sharp ¹⁵N NMR peak of NH₄¹⁵NO₂ was detected (ca. 250 ppm) only in Phase I, as displayed in Figure 1b. In the low-temperature phases, no narrow absorption spectrum was recorded, as shown in Fig. 1c,

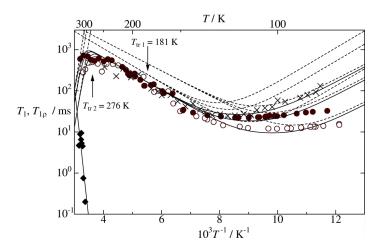


Fig. 2. Temperature dependences of 1 H NMR spin-lattice relaxation times in the laboratory frame (T_{1}) observed at 20.2 (\circ), 40.6 (\bullet), and 57.6 MHz (\times), and in the rotating frame [$T_{1\rho}$ (\bullet)] at $H_{1} = 0.3$ mT in NH₄NO₂. Solid and dotted lines represent best-fit theoretical values. T_{tr} is the phase transition temperature.

although ^{15}N NMR spectra with three different principal values (ca. 700, 150 and -200 ppm) are reported for low-temperature solid phases of $M^{15}NO_2$ (M = Li, K, Rb, Cs, Tl) [22–25,37]. The reported chemical shifts give us a theoretical envelope as shown in Figure 1d. Since the observed line width is similar to that of the simulated spectrum, any NO_2^- motion averaging chemical-shift-anisotropy is not considerable in Phase II. A reason of a low signal-to-noise ratio of the observed ^{15}N NMR spectrum can be attributed to a little amount of NH_4NO_2 crystals in the glass tube because NH_4NO_2 crystals are violently decomposed by heat. In order to get more detailed information, measurements of 1H NMR relaxation times were carried out

The obtained magnetization-recovery curve could be fitted by a single exponential function in all recorded temperature ranges. The temperature dependences of 1 H NMR T_{1} observed at 57.6, 40.6, and 20.2 MHz and $T_{1\rho}$ are shown in Figure 2. T_{1} minima and maxima were obtained around 110 and 290 K, respectively. The obtained T_{1} slope in a high-temperature range of the minima was different from that of the low-temperature side and a single T_{1} process model was difficult to express the observed data. Therefore, two relaxation times, $T_{1,\text{L1}}$ and $T_{1,\text{L2}}$, for low temperatures and a relaxation time, $T_{1,\text{H}}$, in the high-temperature range above the T_{1} maxima were assumed:

$$\frac{1}{T_1} = \frac{1}{T_{1,1,1}} + \frac{1}{T_{1,1,2}} + \frac{1}{T_{1,H}}.$$
 (1)

Since the T_1 values strongly depend on the observed frequencies below and around the temperature of the T_1

minima, the BPP-type equation [44] was used to estimate the activation parameters:

$$\frac{1}{T_1} = C \left(\frac{\tau}{1 + \omega^2 \tau^2} + \frac{4\tau}{1 + 4\omega^2 \tau^2} \right),\tag{2}$$

$$C = \frac{2}{3}\gamma^2 \Delta M_2,\tag{3}$$

$$\tau = \tau_0 \exp\left(\frac{E_a}{RT}\right). \tag{4}$$

Here C, τ , γ , ΔM_2 , τ_0 , E_a and ω denote a constant depending on the motional mode, correlation time of the motion, gyromagnetic ratio of ¹H nucleus, second moment, correlation time at infinite temperature and activation energy, and the ¹H Larmor angular frequency, respectively. Fitting (1)-(4) to the observed T_1 values, the activation parameters are listed in Table 1. Theoretical M_2 values can be calculated for various motional modes by using the Van Vleck equation [45]. An M_2 value of intra-molecular contributions could be estimated to be $28 \cdot 10^{-8}$ T² by assuming the N-H bond length of 105 pm in the tetrahedral shape of the NH₄⁺ ion. Since negligible contributions of NO₂⁻ $(0.1 \cdot 10^{-8} \text{ T}^2)$ and adjacent NH₄⁺ ions $(0.4 \cdot 10^{-8} \text{ T}^2)$ were roughly estimated, M2 calculations for molecular motions were carried out for only intra-molecular contributions. If C3 reorientation of the NH₄⁺ ion is excited, the theoretical M_2 value becomes $12 \cdot 10^{-8} \,\mathrm{T}^2$; ΔM_2 of $16 \cdot 10^{-8}$ T² can be obtained from rigid state C3 reorientation. Since the experimental ΔM_2 values of $13.6 \cdot 10^{-8}$ and $10.5 \cdot 10^{-8}$ T² are, respectively, comparable with calculated ones of $16 \cdot 10^{-8}$ and $12 \cdot 10^{-8}$ T², it is considerable that isotropic rotation rates of NH₄⁺

Motional modes	$E_{\rm a}$ / kJ mol ⁻¹	τ ₀ / s	C / s^{-2}	$\Delta M_2 / T^2$
C3	7 ± 1	$6.5 \cdot 10^{-13}$	$6.5 \cdot 10^9$	$13.6 \cdot 10^{-8}$
Isotropic reorientation of NH ₄ ⁺	8 ± 1	$8.0 \cdot 10^{-13}$	$5.0 \cdot 10^9$	$10.5 \cdot 10^{-8}$
Self-diffusion of NH ₄ +	80 ± 10			

Table 1. Motional modes and activation parameters of NH₄NO₂, derived from 1 H NMR T_{1} and $T_{1\rho}$.

M	<i>r</i> / pm	$E_{\rm a}$ / kJ ${ m mol}^{-1}$	a_0 of MNO ₂ / pm	a_0 of MBr / pm
Li	68	80-90 [37]		550 (NaCl) [48]
Na	97	119 [47]	Orthorhombic [11]	597 (NaCl) [48]
K	133	60 [22]	666 (NaCl) [11]	660 (NaCl) [49]
NH_4	148	80		690 (NaCl) [50, 51]
Rb	152	75 - 110 [23]	693 (NaCl) [11]	687 (NaCl) [49]
Tl	152	47 [24]	411 (CsCl) [11]	398 (CsCl) [52]
Cs	170	33 – 47 [25]	439 (CsCl) [11]	430 (CsCl) [53]

Table 2. Cationic radii (r) [46], activation energies of self-diffusion (E_a) in the highest-temperature solid phase of MNO₂, and lattice constant (a_0) .

ions in Phase III reach to the observed NMR frequencies. This result is consistent with the obtained ¹⁵N NMR spectrum of ¹⁵NH₄NO₂.

Since $T_{1,H}$ also showed the observed frequency dependences, dipole-dipole interaction contributes to the ¹H relaxation mechanism. The rapid NH₄⁺ isotropic reorientation in Phase I averages out ¹H-¹H dipoledipole interaction, indicating that there is an additional motion which has enough large rates to relax ¹H spins in high-temperature ranges just below the decomposition point. The increase in $T_{1\rho}$ with temperature also suggests additional motion with a lower speed than that of isotropic reorientation. The estimated activation energy of $(80 \pm 10) \text{ kJ mol}^{-1}$ from T_{10} is similar to that from $T_{1,H}$. Therefore it can be considered that self-diffusion occurs in Phase I and that crystalline NH₄NO₂ is a member of the new family of ionic plastic crystals. The obtained activation parameters are listed in Table 1.

¹H NMR measurements of T_1 and $T_{1\rho}$ and ¹⁵N NMR spectra revealed that NH₄NO₂ exhibits a plastic phase in which the rates of isotropic reorientation and selfdiffusion are sufficiently rapid. Since the ionic radius of NH_4^+ (148 pm) is between that of K^+ (133 pm) and Rb⁺ (152 pm), the activation parameters of NH₄NO₂ can be compared with those reported for MNO_2 (M = K, Rb, Cs, Tl) [22-25] as listed in Table 2. Because the diffusional activation energy of NH₄NO₂ is almost identical to those of KNO₂ and RbNO₂, it can be considered that disordered NH₄⁺ behaves as spherical cation. However, if an NO₂⁻ ion performs an isotropic reorientation motion, its spherical radius is close to that of Br⁻ (196 pm): lattice constants in the plastic phase of MNO₂ take similar values to those of MBr, as shown in Table 2. However, diffusional energies in the plastic phase of MNO2 are much smaller than those of MBr. This tendency is also observed in NH₄NO₂:

Table 3. Activation energies of NH_4^+ isotropic reorientation and self-diffusion (in kJ mol⁻¹).

	Isotropic reorientation	Self-diffusion
NH ₄ NO ₂	8 ± 1	80 ± 10 (this study)
NH ₄ Cl	17 ± 2 [53]	120 ± 10 [54]
NH ₄ Br	10 ± 3 [53]	120 ± 10 [54]

the obtained activation energies for $\mathrm{NH_4}^+$ isotropic reorientation, (8 ± 1) kJ mol $^{-1}$, and self-diffusion, (80 ± 10) kJ mol $^{-1}$, are smaller than those of NH₄X (X = Cl and Br), as shown in Table 3. From these results it is clear that both ionic radius and ionic shape are important factors in plasticity. When a planar NO₂ $^-$ ion undergoes isotropic reorientation, it occupies a space similar to that of a Br $^-$ ion in a crystal. However, the rate of isotropic reorientation in a crystal is much smaller than the jumping rate from one site to another (self-diffusion); therefore, from the point of view of the jumping ion, the orientation of NO₂ $^-$ ions is frozen over a short timescale of the order of picoseconds. This mechanism can be illustrated in terms of a revolving door.

4. Conclusion

Using ^{1}H NMR T_{1} and $T_{1\rho}$ measurements self-diffusion of NH₄⁺ with an activation energy of (80 \pm 10) kJ mol⁻¹ was detected in the highest-temperature phase of NH₄NO₂ crystals. This energy is similar to that of ionic plastic crystals, MNO₂ (M = K, Rb), and is smaller than that of normal crystals, NH₄X (X = Cl, Br). ^{15}N NMR spectra of $^{15}NH_{4}NO_{2}$ revealed that the isotropic reorientation rates of NH₄⁺ ions are sufficiently rapid in the low-temperature solid phase. In contrast, NO₂⁻ isotropic reorientation was found only in the high-temperature solid phase. These results suggest that the high-temperature phase of NH₄NO₂ crystals forms an ionic plastic phase. From these results it

can be concluded that crystalline NH₄NO₂ is a member of the new family of ionic plastic crystals.

Acknowledgements

The author is grateful to Prof. R. Ikeda and Dr. S. Ishimaru, University of Tsukuba for helpful discus-

- sion and the use of SXP and MSL-300 spectrometers. This work was partly supported by a Grant in Support of Promotion of Research at Yokohama City University.
- [1] J. K. Solbakk and K. O. Stromme, Acta. Chim. Scand. 23, 300 (1969).
- [2] C. W. F. T. Pistorius and P. W. Richter, Z. Anorg. Allg. Chem. 389, 315 (1972).
- [3] N. Onoda-Yamamuro, H. Honda, R. Ikeda, O. Yamamuro, T. Matsuo, K. Oikawa, and F. Izumi, J. Phys. Condens. Matter 10, 3341 (1998).
- [4] P. W. Richter and C. W. F. T. Pisorius, J. Solid State Chem. 5, 276 (1972).
- [5] L. Cavalca, M. Nardelli, and I. W. Bassi, Gazz. Chim. Ital. 87, 153 (1957).
- [6] D. Hohlwein, A. Hoser, and W. Prandl, Z. Kristallogr. 177, 93 (1986).
- [7] P. W. Bridgman, Proc. Am. Acad. Sci. **51**, 81 (1915).
- [8] J. D. Ray, J. Inorg. Nucl. Chem. 15, 290 (1960).
- [9] S. C. Mraw and L. A. K. Staveley, J. Chem. Thermodyn. 8, 1001 (1976).
- [10] S. C. Mraw, R. J. Boak, and L. A. K. Staveley, J. Chem. Thermodyn. 10, 359 (1978).
- [11] K. Moriya, T. Matsuo, and H. Suga, Thermochim. Acta 132, 133 (1988).
- [12] K. Moriya, T. Matsuo, H. Suga, and S. Seki, Chem. Lett., 1427 (1977).
- [13] K. Moriya, T. Matsuo, and H. Suga, Chem. Phys. Lett. 82, 581 (1981).
- [14] K. Moriya, T. Matsuo, and H. Suga, J. Phys. Chem. Solids 44, 1103 (1983).
- [15] K. Moriya, T. Matsuo, and H. Suga, Bull. Chem. Soc. Jpn. 61, 1911 (1988).
- [16] H. Honda, N. Onoda-Yamamuro, S. Ishimaru, R. Ikeda, S. Yamamuro, and T. Matsuo, Ber. Bunsenges. Phys. Chem. 102, 148 (1998).
- [17] S. Fujimoto, N. Yasuda, M. Koizumi, and M. Shimada, Jpn. J. Appl. Phys. 13, 735 (1974).
- [18] S. Fujimoto, N. Yasuda, and M. Koizumi, Jpn. J. Appl. Phys. 13, 2057 (1974).
- [19] A. Mansingh and A. M. Smith, J. Phys. D: Appl. Phys. 4, 560 (1971).
- [20] Y. Furukawa and H. Kiriyama, Chem. Phys. Lett. 93, 617 (1982).
- [21] Y. Furukawa, H. Nagase, R. Ikeda, and D. Nakamura, Bull. Chem. Soc. Jpn. 64, 3105 (1991).
- [22] M. Kenmotsu, H. Honda, H. Ohki, R. Ikeda, T. Erata, A. Tasaki, and Y. Furukawa, Z. Naturforsch. 49a, 247 (1994).

- [23] H. Honda, M. Kenmotsu, H. Ohki, R. Ikeda, and Y. Furukawa, Ber. Bunsenges. Phys. Chem. 99, 1009 (1995).
- [24] H. Honda, S. Ishimaru, N. Onoda-Yamamuro, and R. Ikeda, Z. Naturforsch. 50a, 871 (1995).
- [25] H. Honda, M. Kenmotsu, N. Onoda-Yamamuro, H. Ohki, S. Ishimaru, R. Ikeda, and Y. Furukawa, Z. Naturforsch. 51a, 761 (1996).
- [26] S. Hirotsu, M. Miyamoto, and I. Yamamoto, Jpn. J. Appl. Phys. 20, L917 (1981).
- [27] W. S. Tse, C. S. Fang, K. F. Pai, and W. Lih, Phys. Status Solidi 147, 791 (1988).
- [28] R. A. Marino, T. Oja, and P. J. Bray, Phys. Lett. A 27, 263 (1968).
- [29] H. J. Kim, K. T. Han, and S. H. Choh, Z. Naturforsch. 51a, 769 (1996).
- [30] A. Weiss, Z. Naturforsch. **15a**, 536 (1960).
- [31] Y. Takagi and K. Gesi, J. Phys. Soc. Jpn. 22, 979 (1967).
- [32] I. Hatta, J. Phys. Soc. Jpn. 24, 1043 (1968).
- [33] Y. Fujii, and I. Hatta, J. Phys. Soc. Jpn. 24, 1053 (1968).
- [34] R. Ikeda, M. Mikami, D. Nakamura, and M. Kubo, J. Magn. Reson. 1, 211 (1969).
- [35] T. Yagi, I. Tatsuzaki, and I. Todo, J. Phys. Soc. Jpn. 28, 321 (1970).
- [36] M. Sakiyama, A. Kimoto, and S. Seki, J. Phys. Soc. Jpn. 20, 2180 (1965).
- [37] H. Honda, S. Ishimaru, and R. Ikeda, Z. Naturforsch. 54a, 519 (1999).
- [38] J. Timmermans, Bull. Soc. Chim. Belg. 44, 17 (1935).
- [39] J. Timmermans, J. Chem. Phys. 35, 331 (1938).
- [40] J. Timmermans, J. Phys. Chem. Solids 18, 1 (1961).
- [41] K. Moriya, T. Matsuo, and H. Suga, Solid State Commun. 66, 533 (1988).
- [42] K. Moriya, T. Matsuo, and H. Suga, J. Chem. Thermodyn. 20, 913 (1988).
- [43] C. I. Ratcliffe, J. A. Pipmeester, and J. S. Tse, Chem. Phys. Lett. 99, 177 (1983).
- [44] A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London 1961.
- [45] J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
- [46] L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York 1960.
- [47] Y. Takagi and K. Gesi, J. Phys. Soc. Jpn. 22, 979 (1967).

- [48] The Chemical Society of Japan, Kagaku Binran, Maruzen, Tokyo 1966.
- [49] H. Ott, Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. **63**, 222 (1926).
- [50] G. Bartlett and I. Langmuir, J. Am. Chem. Soc. **43**, 84 (1921).
- [51] L. Vegard, Z. Phys. 5, 17 (1921).
- [52] S. Westman and A. Magneli, Acta Chem. Scand. 11, 1587 (1957).
- [53] W. P. Davey, Phys. Rev. 21, 143 (1923).
- [54] M. Tansho, Y. Furukawa, D. Nakamura, and R. Ikeda, Ber. Bunsenges. Phys. Chem. 96, 550 (1992).