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The process of amplification of a single spin state using nuclear magnetic resonance (NMR) tech-
niques in a rotating frame is considered. Our main aim is to investigate the efficiency of various
schemes for quantum detection. Results of numerical simulation of the time dependence of individual
and total nuclear polarizations for 1D, 2D, and 3D configurations of the spin systems are presented.
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1. Introduction

Concerning the impellent problem in quantum state
detection information processing is amplified and then
the output of a protocol is measured. Recently numbers
of schemes have been proposed for realizing measure-
ments of a single quantum state [1 – 7]. These schemes
will play an important role in building up a quantum
device for amplification of a very low signal from a sin-
gle quantum object. To estimate the efficiency of these
schemes several values can be used. One of them is the
contrast, C, introduced in [3, 4]:

C =
M(0)

z −M(1)
z

Mz(0)
, (1)

where M(0)
z and M(1)

z are the nuclear magnetizations of
the system obtained when the measured nuclear spin
is in the state |0〉 or |1〉, respectively, and Mz(0) is the
initial nuclear magnetization. The quantity for contrast
received within the framework of realizable model lies
in a range of 1.6÷1.7, while the maximum theoretical
contrast is 2 [1, 3, 4].

Recently, a principle of quantum detection of the
state of a single spin in a one-dimensional Ising chain
was shown with nearest-neighbor interactions [1] and
also in a more realistic spin system including interac-
tions beyond the nearest neighbours and natural dipole-
dipole interactions [8]. In this model, a wave of flipped
spins can be triggered by a single spin flip and the po-
larization of the single spin is converted into a total
polarization of the spin system. This process can be de-
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scribed by using the sequence of quantum gates [1, 5]

CNOTN,N−1 . . .CNOT3,2CNOT2,1, (2)

where CNOTn,m is the control-not gate, which leads to
flip the state of the m-th qubit when the n-th qubit is
in the state |1〉 and does not do anything when the n-th
qubit is in the state |0〉. An equivalent explanation can
be given by using the following physical arguments.
The effective field on each spin is determined as a vec-
tor sum of the local field, ωd, produced by neighbour
spins and a radio-frequency (RF) field. When a spin,
oriented along the Z-axis and irradiated by a weak RF
field along the X-axis, �H1||X , has the two neighbours
in different states, for example, one up, along an exter-
nal magnetic field, �H0||Z, and another down, antipar-
allel to �H0, the local field produced by these nearest-
neighbours on the spin would have been zero. The
spin starts to rotate around the direction of the weak
RF field and changes its initial direction. By contrast,
when a spin has two neighbours in the same state, for
example along �H0, the local field on this spin would
have been not zero in the Z-direction. The effective
field coincides with the local one so that the spin re-
mains in the former position. Evidently, the above-
mentioned explanation is correct for the simple model
of a spin system with a weak dipolar coupling between
nearest neighbours when a Hamiltonian includes only
the Z-components of the spin operators. In real solids,
the main interaction is a dipole-dipole one with cou-
pling of all spins in a cluster, and the Hamiltonian in-
cludes all components of the spin operators.
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In the present paper we consider a nuclear spin sys-
tem in a rotating frame representation. The system
consists of two parts. One of the parts is simply one
spin (S), the state of which is detected. The second
part is a system of dipolar coupling homonuclear spins,
which plays the role of a measuring device. Our main
goal is to convert the polarization of the target single
spin into a total polarization of the spin system. First
we consider one-dimensional spin systems, namely,
chains and rings of spins in the limit of weak cou-
pling [9]. For these spin systems we obtain effective
Hamiltonians. Then the amplification processes are
studied in two- and three-dimensional spin systems. Fi-
nally, the efficiency of this scheme is discussed.

2. Averaging of Interaction with an External Field

Let us consider the model of a system of the nu-
clear spin S and N spins I coupled by dipole-dipole
interaction, placed in a high magnetic field, �H0, di-
rected along the Z-axis and irradiated at resonance
by weak transverse RF fields, �H1(t) = �H1 cosΩ0t and
�h1(t) = �h1 cosω0t directed along the X-axis, where H1
and h1 are the amplitudes of the weak RF fields. The
Hamiltonian of the spin system can be presented in the
following form:

Hlab = Ω0Sz + Ω1Sx cosΩ0t + ω0

N

∑
n=1

Iz
n

+ ω1

N

∑
n=1

Ix
n cosω0t + Hdd + HSI,

(3)

where Ω0.1 = γSH0.1, ω0 = γIH0 and ω1 = γIh1, γS and
γI are the gyromagnetic ratio of nuclei S and I. Sz, Sx,
Iz
n and Ix

n are the angular momentum operators of S
and I nuclei in the Z- and X-directions, respectively.
Hdd is the secular part of the dipole-dipole interaction
Hamiltonian with the coupling constant dmn between
the I nuclei:

Hdd = ∑
m>n

dmn

[
Iz
mIz

n −
1
2
(Ix

mIx
n + Iy

mIy
n)
]
. (4)

HSI is the secular part of the dipole-dipole interaction
Hamiltonian with the coupling constant gm between
the unlike spins I and S nuclei:

HSI = ∑
m

gmSzIz
m. (5)

In the rotating frame at Ω0 ≈ ω0 � dmn ≈ gm � ω1 =

Ω1, the fast oscillating terms can be removed [10, 11]:

Hrot =
Ω1

2
Sx +

ω1

2

N

∑
n=1

Ix
n + Hdd + HSI. (6)

To reach our goal and convert the polarization of the
spin S to the total polarization of the spin system I the
Hartmann-Hahn condition [12], ω1 = Ω1, must be ful-
filled.

Usually, at ω1 = Ω1 � ωd =
√

Tr(Hdd)2

Tr(∑n Iz
n)2 , the dipolar

Hamiltonian, Hdd, can be taken into account by an av-
eraging procedure [10, 11]. The case considered here
is opposite, ω1 = Ω1 � ωd. To correctly take into ac-
count the first two terms on the right-hand side of (6)
let us perform the unitary transformation of the first
two terms of the Hamiltonian (4) [1]:

H̃(t) =
ω1

2
U(t)

(
Sx +

N

∑
n=1

Ix
n

)
U+(t), (7)

where

U(t) = exp[−it[Hdd + HSI)]. (8)

At ωd � ω1, it becomes appropriate to take into ac-
count in the lowest order the time-independent part
of the Hamiltonian (7). Thus, the effective time-
independent Hamiltonian can be obtained [10, 11]:

H(0)
eff = H(0) =

1
tc

∫ c

0
dtH̃(t). (9)

3. Quantum State Detection

The first step of detection of a single spin state con-
sists of in the conversion of the weak signal of the sin-
gle spin to the large system, called as measuring de-
vice. It is difficult to study this process in detail be-
cause usually the devices are classical and too large
and complex. To overcome these difficulties it was
proposed to consider simpler and distinct models of a
quantum detector with controllable spin dynamics [1 –
5]. Following these ideas and considering an ensemble
of N spins with I = 1/2, forms a measuring device and
the target single spin, S = 1/2 can be measured. First,
the I spin system is prepared in a highly polarized state
with the initial density matrix:

ρ(0) = ⊗N
k=1ρk(0), (10)

where ρk(0) =
1 0
0 0

k
is the initial density matrix of
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Fig. 1. Configurations of a measuring device (the ensemble
of seven spins with I = 1/2; thin arrows) and the target spin S
(thick arrow); (a) 1D system; (b) 2D system; (c) 3D system.

the k-th spin oriented up along the external magnetic
field �H0. Below we consider “measuring” spin systems
design as one-, two-, and three-dimensional systems
(Fig. 1).

3.1. One-Dimensional Model

Let us consider a one-dimensional (1D) linear spin
chain (Fig. 1a). In the limit of weak coupling [8] the
Hamiltonian describing the spin system can be pre-
sented by (3) with

Hdd =
N

∑
n<m

dmnIz
mIz

n, (11)

where dmn = d1/(m − n)3 and d1 is the coupling
strength between the nearest I spins. In the rotating
frame (3) becomes [10, 11]

Hrot =
ω1

2

(
Sx +

N

∑
n=1

Ix
n

)
+

N

∑
n<m

dmnIz
mIz

n +
N

∑
m

gmSzIz
m,

(12)

where gm = g1/m3 and g1 is the coupling strength be-
tween the nearest S and I spins. The Hamiltonian (12)
can be rewritten in a suitable form for further consid-
eration [9]:

H =
ω1

2

(
Sx +

N

∑
n=1

Ix
n

)

+
M

∑
q=1

(
dq

N−q

∑
k=1

Iz
kIz

k+q + gqSzIz
q

)
,

(13)

where dq = dk,k+q are the coupling constants between
the k-th and (k+q)-th nuclear spins, and M is a number
of directed coupling spins, for example, at the near-
est neighbour approximation M = 1 and at the next-
nearest neighbour approximation M = 2. At ω1 � dq
the first term on the right-hand side of (13) can be taken
correctly into account by using the averaging proce-
dure [1]. It is useful for this purpose to transform the
first term of the Hamiltonian (13) by the unitary trans-
formation

H̃(t) =
ω1

2
e
[
−it ∑M

q=1

(
dq ∑N−q

k=1 Iz
k Iz

k+q+gqSzIz
q

)]

·
(

sx +
N

∑
n=1

Ix
n

)
e
[
it ∑M

q=1

(
dq ∑N−q

k=1 Iz
k Iz

k+q+gqSzIz
q

)]
.

(14)

When the modulation is very rapid compared to the
magnitude, dq � ω1, it becomes appropriate to take
only the time-independent part of the Hamiltonian (14)
into account [10, 11].

Using the transformation rules for the X-component
of the spin operators,

e−itaABQeitaAB = Qcos
(at

2

)
+2PBsin

(at
2

)
, (15)

and for the Y -component of the spin operators,

e−itaABPeitaAB = Pcos
(at

2

)
−2QBsin

(at
2

)
, (16)

where a = dq; A = Iz
k , Sz; B = Iz

k+q, Iz
q; Q = Ix

k , Sx; P =
Iy
k , Sy, the effective time-independent Hamiltonian in

the approximation of the nearest neighbour interacting
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spins (M = 1) can be obtained:

H(M=1)
eff =

(g
2

)
Sz +

ω1

8
Sx(1−2Iz

1)−
(

d1 + g1

2

)
Iz
1

+
ω1

8
Ix
1(1−2Iz

2)(1 + 2Sz)+
(

d1

2

)
Iz
N

+
ω1

8
Ix
N(1−2Iz

N−1)+
ω1

4

N−2

∑
k=2

Ix
k (1−4Iz

k−1Iz
k+1).

(17)

The effective time-independent Hamiltonian (17) has
the following interpretation: the k-th spin is still at its
initial state when its two neighbours are in the same
state. This means that the local field produced by the
(k−1)-th and by the (k + 1)-th spin is doubled. When
the two neighbours of the k-th spins are in different
states, the local field equals zero. In this case the en-
semble average 〈1−4Iz

k+1Iz
k−1〉= 0. As results, the k-th

spin starts to rotate around the direction of the weak RF
field and changes its initial direction. The result (17) is
similar to that obtained earlier [1], except for the terms
with spin operators of the first and the last spins of the
chain. In the case with nearest and next-nearest neigh-
bour interactions (M = 2) we obtain the following ex-
pression for the effective Hamiltonian:

H(M=2)
eff =

(
g1 −g2

2

)
Sz +

(
d2 −d1 −g1

2

)
Iz
1

+
(

d2 −g2

2

)
Iz
2 −
(

d2t
2

)
izN−1 +

(
d1 −d2

2

)
Iz
N

+
ω1

8
Sx[(1−4Iz

2Iz
1)−2(Iz

1− Iz
2)]

+
ω1

8
Ix
1 [(1−4Iz

3Iz
1)−2(Iz

2 − Iz
3)](1 + 2Sz) (18)

+
1
4

Ix
2(1−4Iz

3Iz
1)[(1−4Iz

4Sz)+ 2(Iz
4Sz)]

+
1
4

Ix
N−1(1 + 2Iz

N−3)(1−4Iz
N−2Iz

N)

+
ω1

8
Ix
N [(1−4Iz

N−2Iz
N−1)−2(Iz

N−1 − Iz
N−2)]

+
ω1

4

N−3

∑
k=3

Ix
k (1−4Iz

k−1Iz
k+1)(1−4Iz

k−2− Iz
k+2).

To estimate the efficiency of the one-dimensional
scheme we calculate the time-dependences of the in-
dividual nuclear spin polarizations given by the defini-
tion

Pk(t) = Tr
{

Iz
ke−itH ρ(0)eitH

}
. (19)

Fig. 2. Time dependences (in units of 1/ω1) of the spin S
state conversion to the individual polarizations of the N spin
system, (a) calculated by using the Hamiltonian (13) with
M = 1 and (b) obtained with the effective Hamiltonian (17).

Fig. 3. (a) Time dependences of the conversion of the S spin
polarization to the individual spin polarizations in a linear
chain of seven dipolar-coupled spins calculated by using
the Hamiltonian (13); (b) alternating chain of 1H and 19F
nuclear spins at ω1 = 0.15D1.

The results of the numerical calculation for the chain
with the nearest-neighbour interactions, described by
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the Hamiltonian (13) with M = 1, are shown in Fig-
ure 2a. Spin dynamics are very close to the ones ob-
tained with the effective Hamiltonian (17) ( Fig. 2b).
Including the interactions with further spins to the
consideration does not cause a qualitative change in
the dynamics but makes the wave somewhat less pro-
nounced. The results for all spin couplings are shown
in Figure 3a. In a chain with alternating spins of two
types, irradiated by a weak RF field, the secular het-
eronuclear dipole-dipole Hamiltonian is changed. The
interactions between equal spins are described by the
Hamiltonian (4) including all components of the spin
operators, while the static components remain only sig-
nificant in the interaction between unequal spins; the
interaction is presented by the Hamiltonian (11). As
an example Fig. 3b presents the results of the calcula-
tion for a seven spin chain with alternating of hydro-
gen, 1H, and fluorine, 19F, with the gyromagnetic ra-
tio γ1H = 42.58 MHz/T and γ19F = 40.08 MHz/T and
ω1/D1 = 0.15.

Note that the behaviour of the second spin is critical.
Irrespective of the chain length, rotating of the second
spin will lead to the propagation of a wave. Therefore,
an analysis of the short spin chain with few numbers
of spins gives a trustworthy information of the wave
propagation in the spin chains with a large number of
spins.

3.2. Two-Dimensional Model

The Hamiltonian of a two-dimensional (2D) spin
system, the configuration of which is presented in
Fig. 1b, has the form

H =
ω1

2

(
N

∑
m=1

Ix
m + Sx

)

+
M

∑
q=1

dq

N−1−q

∑
m=1

[
Iz
mIz

m+q −
1
2
(Ix

mIx
m+q + Iy

mIy
m+q)

]

+
N−1

∑
m=1

fm

[
Iz
mIz

N − 1
2
(Ix

mIx
N + Iy

mIy
N)
]

+
N−1

∑
m=1

gmSzIz
m + gNSzIz

N ,

(20)

where fm is the dipolar coupling constant between the
N-th and m-th I nuclear spins. In the approximation
of nearest neighbours the effective Hamiltonian corre-
sponding to the two-dimensional scheme can be ob-

Fig. 4. Time dependences of the conversion of the S spin po-
larization to the individual spin polarizations in a 2D system
of seven dipolar-coupled spins, (a) calculated by using the
Hamiltonian (20) and (b) calculated by using the weak cou-
pling limit.

tained:

Heff =
N−1

∑
k=1

{(
fk −gk

2

)
Iz
k

+
ω1

4
Ix
k [(1−4Iz

NSz)−2(Iz
N −Sz)]

}
.

(21)

The results of simulation of seven spins with I = 1/2
and a single spin with S = 1/2 in the weak coupling
approximation are presented in Figure 4a. Figure 4b
shows the dynamics of converting the polarization of
the spin S to the polarization of the ensemble of seven
spins with I = 1/2 described by the Hamiltonian (20)
at ω1 = 0.15D1 with the full dipole-dipole interactions.

3.3. Three-Dimensional Model

The Hamiltonian of a three-dimensional (3D) spin
system, the configuration of which is presented in
Fig. 1c, includes the full dipole-dipole interactions be-
tween I spins and has the form

H =
ω1

2

(
N

∑
m=1

Ix
m + Sx

)
+ D1

M

∑
q=1

[
sin
( π

N

)
sin
(πq

N

)
]3

·
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Fig. 5. Conversion of the S spin polarization to the indi-
vidual spin polarizations in a 3D system of seven dipolar-
coupled spins, (a) calculated by using the Hamiltonian (22)
and (b) calculated by using the weak coupling limit. Six of
the curves are overlapping.

·
N

∑
m=1

[
Iz
mIz

m+q −
1
2
(Ix

mIx
m+q + Iy

mIy
m+q)

]

+
N−1

∑
m=1

Rm

[
Iz
mIz

N − 1
2
(Ix

mIx
N + Iy

mIy
N)
]

+
N−1

∑
m=1

QmSzIz
m + QNSzIz

N , (22)

where Rm is the dipolar coupling constant between the
N-th and m-th nuclear spin I, Qm is the dipolar cou-
pling constant between the spin S and the m-th nuclear
spin I, and Qn is the dipolar coupling constant between
the spin S and N-th nuclear spin I. In the approximation
of nearest neighbours the effective Hamiltonian corre-
sponding to the three-dimensional scheme can be ob-
tained:

Heff =
ω1

2

N−1

∑
m=1

Ix
m

M

∏
q=1

(1− Iz
mIz

m+q)+
N−1

∑
m=1

RmIz
mIz

N

+
N−1

∑
m=1

QmSzIz
m + QNSzIz

N .

(23)

Figure 5a shows the dynamics of converting the po-
larization of the spin S to the polarizations of the en-
semble of seven spins with I = 1/2 in the weak cou-

Table 1. The efficiency of amplification in one-, two-, and
three-dimensional spin configurations.

Coefficient of Expo- Exposure Contrast
amplification sure effectiveness

α T η C
1D Full d-d interaction 1.85 8.91 0.21 1.23

Weak coupling limit 1.86 3.38 0.55 1.24

2D Full d-d interaction 2.69 3.12 0.86 1.79
Weak coupling limit 2.88 3.15 0.91 1.92

3D Full d-d interaction 0.89 3.63 0.24 0.59
Weak coupling limit 1.64 3.77 0.43 1.09

Fig. 6. Time dependences of the change in the total spin
polarization, ∆P, in 3D spin system configurations with the
Hamiltonian (22) (solid) and for ZZ coupling (dash); in a 2D
spin system with Hamiltonian (20) (dot) and for ZZ coupling
(dash-dot); and in 1D spin system configurations for the al-
ternating spin chain with dipole-dipole couplings (dash-dot-
dot) and for ZZ coupling (shot-dash).

pling limit. Figure 5b presents the converting process
with the full dipole-dipole interactions, described by
the Hamiltonian (22) at ω1 = 0.15D1.

4. Results and Discussion

The most important feature of the spin dynamics de-
scribed above is signal amplification, when a state of
polarization of a single spin S is converted into a total
polarization of the spin system I. The change in the to-
tal polarization (magnetization) of a spin system quan-
tifies the efficiency of this system as a quantum ampli-
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fier [1 – 3]. The results for different models studied in
this work are summarized in Fig. 6, which shows the
time-dependences of the change in the total polariza-
tion, ∆P = P(t)−P(0), in 1D, 2D, and 3D spin system
configurations. Here P(t) = ∑N

k=1 Pk(t) is the total spin
polarization.

The scheme will allow to estimate the efficiency of
the measurement of very weak signals according to the
number of parameters which characterize: 1) the coef-
ficient of amplification, α = |∆P|

2 [1]; 2) the time of ex-
posure, T (in units of 1/ω1); and 3) the exposure effec-
tiveness, η = C

T . The time of exposure can be defined
as the time required for the achievement of the maxi-
mum contrast, but under the condition that ω1 � ωd.
Taking the influence of the relaxation and the decoher-
ence processes into account it is useful in a real spin
system to estimate the effectiveness of various quan-
tum amplifiers using the rate of achievement of the
maximal contrast, the exposure effectiveness η .

The coefficient of amplification α and the exposure
time T have been extracted from Figure 6. Results are
presented in Table 1.

From the table we can see that the 2D configura-
tion of the spin system gives the largest coefficients of
amplification and the smallest exposure times. Another

related characteristic is the contrast C [2, 3], which is
a relative change of polarization of the spin system.
Its maximum possible value is C = 2 [1 – 3]. In mod-
els considered here the largest value of the contrast is
reached in the 2D configuration of the spin system.

5. Conclusions

We have studied the process of conversion of the po-
larization of the nuclear single spin to the total polar-
ization of an ensemble of nuclear spins in 1D, 2D, and
3D nuclear spin systems. It has been demonstrated that
efficient amplification dynamics can be organized for
natural dipole-dipole couplings, both in the weak cou-
pling limit and full dipole-dipole interactions. Numer-
ical calculations are used to compare the contributions
of nearest and remote spins to the conversion processes
in the 1D, 2D, and 3D configuration of the spin sys-
tems.
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