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We consider a nonlinear oscillator simultaneously excited by external and parametric functions.
The oscillator has a bias parameter that breaks the symmetry of the motion. The example that we use
to illustrate the problem is the rolling oscillation of a biased ship in longitudinal waves, but many
mechanical systems display similar features. The analysis took into consideration linear, quadratic,
cubic, quintic, and seven terms in the polynomial expansion of the relative roll angle. The damping
moment consists of the linear term associated with radiation and viscous damping and a cubic term
due to frictional resistance and eddies behind bilge keels and hard bilge corners. Two methods (the
averaging and the multiple time scales) are used to investigate the first-order approximate analytical
solution. The modulation equations of the amplitudes and phases are obtained. These equations are
used to obtain the stationary state. The stability of the proposed solution is determined applying
Liapunov’s first method. Effects of different parameters on the system behaviour are investigated
numerically. Results are presented graphically and discussed. The results obtained by two methods
are in excellent agreement.
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1. Introduction

The governing equation of a single-degree-of-
freedom oscillator typically shows excitations that ap-
pear as either an inhohogeneous or a time-varying co-
efficient in the differential equation. These types of ex-
citations are usually called external and parametric ex-
citations, respectively.

The nonlinearity brings a whole range of phenom-
ena that are not found in linear analysis. These in-
clude multiple solutions, jumps, frequency entrap-
ment, natural frequency shift, sub-harmonic, and ultra-
subharmonic resonance, period multiplying bifurca-
tion and dynamic chaos [1 – 7]. It should be noticed
that not all these resonance phenomena produced due
to the nonlinearity do often occur and are significant
in ship motion. Some of them are probably uncom-
mon and may be possibly insignificant. However, the
practising naval architect must be able to recognize all
such phenomena when they do occur and should un-
derstand their consequences so that he will be able to
avoid a design that promotes capsizing, to evaluate the
sea worthiness of a craft and to recommend appropri-
ate actions to control or minimize the large amplitudes
of motions.
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The work of Grim [8] and Kerwin [9] showed that
the periodic encounter of a ship with a wave results
in a time-varying restoring moment, and the roll mo-
tion is described by a Mathieu equation. The reso-
nance of these equations reveals the unstable regions
and the dangerous frequencies of encounter obtained
for small angles, where the linear approximations are
valid. Wright and Marshfield [10] performed an inter-
esting analytical and experimental study of nonlinear
ship-roll motions. Blocki [11] added a nonlinear damp-
ing and nonlinear restoring moment to the roll equa-
tion and used it to investigate the probability of cap-
sizing. Cardo et al. [12] used the method of averag-
ing to obtain approximate solutions of the roll equa-
tion. They concluded that the roll oscillations are sen-
sitive to the form of the damping model. Mathisen
and Price [13] considered damping models in which
the nonlinear part is weak in comparison to the lin-
ear one. They carried out straightforward perturba-
tion analyses to study free and forced oscillations and
showed that their analytical results agree with some
experimental data. Nayfeh and Khdeir [14] used a
second-order perturbation analysis and presented an-
alytical and numerical results to illustrate different
types of nonlinear motions. They also [15] demon-
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strated the occurrence of period multiplying bifurca-
tion and chaos in the nonlinear rolling response of un-
biased ships to regular beam waves and [16] investi-
gated the nonlinear rolling of biased ships in regular
beam waves. Bass and Haddara [17] examined differ-
ent roll-damping models used in the literature and pre-
sented a scheme to determine the damping coefficients
from free-decay data. Schmidt and Tondl [18] investi-
gated the nonlinear rolling motions of ships in longi-
tudinal waves. Falzarano et al. [19] modelled the roll
motion by a second-order differential equation with
linear and quadratic damping terms and linear and cu-
bic restoring terms. Using closed-form expressions of
the heteroclinic and homoclinic manifolds of the un-
forced and undamped system, they were able to com-
pute the corresponding Melnikov function in closed
form, and consequently, to obtain closed-form expres-
sions for the critical values of the forcing at which the
homoclinic or heteroclinic bifurcations occur. Nayfeh
and Sanchez [20] succeeded in predicting the stabil-
ity and the complicated nonlinear rolling motion of a
ship in beam seas. Bikdash et al. [21] investigated the
influence of a general roll-damping on the stability of
ships using the Melnikov criterion and characterized
the effect of different damping models. Nayfeh and
Sanchez [22] studied the chaos and dynamic instabil-
ity in the rolling motion of ships. El-Bassiouny [23]
investigated the principal parametric resonance of a
nonlinear mechanical system with two frequencies and
self-excitations. Nayfeh et al. [24, 25] used a model
equation that couples the pitch mode to the roll mode
by including the dependence of the pitching moment
on the roll orientation. Thus, the pitch (heave) mo-
tion is not prescribed but is coupled to the roll mo-
tion, and consequently the pitch (heave) and roll ori-
entations are determined simultaneously as functions
of a prescribed excitation. They determined first-order
uniform expansions that clearly show the significance
of the frequency ratio as well as a “saturation” phe-
nomenon which is completely obscured when the pitch
or heave motion is specified. Moreover, they offered an
explanation of the observations of Froude. Nayfeh [26]
considered the nonlinearly coupled roll and pitch mo-
tions of a ship in regular head waves in which the cou-
plings are primarily in hydrostatic terms when the pitch
frequency is approximately twice the roll frequency
and the encounter frequency is near either the pitch or
roll natural frequency. He demonstrated the saturation
phenomenon when the encounter frequency is near the
pitch natural frequency and demonstrated the existence

of Hopf bifurcations. Nayfeh and Sanchez [22, 27]
conducted a local-global study with the aid of digi-
tal and analog computers and provided results in the
form of response curves, bifurcation sets, and basins
of safe and capsize regions. They addressed the dif-
ferent routes through which capsizing is likely to oc-
cur in regular beam seas. El-Bassiouny [28] studied an
approach for implementing an active nonlinear vibra-
tion absorber. The strategy exploits the saturation phe-
nomenon that is exhibited by multi-degree-of-freedom
systems with cubic nonlinearities possessing one-to-
one internal resonance. The proposed technique con-
sists of introducing a second-order controller and cou-
pling it to the plant through a sensor and an actuator,
where both the feedback and control signals are cubic.

In this paper, we investigate fundamental reso-
nance and principal parametric resonance of the order
one-half for a single-degree-of-freedom system with
nonlinearities up to seven terms under external and
parametric functions. Two approximate methods are
used to find two first-order ordinary differential equa-
tions describing the modulation of the amplitudes and
phases. Periodic solutions and their stability are de-
termined. Numerical calculations are carried out. The
results obtained by the two methods are in excellent
agreement.

2. Governing Equation

As shown in Fig. 1, the rolling motion of a biased
ship can be described by the absolute roll angle φ(t)
and the relative angle θ (t) with respect to the local
wave slope α(t). Applying Newton’s second law, we
find that the equation of motion can be written as

(I + δ I)θ̈ + D(ϑ̇)+ K(θ ,τ,γ) = B− Iα̈,

θ = φ −α,
(1)

where I is the roll moment of inertia, δ I is the added
moment of inertia due to the fluid, which is assumed
to be constant [5], and B is a constant bias moment,
which might be due to steady wind, or a shift in cargo,
or water or ice on deck. The righting arm (restoring
moment) K(θ ,τ,γ) depends on the angle in which the
wave hits the ship and the relative velocity of the wave
with respect to the ship. We follow Blocki [11] and
obtain the following relation for the rolling of a ship
due to heave-roll coupling:

K(θ ,τ,γ) =

ω2(θ + α3θ 3 + α5θ 5 + α7θ 7 + hcos(Ω̄ + γ)),
(2)
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Fig. 1. A ship rolling in longitudinal
waves with local wave slope α . The
ship is biased at an angle φ , so that the
relative angle with respect to the wave
is θ = φ −α .

where τ is the time and

h =
K0az

2ω2
0

(3)

represents the magnitude of the parametric excitation,
which depends on the coupling coefficient Kθz and the
amplitude of the heaving motion az. A simple single-
degree-of-freedom system is used to describe the basic
features of the motion [11]. If we consider the case of
waves approaching the ship from the side at an angle γ ,
the single-degree-of-freedom resulting motion can be
described by

θ̈ + 2µ1θ̇ + µ3θ̇ 3

+ ω2
0 (θ + α3θ 3 + α5θ 5 + α7θ 7 + hcos(Ω̄ + γ))

= ω2
0 (θs + α3θ 3

s + α5θ 5
s + α7θ 7

s )

+
αmI

I + δ I
(Ω̄ )2 cos(Ω̄ + γ).

(4)

The ship is biased in the sense that it is subjected to
a constant heeling that tilts the vessel by an angle θs.
The wavelength is assumed to be large compared with
the ship width. The waves are also assumed to be si-
nusoidal with a maximum wave slope αm. The pa-
rameter h represents the amplitude of the parametric
excitation. It depends on the magnitude of the cou-
pling coefficient and the amplitude of the heaving mo-
tion [11, 12]. Equation (4) can be simplified by scaling
time according to t = ω0τ , resulting in

θ̈ + θ + 2µ1θ̇ + µ3θ̇ 3 + α3θ 3 + α5θ 5 + α7θ 7

+ hθ cos(Ω t)

= θs + α3θ 3
s + α5θ 5

s + α7θ 7
s + F cosΩ t,

(5)

where

F =
αmIΩ 2

I + δ I
, (6)

and represents the external excitation characterized by
the maximum wave slope αm. θs is the bias angle,
Ω the wave frequency, I the ship’s interia and δ I the
fluid’s added inertia. The inertia factor is computed
with the relation I = mK2. Using the transformation
equation θ = θs + u, we write (3) as

ü+ u + ε
[
2µ1u̇+ µ3u̇3 + b1u + b2u2 + b3u3

+ b4u4 + b5u5 + b6u6 + b7u7] = ε f cosΩ t,
(7)

where ε is a small perturbation parameter and

b1 = 3α3θ 2
s + 5α5θ 3

s + 3α7θ 6
s ,

b2 = 3α3θs + 10α5θ 3
s + 21α7θ 5

s ,

b3 = α3 + 10α5θ 2
s + 35α7θ 4

s ,

b4 = 3α5θs + 35α7θ 3
s ,

b5 = α5 + 21α7θ 2
s , b6 = 7α7θs,

b7 = α7, f = F −hθs.

(8)

Equation (7) is general and can model a wide variety
of oscillators. Our interest is to study the effect of ex-
ternal and parametric functions on systems that can be
symmetric or biased.

3. The Averaging Method

The method of averaging is based on the assump-
tion that small perturbations, such as weak nonlineari-
ties or light damping, cause slow (low-frequency) vari-
ations in the response of a system [29 – 31]. The fast
(high-frequency)variations due to the perturbations are
assumed to be insignificant. Essentially, the averaging
approximation yields a simplified mathematical repre-
sentation of the dynamics of the system by smooth-
ing away these fast variations. Thus, it is of basic im-
portance that the components, which make up the re-
sponse, be correctly classified as either fast or slow.
Usually, the response of each mode is assumed to be of
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the form ui = ai cos(ω1 + βi(t)), where ai(t) and βi(t)
are assumed to be slowly varying. The equations of
motion are then transformed into a system of first-order
equations for the ai(t) and βi(t) and, after some ma-
nipulation, the equations are integrated with respect to
time from 0 to 2π/ωi. The averaging approximation
consists of the treatment of the slow-varying quanti-
ties as constants because they change very little over
the period of integration. It is implicitly assumed that
the ωi are not small so that the period 2π/ωi is not
large. Thus, we see that the approach where the fre-
quency ω1 is small cannot be applied.

A alternative strategy for the low-frequency modes
can be developed as follows. When ε = 0, the solution
of (7) can be written as

u = acos(t + ϕ), (9)

where a and ϕ are constants. It follows from (9) that

u̇ = −asin(t + ϕ). (10)

When ε �= 0, we assume that the solution of (7) is still
given by (9), but with time-varying a and ϕ . Differenti-
ating (9) with respect to time and recalling that a and ϕ
are functions of t, we have

u̇ = −asinψ + ȧcosψ −aϕ̇ sinψ , (11)

where

ψ = t + ϕ . (12)

Comparing (10) with (11), we obtain

ȧcosψ −aϕ̇ sinψ = 0. (13)

Differentiating (11) with respect to t, we get

ü = −acosψ − ȧsin ψ −aϕ̇ cosψ . (14)

Inserting (9), (10) and (14) into (7), we obtain

ȧsinψ + aϕ̇ cosψ =

ε
[−2µ1asinψ − µ3a3 sin3 ψ + b1acosψ
+ b2a2 cos2 ψ + b3a3 cos3 ψ + b4a4 cos4 ψ
+ b5a5 cos5 ψ + b6a6 cos6 ψ + b7a7 cos7 ψ
+ hacosΩ t − f cosΩ t

]
.

(15)

Solving (13) and (15) using ȧ and ϕ̇ and using the
trigonometric identities gives the following variational
equations:

ȧ = ε
[
−2µ1a(1− cos2ψ)

+ µ3a3
(3

8
− 1

2
cos2ψ +

1
8

cos4ψ
)

+
1
2

b1asin2ψ

+ b2a2
(1

4
sin3ψ − 1

2
sinψ

)

+ b3a3
( 1

16
sin2ψ +

1
8

sin4ψ
)

+ b4a4
(1

8
sinψ +

3
16

sin3ψ +
1

16
sin5ψ

)

+ b5a5
( 5

32
sin2ψ +

3
32

sin4ψ +
1

16
sin6ψ

)

+b6a6
( 5

64
sinψ +

9
64

sin3ψ +
1
16

sin5ψ +
1

32
sin7ψ

)

+ b7a7
(1

8
sin2ψ +

5
256

sin4ψ +
7

256
sin6ψ

+
1
64

sin8ψ
)

+
1
4

ha(sin(Ω t +2ψ)−sin(Ω t−2ψ))

− 1
2

f (sin(Ω t + ψ)− sin(Ω t −ψ))
]
, (16)

ϕ̇ = ε
[
− µ1 sin2ψ

−µ3a2
( 1

16
sin2ψ − 1

8
sin4ψ

)
+

1
2

b1(1+cos2ψ)

+ b2a
(3

8
cosψ +

1
4

cos3ψ
)

+ b3a2
(3

8
+

1
2

cos2ψ +
1
8

cos4ψ
)

+ b4a3
(5

8
cosψ +

5
16

cos3ψ +
1

16
cos5ψ

)

+b5a4
( 5

16
+

5
32

cos2ψ +
3

16
cos4ψ +

1
32

cos6ψ
)

+ b6a5
(43

64
cosψ +

27
128

cos3ψ +
11

128
cos5ψ

+
1

64
cos7ψ

)
+b7a6

( 35
128

+
15
32

cos2ψ +
7
32

cos4ψ

+
1
16

cos6ψ +
11

128
cos8ψ

)

+
1
2

h
(

cosΩ t +
1
2

cos(Ω t +2ψ)− 1
2

cos(Ω t−2ψ)
)

− f
2a

(cos(Ω t + ψ)− cos(Ω t −ψ))
]
. (17)
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The study is focused on two cases of resonance
(fundamental resonance and principal parametric reso-
nance). Then from (16) and (17) we take only the con-
stant terms and the terms of small frequency, thus we
have

F̄1(y, t) = f̄ (y,t) =
[

f̄1a(y,t)
f̄1ϕ (y,t)

]
, y =

[
A
Φ

]
, (18)

where

f̄1a(y, t) = ε
[
−2µ1A− 3

8
µ3A3 +

1
2

f sin[(Ω −1)t−Φ]

− 1
4

hAsin[(Ω −2)t −2Φ]
]
, (19)

f̄1ϕ (y, t) = ε
[1

2
b1 +

3
8

b3A2 +
5
16

b5A4 +
35

128
b7A6

− f
2A

cos[(Ω −1)t −Φ]

+
1
4

hcos[(Ω −2)t −2Φ]
]
, (20)

and the terms of higher frequency are

f̄1(y, t) = f̄ (y,t) =
[

f̄1a(y,t)
f̄1ϕ (y,t)

]
, (21)

where

f̄1a(y, t) = −2µ1Acos2ψ

−µ3A3
(1

2
cos2ψ +

1
8

cos4ψ
)

+
1
2

b1asin2ψ

+ b2A2
(1

4
sin 3ψ − 1

8
sinψ

)

+ b3A3
( 1

16
sin2ψ +

1
8

sin4ψ
)

+ b4A4
(1

8
sin ψ +

3
16

sin3ψ +
1

16
sin6ψ

)

+ b5A5
( 5

32
sin2ψ +

3
32

sin4ψ +
1

16
sin 6ψ

)

+b6A6
( 5

64
sinψ +

9
64

sin3ψ +
1
16

sin5ψ +
1

32
sin7ψ

)

+ b7A7
(1

8
sin 2ψ +

5
256

sin4ψ +
7

256
sin6ψ

+
1
64

sin8ψ
)

+
1
4

hAsin(Ω t + 2ψ)

− 1
2

f sin(Ω t + ψ), (22)

f̄1ϕ(y, t) =−µ1 sin2ψ−µ3A2
( 1

16
cos2ψ +

1
8

cos4ψ
)

+
1
2

b1 cos2ψ + b2A
(3

8
cosψ +

1
4

cos3ψ
)

+ b3A2
(1

2
cos2ψ +

1
8

cos4ψ
)

+ b4A3
(5

8
cosψ +

5
16

cos3ψ +
1

16
cos5ψ

)

+ b5A4
( 5

32
cos2ψ +

3
16

cos4ψ +
1

32
cos6ψ

)

+ b6A5
(43

64
cosψ +

27
128

cos3ψ +
11

128
cos5ψ

+
1
64

cos7ψ
)

+ b7A6
(15

32
cos2ψ +

7
32

cos4ψ

+
1
16

cos6ψ +
1
64

cos8ψ
)

+
1
4

hcos(Ω t + 2ψ)− f
2A

cos(Ω t + ψ). (23)

Then the reduced system to the first approximation
takes the form

[
Ȧ
Φ̇

]
= εF̄1(y, t), (24)

i. e.,

Ȧ = ε
[
−2µ1A− 3

8
µ3A3 +

1
2

f sin[(Ω −1)t −Φ]

− 1
4

hAsin[(Ω −2)t −2Φ]
]
, (25)

Φ̇ = ε
[1

2
b1 +

3
8

b3A2 +
5

16
b5A4 +

35
128

b7A6

− f
2A

cos[(Ω −1)t−Φ]+
1
4

hcos[Ω −2)t−2Φ]
]
.

(26)

Since t appear explicitly in (25) and (26), they are
called a nonautonomous system. It is convenient to
eliminate the explicit dependence on t, thereby trans-
forming the equations into an autonomous system.
This can be accomplished by introducing the new de-
pendent variables γ1 and γ2 defined by

γ1 = (Ω −1)t −Φ = εσ1t −Φ,

γ2 = (Ω −2)t −2Φ = εσ2t −2Φ,
(27)
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where σ1 and σ2 are the detuning parameters. Insert-
ing (27) into (25) and (26), one obtains the autonomous
system that describes the modulations of the amplitude
and phase:

Ȧ = ε
[
−µ1A− 3

8
µ3A3 +

1
2

f sinγ1− 1
4

hAsinγ2

]
, (28)

Φ̇ = ε
[

1
2

b1 +
3
8

b3A2 +
5
16

b5A4

+
35

128
b7A6 − f

2A
cosγ1 +

1
4

hcosγ2

]
.

(29)

Two cases of resonance are considered:

3.1. First Case: Fundamental Resonance

In this case, the modulations of the amplitude and
phase become

Ȧ = ε
[
− µ1A− 3

8
µ3A3 +

1
2

f sinγ1

]
, (30)

Φ̇ = ε
[

1
2

b1 +
3
8

b3A2

+
5

16
b5A4 +

35
128

b7A6 − f
2A

cosγ1

]
.

(31)

We proceed by solving the fixed points of (30)
and (31), which correspond to periodic solutions of (7).
We set ȧ = γ̇1 = 0 and obtain

−µ1A− 3
8

µ3A3 +
1
2

f sin γ1 = 0, (32)

σ1 − 1
2

b1 − 3
8

b3A2 − 5
16

b5A4

− 35
128

b7A6 +
f

2A
cosγ1 = 0.

(33)

Eliminating γ1 from (31) and (32) yields the frequency
response equation

{(
µ1 − 3

8
µ3A2

)2
+

(
σ1 − 1

2
b1 − 3

8
b3A2

− 5
16

b5A4 − 35
128

b7A6
)2

}
A2 − 1

4
f 2 = 0.

(34)

The stability of the steady-state solutions is consid-
ered by Liapunov’s first method. Let

a = a0 + a1, γn = γn0 + γn1 (n = 1,2), (35)

where a0 and γn0 are the steady-state values and a1
and γn1 are the infinitesimal time-dependent pertur-
bation. Substituting expressions (35), when n = 1,
into (30) and (31) and using steady-state equations, one
obtains

Ȧ1 =
(
−µ1 − 9

8
µ3A2

0

)
A1 +

1
2
( f cosγ10)γ11, (36)

γ̇11 =
(σ1

A0
− 1

2A0
b1 − 9

8
b3A0

− 25
16

b5A3
0 +

245
128

b7A5
0

)
A1

− 1
2
( f sin γ10)γ11.

(37)

The stability of a given fixed point to a disturbance pro-
portional to exp(λ t) is determined by the roots of




−µ1 − 9
8

µ3A2
0

1
2

f cosγ10

σ1

A0
− 1

2A0
b1 − 9

8
b3A0 −1

2
f sinγ10

−25
16

b5A3
0 +

245
128

b7A5
0




= 0. (38)

Consequently, a nontrivial solution is stable if and only
if the real parts of both eigenvalues of the coefficient
matrix (38) are less than zero. Solid/dotted lines de-
note stable/unstable solution on the response curves,
respectively.

3.2. Second Case: Principal Parametric Resonance

In this case, the modulations of the amplitude and
phase become

Ȧ = ε
[
− µ1A− 3

8
µ3A3 − 1

4
hAsinγ2

]
, (39)

Φ̇ = ε
[1

2
b1 +

3
8

b3A2 +
5

16
b5A4

+
35
128

b7A6 +
1
4

hcosγ2

]
.

(40)

For stationary solutions, we put ȧ = γ̇2 = 0; then (39)
and (40) become

−µ1A− 3
8

µ3A3 − 1
4

hAsinγ2 = 0, (41)

1
2

σ2A− 1
2

b1A− 3
8

b3A3 − 5
16

b5A5

− 35
128

b7A7 − 1
4

hAcosγ2 = 0.

(42)



A. F. El-Bassiouny · Nonlinear Rolling of a Biased Ship 579

Equations (41) and (42) show that there are two pos-
sibilities: a = 0 or a �= 0. When a �= 0, the frequency
response equation becomes{(

µ1 − 3
8

µ3A2
)2

+
(1

2
σ2 − 1

2
b1 − 3

8
b3A2

− 5
16

b5A4 − 35
128

b7A6
)2

}
− 1

16
h2 = 0.

(43)

The stability of the nontrivial solutions can be
determined by using the modulation equations (39)
and (40), and using the same method as in the above
section, we finally obtain

Ȧ1 =
(
−µ1 − 9

8
µ3A2

0

)
A1 +

1
2
( f cosγ10)γ11, (44)

γ̇21 =
( σ2

2A0
− 1

2A0
b1 − 9

8
b3A0

− 25
16

b5A3
0 +

245
128

b7A5
0

)
A1

− 1
2
( f sinγ10)γ11.

(45)

4. The Method of Multiple Scales

To determine an approximate solution of (7), we use
the method of multiple scales [6, 29, 30, 32]. First, we
seek an approximation to u in the form

u(t,ε) = u0(T0,T1)+ εu1(T0,T1)+ . . . , (46)

where T0 = t is a fast-time scale and T1 = εt is a slow-
time scale characterizing the time evolution of the am-
plitude and phase of the response. Second, the deriva-
tives with respect to time are expressed in terms of the
new time scales as

d
dt

= D0 +εD1 + . . . ,
d2

dt2 = D2
0 +2εD0D1 + . . . , (47)

where Dn = ∂
∂Tn

. Substituting (46) and (47) into (7) and
equating coefficients of similar powers of ε leads to

D2
0u0 + u0 = 0, (48)

D2
0u1 + u1 = −2D0D1u0 + b1u0 −2µ(D0u0)

−µ3(D0u0)3 −b2u2
0 −b3u3

0 −b4u4
0 −b5u5

0

−b6u6
0 −b7u7

0 −hacosΩ t + f cosΩ t.

(49)

The solution of (48) can be expressed as

u0 = A(T1)exp(iT0)+ Ā(T1)exp(−iT0), (50)

where Ā is the complex conjugate of A, which is an ar-
bitrary complex function of T1 at this level of approx-
imation. It is determined by imposing the solvability
condition at this level of approximation.

Substituting (50) into (49) yields

D2
0u1 + u1 =

[
−2iD1A + b1A−2iµ1A−3iµ3A2Ā

−10b5A3Ā2 −35b7A4Ā3 +
1
2

f
]

exp(it)

−[
b2A2 + 4b4A3Ā + 15b6A4Ā2]exp(2it)

+
[
(iµ3 −b3)A3 −5b5A4Ā−21b7A5Ā2]exp(3it)

+
[−b4A4 −6b6A5Ā

]
exp(4it)

−[
b5A5 −7b7A6Ā

]
exp(5it)

−b6A6 exp(6it)−20b7A7 exp(7it)

−2b2AĀ−6b4A2Ā2 −20b7A3Ā3 + cc, (51)

where cc stands for the complex conjugate of the pre-
ceding terms. To describe quantitatively the nearness
of Ω to 1 and Ω to 2, we introduce two detuning pa-
rameters, σ1 and σ2, defined by

Ω = 1 + εσ1, Ω = 2 + εσ2. (52)

Then, substituting (52) into (51), we find that the secu-
lar terms are eliminated from u1 if

2i(D1A + µ1A)−b1A + 3iµ3A2Ā+ 3b3A2Ā

+ 10b5A3Ā2 + 35b7A4Ā3 − 1
2

Āhexp(iσ2T1)

− 1
2

f exp(iσ1T1) = 0.

(53)

Next, we express (53) in real variable by letting

A =
1
2

a(T1)exp(iβ (T1)). (54)

Substituting (54) into (53) and separating the real and
imaginary parts yields

a′ = −µa− 3
8

µa2 +
1
2

f sinΓ1 − 1
4

hasinΓ2, (55)

aβ ′ =
1
2

b1a +
3
8

b3a3 +
5

16
b5a5 +

35
128

b7a7

− 1
2

f cosΓ1 +
1
4

hacosΓ2,

(56)
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where

Γ1 = σ1T1 −β , Γ2 = σ2T1 −2β . (57)

Stationary solutions of (55) and (56) correspond to ȧ =
0 and Γ̇n = 0 (n = 1,2). Then it follows from (57) that

β ′ = σ1 =
1
2

σ2 = σ , (58)

and hence if follows from (55) and (56) that stationary
solutions are given by

−µa− 3
8

µa2 +
1
2

f sinΓ1 − 1
4

hasinΓ2 = 0, (59)

aσ − 1
2

b1a− 3
8

b3a3 − 5
16

b5a5 − 35
128

b7a7

+
1
2

f cosΓ1 − 1
4

hacosΓ2 = 0.

(60)

Two cases of resonances are considered as described in
the following sections.

4.1. First Case: Fundamental Resonance

In this case, (59) and (60) become

−µa− 3
8

µa2 +
1
2

f sinΓ1 = 0, (61)

aσ − 1
2

b1a− 3
8

b3a3 − 5
16

b5a5

− 35
128

b7a7 +
1
2

f cosΓ1 = 0.

(62)

Squaring (61) and (62) and adding the results gives the
frequency response equation

{(
µ1 − 3

8
µ3a2

)2
+

(
σ1 − 1

2
b1 − 3

8
b3a2

− 5
16

b5a4 − 35
128

b7a6
)2

}
a2 − 1

4
f 2 = 0,

(63)

which is in full agreement with equation (34) obtained
by the method of averaging.

4.2. Second Case: Principal Parametric Resonance

In this case, (59) and (60) become

−µa− 3
8

µa2 − 1
4

hasinΓ2 = 0, (64)

aσ − 1
2

b1a− 3
8

b3a3 − 5
16

b5a5

− 35
128

b7a7 − 1
4

hacosΓ2 = 0.

(65)

From these equations, we obtain the frequency re-
sponse equation

{(
µ1 − 3

8
µ3a2

)2
+

(1
2

σ2 − 1
2

b1 − 3
8

b3a2

− 5
16

b5a4 − 35
128

b7a6
)2

}
− 1

16
h2 = 0,

(66)

which is in excellent agreement with (43) obtained by
the method of averaging.

5. Numerical Results

In this section the numerical solutions of the fre-
quency response equations are studied. Frequency re-
sponse equations (34) and (43) are nonlinear algebraic
equations in the amplitude (A). The equation and sta-
bility conditions are solved numerically. Excitation re-
sponse and frequency response curves are plotted in
Figs. 2 – 21, which present the variation of the ampli-
tude A against the detuning parameters σ1 and σ2.

Figures 2 – 11 represent the frequency response
curves for fundamental resonance. In Fig. 2, the re-
sponse amplitude bent to the right which gives harden-
ing behaviour has two branches (single-valued curve
and semi-oval) such that the single-valued curve has
unstable solutions and the semi-oval has stable and

Fig. 2. Variation of the amplitude of the response with the
detuning parameter σ1 for increasing µ1.
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Fig. 3. Variation of the amplitude of the response with the de-
tuning parameter σ1 for decreasing µ1 and µ3, respectively.

Fig. 4. Variation of the amplitude of the response with the
detuning parameter σ1 for increasing µ3.

unstable solutions. As σ1 decreases through the inter-
val [0 – 50], the response amplitude loses stability via
a saddle node bifurcation. As µ1 = 5 the branches con-
nect and give one continuous curve such that the zone
of multi-values and stability is decreased. For further
increasing of µ1 (i. e. µ1 takes the values 10 and 20),
the multi-valued curve disappears and the response
amplitude has a decreased single-valued curve; there
exist two saddle node bifurcations. When the damp-
ing factor µ1 decreases up to 0.01, we note that the
response amplitude is not affected and has the same re-

Fig. 5. Variation of the amplitude of the response with the
detuning parameter σ1 for decreasing b1.

Fig. 6. Variation of the amplitude of the response with the
detuning parameter σ1 for increasing b1.

gion of stability. Also, as the damping factor µ3 takes
the values 0.1 and 0.01, we observe that the response
amplitude is not affected and has the same region of
stability, Figure 3. For increasing the damping fac-
tor µ3 (i. e. µ3 takes the values 7, 20 and 45), we
get the same variation as in Fig. 1, and the zone of
stability is increased; there exist two saddle node bi-
furcations, Figure 4. When the coefficient of the lin-
ear term b1 is decreased with negative values, we ob-
serve that the upper branch has increased magnitudes
and a semi-oval shift to the left gives the increase in
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Fig. 7. Variation of the amplitude of the response with the
detuning parameter σ1 for decreasing b3.

Fig. 8. Variation of the amplitude of the response with the
detuning parameter σ1 for increasing b5.

the zones of stability and is multi-valued. The single-
valued curve shifts to the top with increased unstable
magnitudes and the semi-oval consists of two branches
such that the upper branch has increased stable mag-
nitudes and the lower branch has decreased unstable
magnitudes, respectively, and there exists one saddle
node bifurcation for each semi-oval, Figure 5. As b1
takes the values 25, 40 and 60, we note that the up-
per branch moves to the top with increased unstable
magnitudes and the semi-oval moves to the right and

Fig. 9. Variation of the amplitude of the response with the
detuning parameter σ1 for decreasing b7.

Fig. 10. Variation of the amplitude of the response with the
detuning parameter σ1 for decreasing f .

contracts such that the upper branch has decreased sta-
ble magnitudes and the lower branch has increased un-
stable magnitudes, respectively, and there exists one
saddle node bifurcation for each semi-oval, Figure 6.
When the coefficient of the cubic nonlinear term b3
decreases with negative values, we observe that the
upper branch has increased magnitudes and a semi-
oval shift to the left, respectively, which leads to in-
creasing the regions of stability and multi-valued and
there exists one saddle node bifurcation for each semi-
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Fig. 11. Variation of the amplitude of the response with the
detuning parameter σ1 for increasing f .

oval, Figure 7. When the coefficient of quintic non-
linear term b5 takes the values 20 and 80, we observe
that the response amplitude has decreased magnitudes.
Each semi-oval has one saddle node bifurcation, Fig-
ure 8. If the coefficient of the seven nonlinear term b7
is decreased, we note that the response amplitude has
increased magnitudes. The upper branch has stable and
unstable solutions and there exist two saddle node bi-
furcations. Also there exists one saddle node bifur-
cation for each semi-oval, Figure 9. When the am-
plitude of external excitation f is decreased, we ob-
serve that the upper branch has decreased magnitudes
and stable and unstable solutions, and there exist two
saddle node bifurcations. Also there exists one saddle
node bifurcation in the semi-oval. As σ1 decreases up
to 1, the two branches connect and give a continuous
curve such that there exist two saddle node bifurca-
tions, Figure 10. When f is increased up two 30, we
observe that the upper branch shifts to the top with
unstable increased magnitudes and the semi-oval con-
tracts and decreases in the region of stability and multi-
valued. As σ1 decreases through the interval [0 – 50],
the response amplitude loses stability via a saddle
node bifurcation. When f takes the values 60 and 100,
the semi-oval disappears and the single-valued curve
moves to the top with unstable increased magnitudes,
Figure 11.

Figures 12 – 21 represent the frequency response
curves for subharmonic resonance of order one-half.
In Fig. 12, we observe that the response amplitude has

Fig. 12. Variation of the amplitude of the response with the
detuning parameter σ2 for increasing µ1.

Fig. 13. Variation of the amplitude of the response with the
detuning parameter σ2 for decreasing µ1.

two branches which bent to the right and have harden-
ing behaviour. The left branch has stable and unstable
solutions, and there exists one saddle node bifurcation,
while the right branch has unstable solutions. As the
damping factor µ1 is increased up to 1, the left and
right branches shift to the right and left, respectively,
such that the left branch has decreased magnitudes and
the right branch has increased magnitudes. All solu-
tions are unstable. When µ1 = 1.2, the two branches
contracts and give a semi-closed curve, and all solu-
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Fig. 14. Variation of the amplitude of the response with the
detuning parameter σ2 for increasing µ3.

Fig. 15. Variation of the amplitude of the response with the
detuning parameter σ2 for increasing b1.

tions are unstable. As µ1 = 1.4, the semi-closed curve
contracts and has unstable decreased magnitudes. The
regions of multi-valued and definition are decreased.
For decreasing the damping factor µ1 up to 0.01, we
note that the left branch shifts to the left with unstable
increased magnitudes and the right branch shifts to the
right with unstable decreased magnitudes. The zone of
definition is increased, Figure 13. As the damping fac-
tor µ3 takes the values 3, 6 and 9, the two branches
contract and give a semi-closed curve which contract,
respectively, with unstable decreased magnitudes and
defined in the same interval, Figure 14. When the co-
efficient of the linear term b1 decreases (i. e. b1 takes

Fig. 16. Variation of the amplitude of the response with the
detuning parameter σ2 for increasing b3.

Fig. 17. Variation of the amplitude of the response with the
detuning parameter σ2 for increasing b5.

the values 1.5 and 3), we note that the left and right
branches are moved to the right with decreased magni-
tudes. The zones of stability and multi-valued are de-
creased and there exists one saddle node bifurcation in
the left branch, Figure 15. For decreasing the coeffi-
cient of the cubic nonlinear term b3, we note that the
two branches shift down with decreased magnitudes
and defined in the same interval. There exists one sad-
dle node bifurcation in the left branch, Figure 16. As
the coefficient of the quintic nonlinear term b5 takes
the values 35 and 80, we get the same variation as in
Fig. 16, Figure 17. When the coefficient of the seven
nonlinear term b7 increases, we get the same variation
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Fig. 18. Variation of the amplitude of the response with the
detuning parameter σ2 for increasing b7.

Fig. 19. Variation of the amplitude of the response with the
detuning parameter σ2 for decreasing b7.

as in Fig. 16, Figure 18. For decreasing b7 up to 0.01,
we note that the left branch shifts to the top and has in-
creased magnitudes such that the zone of stability de-
creases and there exist two saddle node bifurcations.
The right branch has increased magnitudes in a small
interval, Figure 19. As the amplitude of external exci-
tation h takes the values 10 and 15, we observe that
the left and right branches shift to the left and right
with increased and decreased magnitudes, respectively,
and the region of definition and multi-valued are in-
creased and decreased, respectively, Figure 20. For in-
creasing h, we get the same variation as in Fig. 12, Fig-
ure 21.

Fig. 20. Variation of the amplitude of the response with the
detuning parameter σ2 for increasing h.

Fig. 21. Variation of the amplitude of the response with the
detuning parameter σ2 for decreasing h.

6. Summary and Conclusion

Two methods (the averaging and the multiple time
scales) are used to investigate first-order approximate
analytical solutions of the nonlinear rolling response of
a ship in regular beam seas. The analysis took into con-
sideration linear, quadratic, cubic, quintic, and seven
terms in the polynomial expansion of the relative roll
angle. The damping moment consists of the linear term
associated with radiation and viscous damping and a
cubic term due to frictional resistance and eddies be-
hind bilge keels and hard bilge corners. The modu-
lation equations (reduced equations) of the amplitude
and phase are obtained. Steady-state solutions and their
stability are determined. The following conclusions
can be deduced from the analysis:
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From the frequency response curves of primary res-
onance, we observe that the response amplitude con-
sists of two branches (single-valued curve and semi-
oval) which is bending to the right and has hardening
behaviour. The response amplitude is not affected and
has the same region of stability when µ1 and µ3 in-
crease and when f = 1. The multi-valued disappears
when µ1 = 10 and µ3 = 20.

From the frequency response curves of subharmonic
resonance of order one-half, we note that the response

amplitude consists of two branches which are bend-
ing to the right and have hardening behaviour. The
zone of definition increases when µ1 is decreasing and
h is increasing. The response amplitude loses stabil-
ity when µ1 and µ3 are increasing and µ1 is decreas-
ing. The two branches contract and give a continuous
curve when µ1 and µ3 are increasing and h is decreas-
ing. The two branches have the same region of defini-
tion when µ1, b1, b3, b5, b7 are increasing and b7 is
decreasing.
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